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It was shown in [4] that an operator of the form (1) below with boundary
conditions of Feller-Wentzell type is the infinitesimal generator of a strongly
continuous nonnegative contraction $(s. c. n. c.)$ semigroup $(T_{t})_{t\geqq 0}$ in $C=C([0,1])^{*)}$

or a subspace of $C$. In this note we continue the study of these operators.
The main result is that the semigroup $(T_{t}^{*})_{t\geqq 0}$ or the corresponding Markov
process have a unique invariant measure $\mu_{0}$ with supp $\mu_{0}=[0,1]$ if only the
boundary conditions are “not too degenerated”. This seems to be rather
evident as the operator (1) contains a diffusion term $D_{m}D_{x}$ . However the
analytical proof of this fact we could give (Theorem 5) is not so short.
Further it is shown that $\mu_{0}$ is in $(0,1)$ absolutely continuous with respect to
the measure $m$ .

In a following note we shall continue the study of this class of Markov
processes along the lines of [6]. In particular, we shall investigate the limit
behavior of the transition probabilities if $ t\rightarrow\infty$ and derive Kolmogorov’s
equations for the densities of the transition probabilities (with respect to $\mu_{0}$).

As an important tool, the extension of the semigroup $(T_{t})_{t\geqq 0}$ to $L^{2}(\mu_{0})$ (with

scalar product denoted by $[\cdot, ]$ ) is considered. The explicit expressions of
$[Af, f]$ and its real and imaginary parts, given at the end of this paper,
will play an essential role in this investigation.

We thank the referee for many valuable suggestions and, in particular,
for correcting an error in our original proof of Lemma 3.

1. Preliminaries.

Let $m,$
$b$ and the family of measures $n_{x},$ $x\in[0,1]$ , have the same pro-

perties as in [4], [5] that is $m$ is a strongly increasing continuous function
$*)$ In [4] only real spaces have been considered, here, however, $C$ is supposed to

be complex. It is easy to $see$ ([5], p. 106), that the statements quoted above are
true for the corresponding complex spaces.
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on $[0,1],$ $b$ is a real continuous function on $[0,1]$ and $n_{x},$ $x\in[0,1]$ , are non-
negative measures on $[0,1]$ with the properties

(a) $ n_{x}([0,1])\leqq K<\infty$ $(x\in[0,1])$ ,
(b) $\xi\rightarrow x$ implies $n_{\xi}\rightarrow n_{x}*$-weakly $(x, \xi\in[0,1])$ , that is

$\int_{0}^{1}f(y)n_{\xi}(dy)\rightarrow\int_{0}^{1}f(y)n_{x}(dy)$ for all $f\in C$ ,

(c)
$\sup_{x\in[0,1]}\int_{|\tau- ,y\in[\#,]}|\leqq\delta n_{x}(dy)\rightarrow 01$ if $\delta\downarrow 0.*$

)

The second order generalized differential operator $D_{m}D_{x}$ in $C$ is defined
in the usual way (see [4] and the references quoted there): Its domain
$\mathfrak{D}(D_{m}D_{x})$ is the set of all $f\in C$ which admit a representation

$f(x)=f_{0}+xf_{0}^{\prime}+\int_{0}^{x}(x-s)\varphi(s)dm(s)$ , $x\in[0,1]$ ,

with $f_{0},$ $f_{0}^{\prime}\in C^{**)},$ $\varphi\in C$, and for this function $f$ we define
$ D_{m}D_{x}f:=\varphi$ .

With $D_{x}f$ denoting the first derivative of a continuously differentiable function
$f$ and $\varphi_{x}(y):=\int_{x}^{y}(y-s)dm(s),$ $x,$ $y\in[0,1]$ , on $\mathfrak{D}(D_{m}D_{x})$ we shall consider the

following operator $\mathfrak{A}$ :
$(\mathfrak{U}f)(x):=(D_{m}D_{x}f)(x)+b(x)(D_{x}f)(x)$ (1)

$+\int_{0}^{1}(f(y)-f(x)-(y-x)(D_{x}f(x)))\frac{n_{x}(dy)}{\varphi_{x}(y)}$ , $x\in[0,1]$ , $f\in \mathfrak{D}(D_{m}D_{x})$ .

The integral on the right hand side of (1) is possibly an improper integral
with respect to the singularity at $y=x$ , but it is easy to see that it exists
for all $f\in \mathfrak{D}(D_{m}D_{x})$ . In the following, by $\tilde{n}_{x}$ we denote the measure

$\tilde{n}_{x}(dy):=\frac{n_{x}(dy)}{\varphi_{x}(y)}$ on $[0,1]\backslash \{x\}$ .

If $f\in \mathfrak{D}(D_{m}D_{x})$ we define

$\Phi_{0}(f):=\kappa_{0}f(0)+\int_{0}^{1}\frac{f(0)-f(x)}{x}dq_{0}(x)+\sigma_{0}(\mathfrak{U}f)(0)$ ,

$\Phi_{1}(f):=\kappa_{1}f(1)+\int_{0}^{1}\frac{f(1)-f(x)}{1-x}dq_{1}(x)+\sigma_{1}(\mathfrak{U}f)(1)$ ,

where the constants $\kappa_{0},$ $\kappa_{1},$ $\sigma_{0},$ $\sigma_{1}$ are nonnegative, $q_{0}$ and $q_{1}$ are nonnegative

measures on $[0,1]$ and $\kappa_{i}+\sigma_{i}+\int_{0}^{1}dq_{i}>0,$ $i=0,1$ . If $q_{i}$ has concentrated mass

$*)$ The conditions (a-c) are equivalent to (b) and $(a^{\prime})n_{x}(\{x\})=0$ for all $x\in[0,1]$ .
$**)C$ denotes the set of complex numbers, $:=$ is used to define new symbols.
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at the point $i,$ $i=0,1$ , it is understood that

$\frac{f(0)-f(x)}{X}|_{x=0}=-(D_{x}f)(0)$ , $\frac{f(1)-f(x)}{1-x}|_{x=1}=(D_{x}f)(1)$ .

We always suppose that the equations

$\Phi_{0}(f)=0$ , $\Phi_{1}(f)=0$ (2)

are not equivalent to $f(O)=f(1)$ . The restriction $A$ of $\mathfrak{A}$ by the boundary
conditions (2), that is $\mathfrak{D}(A):=\{f\in \mathfrak{D}(D_{m}D_{x}):\Phi_{0}(f)=\Phi_{1}(f)=0\}$ and $Af:=\mathfrak{A}f$

for $f\in \mathfrak{D}(A)$ , is the infinitesimal generator of a $s$ . $c$ . $n$ . $c$ . semigroup in $C$ or
the subspace of $C$ determined by the boundary conditions (2), see [4], [5].

For simplicity we shall always suppose in the following, that the functionals
$\Phi_{i},$ $i=0,1$ , are not continuous on $C$ that is

$\int_{0}^{1}|i-x|^{-1}dq_{i}(x)=\infty$ or $\sigma_{i}>0$ , $i=0,1$ . (3)

In this case the domain $\mathfrak{D}(A)$ of $A$ is dense in $C$.
LEMMA 1. The spectrum $\sigma(A)^{*)}$ is discrete in the finite complex plane.
PROOF. Suppose first that the functionals $\Phi_{i}$ are

$\Phi_{i}(f)$ $:=(-1)^{i+1}(D_{x}f)(\iota)$ , $i=0,1$ ,

and denote by $A_{1}$ the corresponding restriction of $\mathfrak{A}$ by the boundary conditions
(2). Then with the operators $A_{0}$ : $\mathfrak{D}(A_{0})=\mathfrak{D}(A_{1})$ ,

$A_{0}f:=D_{m}D_{x}f$, $f\in \mathfrak{D}(A_{0})$ ,

and $B:\mathfrak{D}(B)=\mathfrak{D}(A_{1})$ ,

$(Bf)(x):=b(x)(D_{x}f)(x)$

$+\int_{0}^{1}(f(y)-f(x)-(y-x)(D_{x}f)(x))\tilde{n}_{x}(dy)$ , $x\in[0,1]$ , $f\in \mathfrak{D}(B)$ ,

we have for the resolvents $R_{\lambda}^{(0)}$ $:=(\lambda I-A_{0})^{-1},$ $R_{\lambda}^{(1)}$ $:=(\lambda I-A_{1})^{-1}$ :

$R_{\lambda}^{(1)}=R_{\lambda}^{(0)}(I-BR_{\lambda}^{(0)})^{-1}$ , $\lambda\in\rho(A_{1})\cap\rho(A_{0})$ ,

and $BR_{\lambda}^{(0)}$ is compact in $C$ ([4]). Evidently $BR_{\lambda}^{(0)}$ is a holomorphic function
of $\lambda$ in $\rho(A_{0})$ and the positive half axis belongs to $\rho(A_{1})\cap\rho(A_{0})$ , hence
$1\not\in\sigma_{p}(BR_{\lambda}^{(0)})$ if $\lambda>0$ . By a theorem of I. C. Gohberg ([2]), $\sigma(A_{1})$ is discrete.

$*)$ The spectrum $\sigma(A)$ , resolvent set $\rho(A)$ and point spectrum $\sigma_{p}(A)$ of a linear
operatorA are defined as in [1].
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Let now $A$ be the operator (1) with general boundary conditions. For
fixed $\lambda_{0}>0$ the difference $(\lambda_{0}I-A)^{-1}-(\lambda_{0}I-A_{1})^{-1}$ is two-dimensional (see [4],

p. 248). On the other hand $\sigma(R_{\lambda_{0}}^{(1)})(\sigma(R_{\lambda_{0}}))$ is discrete in $C\backslash \{0\}$ if and only if
$\sigma(A_{1})$ ( $\sigma(A)$ resp.) is discrete in $C$ . Therefore the statement follows from the
first part of the proof.

In the following the $s$ . $c$ . $n$ . $c$ . semigroup in $C$ generated by the operator
$A$ will be denoted by $(T_{t})_{t\geqq 0}$ , its adjoint semigroup in $c*$ by $(T_{t}^{*})_{t\geqq 0}$ . The
corresponding transition function is $P(t;x, \Gamma)(t>0, x\in[0,1], \Gamma\in \mathfrak{B}_{[0,1]})$ . A
nonnegative measure $\mu\in C^{*},$ $\mu\neq 0$ , is said to be invariant (subinvariant) under
$(T_{t}^{*})_{t\geqq 0}$ if $ T_{t}^{*}\mu=\mu$ ( $ T_{t}^{*}\mu\leqq\mu$ resp.) for all $t\geqq 0$ .

The following lemma is well-known for arbitrary strongly continuous
semigroups $(T_{t})_{t\geqq 0}$ in a Banach space. It is reproduced here only for the sake
of completeness.*)

LEMMA 2. The following statements are equivalent:
1) $\mu_{0}\in C^{*}$ is an invariant measure of the semigroup $(T_{t}^{*})_{t\geqq 0}$ ;
2) for some $\lambda\in\rho(A)$ we have $\lambda R7\mu_{0}=\mu_{0}$ ;
3) for all $\lambda\in\rho(A)$ we have $\lambda R7\mu_{0}=\mu_{0}$ ;
4) $\mu_{0}$ is orthogonal to the range $\Re(A)^{**)}$

PROOF. Evidently $\lambda R7\mu_{0}=\mu_{0}$ is equivalent to $\mu_{0}(\lambda R_{\lambda}f-f)=0$ for all $f\in C$.
If $\lambda^{\prime},$ $\lambda\in\rho(A)$ , we get therefore

$0=\mu_{0}(\lambda R_{\lambda}R_{\lambda^{\prime}}f-R_{\lambda},f)=\mu_{0}(\lambda(\lambda-\lambda^{\prime})^{-1}(R_{\lambda^{\prime}}-R_{\lambda})f-R_{\lambda},f)$

$=(\lambda-\lambda^{\prime})^{-1}\mu_{0}(-f+\lambda^{\prime}R_{\lambda^{\prime}}f)$ ,

hence the eigenspace of $\lambda R_{\lambda}^{*}$ to the eigenvalue one is independent of $\lambda$ . It is
obvious from the definition of $R_{\lambda}$ that $T_{t}^{*}\mu_{0}=\mu_{0}$ for all $t\geqq 0$ implies $\lambda R_{\lambda}^{*}\mu_{0}=\mu_{0}$ .
On the other hand, the relation

$T_{t}f-f=\int_{0}^{t}T_{s}Afds$ $(f\in \mathfrak{D}(A))$

implies $T_{t}f-f\in\overline{\Re(A)}$ for arbitrary $f\in C$. Suppose now
$0=\mu_{0}(\lambda R_{\lambda}f-f)=\mu_{0}(A(\lambda I-A)^{-1}f)$

for all $f\in C$, that is $\mu_{0}(g)=0$ for all $g\in\Re(A)$ . Then $\mu_{0}(T_{t}f-f)=0$ for $f\in C$,
$t\geqq 0$ , and the statement follows.

2. Invariant measures.

In this section we suppose $\kappa_{0}=\kappa_{1}=0$ . Then the transition function (or

the corresponding Markov process) is conservative, that is we have
$*)$ We thank our colleague Dr. R. K\"uhne for pointing out the Properties 2), 3) to us.

$**)\Re(A)$ : $=\{Af:f\in \mathfrak{D}(A)\}$ .
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$P(t ; x, [0,1])=1$ , $t>0,$ $x\in[0,1]$ .
LEMMA 3. If the nonnegative measure $\mu_{0}(\neq 0)$ is invariant under $(T_{t}^{*})_{t\geqq 0}$

and $suPp$ $\mu_{0}\not\subset\{0,1\}$ then $suPp$ $\mu_{0}=[0,1]$ .
PROOF. If $S_{0}$ $:=supp\mu_{0}$, we have

$\int_{s_{0}}P(t;x, I^{7})\mu_{0}(dx)=\mu_{0}(\Gamma)$ for all $\Gamma\in \mathfrak{B}_{[01]}$ , $t\geqq 0$ ,

hence $P(t;x, \Gamma)=0$ for $\mu_{0}$-almost all $x\in S_{0}$ , if $\Gamma\cap S_{0}=\emptyset$ . Consider a continu-
ous function $f$ on $[0,1]$ vanishing on $S_{0}$ . Then we have with $\Delta_{0}$ $:=[0,1]\backslash S_{0}$

$\int_{A_{0}}P(T;x, dy)f(y)=0$

for $\mu_{0}$-almost all $x\in S_{0}$ . But the integral on the left hand side is a continuous
function of $\chi$ , hence it vanishes identically on $S_{0}$ . This implies $P(t;x, \Delta_{0})=0$,
or $P(t;x, S_{0})=1$ for all $x\in S_{0},$ $t\geqq 0$ . Therefore for the corresponding canonical
Feller process $X$ with $P_{x}$ -probability one the paths starting in a point $x\in S_{0}$

always remain in $S_{0}$ . Hence if $\Delta\subset\Delta_{0},$ $\Delta\in \mathfrak{B}_{[0\cdot 1]},$ $x\in S_{0}$ :

$\tilde{n}_{x}(\angle f)=\lim_{U\downarrow x}\frac{P_{x}(X_{\tau}\in\Delta)}{E_{x}\tau}=0$ ,

where $\tau;=\tau_{U}$ denotes the first exit time of the neighbourhood $U$ of $x$ .
Assume now $S_{0}\neq[0,1],$ $S_{0}\not\subset\{0,1\}$ and consider a boundary point $x_{0}$ of

$\Delta_{0},$ $x_{0}\in(0,1)$ . Suppose $e$ . $g$ . that for some $\delta>0$ the interval $(x_{0}-\delta, x_{0})$ belongs
to $\Delta_{0}$ and $x_{0}+\delta<1$ . Then it follows easily that there exists a nonnegative
function $f_{0}\in \mathfrak{D}(D_{m}D_{x})$ with the properties

$f_{0}(x)=0$ if $|\chi-\chi_{0}|\geqq\delta$ , $(D_{m}D_{x}f_{0})(x)\geqq 0$ if $x\geqq x_{0}$ ,

$(D_{m}D_{x}f_{0})(x_{0})>|b(x_{0})||(D_{x}f_{0})(x_{0})|$

$+|\int_{0}^{x_{0}-\delta}\{-f_{0}(x_{0})-(y-x_{0})(D_{x}f_{0})(x_{0})\}\tilde{n}_{x_{0}}(dy)|$ .

Hence
$(\mathfrak{A}f_{0})(x_{0})\geqq(D_{m}D_{x}f_{0})(x_{0})-|b(x_{0})||(D_{x}f_{0})(x_{0})|=:\gamma_{0}>0$ .

Moreover, by the discontinuity of the functionals $\Phi_{0},$ $\Phi_{1}$ we can choose rea:
functions $g_{0},$ $g_{1}\in \mathfrak{D}(D_{m}D_{x})$ vanishing on $(x_{0}-\delta, 1)$ and $[0, x_{0}+\delta$) resp. and
with the properties

$\Phi_{0}(g_{0})=-\Phi_{0}(f_{0})$ , $\Phi_{1}(g_{0})=0$ ,

$\Phi_{0}(g_{1})=0$ , $\Phi_{1}(g_{1})=-\Phi_{1}(f_{0})$ ,

$\Vert g_{i}\Vert\leqq f_{0}(x_{0})/2$ , $|(Bg_{i})(x_{0})|\leqq\gamma_{0}/4$ , $i=0,1$ .
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Then for $f:=f_{0}+g_{0}+g_{1}\in \mathfrak{D}(A)$ , we have

$f(x_{0})\geqq f(x)$ for $x\in S_{0}$ , (4)

$(Af)(x_{0})\geqq\gamma_{0}-|(Bg_{0})(x_{0})|-|(Bg_{1})(x_{0})|\geqq\gamma_{0}/2>0$ .

On the other hand we have from (4)

$(Af)(x_{0})=\lim_{t\downarrow 0}t^{-1}(\int_{s_{0}}P(t;x_{0}, dy)f(y)-f(x_{0}))\leqq 0$ .

LEMMA 4. SuppOse the functionals $\Phi_{i}$ in the boundary conditions (2) satisfy
the following hypOtheses:

1) $\kappa_{0}=\kappa_{1}=0$ ;
2) $\Phi_{i}(f)\neq\sigma_{i}(\mathfrak{A}f)(i)$ , $i=0,1$ ;
3) for at least one index $i=0$ or 1 the functional $\Phi_{i}$ is not of the form

$\Phi_{i}(f)=\sigma_{i}(\mathfrak{A}f)(i)+(f(i)-f(j))\delta_{i}$ , $i\neq j$ , $j=0,1$ , $\sigma_{i}+\delta_{i}>0$ .

Then $f=1$ is (up to scalar multiples) the unique solution of the equation $Af=0$ .
PROOF. Condition 1) evidently implies $A1=0$ . By the spectral mapping

theorem, if $Af_{0}=0$ we have $\lambda R_{\lambda}f_{0}=f_{0}$ , hence

$\lambda R_{\lambda}|f_{0}|\geqq|f_{0}|$ if $\lambda>0$ . (5)

Moreover, by a theorem of Mazur [7] there exists a $\mu_{0}\in C^{*},$ $\mu_{0}\neq 0$ , such that
$\lambda R_{\lambda}^{*}\mu_{0}=\mu_{0}$ , and it follows $\lambda R_{\lambda}^{*}|\mu_{0}|\geqq|\mu_{0}|$ . Now $\lambda R_{\lambda}^{*}|\mu_{0}|(\Gamma)>|\mu_{0}|(\Gamma)$ for some
Borel set $\Gamma$ would imply $\lambda\Vert R_{\lambda}^{*}|\mu_{0}|\Vert>\Vert|\mu_{0}|\Vert^{*)}$ , which is impossible because of
$\Vert\lambda R_{\lambda}^{*}\Vert\leqq 1$ . Therefore $\lambda R_{\lambda}^{*}|\mu_{0}|=|\mu_{0}|$ .

Assume $S_{0}$ $:=supp|\mu_{0}|\subset\{0,1\}$ . Then if a path of the Markov process
with initial distribution $|\mu_{0}|/\Vert\mu_{0}\Vert$ starts in $x\in S_{0}$ , is always remains there
with $P_{x}$ -probability one. Hence if $S_{0}$ consists of one point $i$ only ($i=0$ or 1),

the boundary condition $(\mathfrak{A}f)(i)=0$ must hold, a contradiction to 2). If $S_{0}=\{0,1\}$ ,
both boundary conditions must be of the form

$\sigma_{i}(\mathfrak{A}f)(i)+(f(i)-f(j))\delta_{i}=0$ , $i,$ $j=0,1$ , $i\neq j$ ,

where $\sigma_{i},$
$\delta_{i}\geqq 0,$ $\sigma_{i}+\delta_{i}>0,$ $i=0,1$ , which is a contradiction to 3).

From Lemma 3, supp $|\mu_{0}|=[0,1]$ . Integrating the inequality in (5) with
respect to $|\mu_{0}|$ we get $\lambda R_{\lambda}|f_{0}|=|f_{0}|$ , hence

$|f_{0}|\in \mathfrak{D}(A)$ . (6)

Assume now $(D_{m}f_{0})(x_{0})\neq 0$ for some $x_{0}\in(0,1)$ . Then (6) applied to the
function $f_{0}-f_{0}(x_{0})1$ instead of $J^{J}0$ gives the existence of the derivative of

$*)$ Here 1 $\mu\Vert$ denotes the norm of $\mu\in C^{*}$ , that is the total variation of $\mu$ on $[0,1]$ .
For the norm of a bounded linear operator in $C^{*}$ we use the same symbol.
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$|f_{0}-f_{0}(x_{0})1|$ at $x_{0}$ , which is impossible. Hence $D_{x}f_{0}=0$ , that is $f_{0}=const$ .
THEOREM 5. For the semigroup $(T_{t}^{*})_{t\geqq 0}$ there exists a unique (up to positive

multiPles) invariant nonnegative measure $\mu_{0}$ and this measure has the prOperty
$supp\mu_{0}=[0,1]$ if and only if the conditions $1$) $-3$) of Lemma 4 are satisfied.

PROOF. If the conditions $1$ ) $-3$) are satisfied, the eigenspace of $\lambda R_{\lambda}(\lambda>0)$

to the eigenvalue one is one-dimensional. By Lemma 1, the same is true for
the eigenspace of $\lambda R_{\lambda}^{*}$ . As for the nonnegative contraction $\lambda R_{\lambda}^{*}$ the equation
$\lambda R_{\lambda}^{*}\mu=\mu$ implies $\lambda R_{\lambda}^{*}|\mu|=|\mu|$ , the existence and uniqueness of the invariant
measure $\mu_{0}$ follows. The relation $supp\mu_{0}=[0,1]$ was shown in the proof of
Lemma 3.

Suppose now that there exists a unique invariant measure $\mu_{0}$ which has,
moreover, the property $supp\mu_{0}=[0,1]$ . Then, if $e$ . $g$ . $\Phi_{0}(f)=(\mathfrak{A}D(0)(f\in \mathfrak{D}(\mathfrak{U}))$,
the point measure at zero is invariant, which is impossible. If both functionals
$\Phi_{i},$ $i=0,1$ , are of the form

$\Phi_{i}(f)=\sigma_{i}(\mathfrak{A}f)(i)+(f(i)-f(j))\delta_{i}$ , $i\neq j$ , $\sigma_{i}+\delta_{i}>0$ , $i,$ $j=0,1_{f}$

there exists an invariant measure concentrated on the boundary, which is
also impossible. The proof of the theorem will be completed if it is shown,

that in case $\kappa_{0}+\kappa_{1}>0$ the suPport of a nontrivial invariant measure is con-
tained in $\{0,1\}$ . This is a consequence of Corollary 7 in the following section.

3. Subinvariant measures.

LEMMA 6. If for $i=0$ or 1 we have $\kappa_{i}>0$ , each invariant measure $\mu_{0}$ of
$(T_{t}^{*})_{t\geqq 0}$ has the property $i\not\in supp\mu_{0}$ .

PROOF. If $\kappa_{0}+\kappa_{1}>0$ , we consider the boundary conditions given by the
functionals

$\hat{\Phi}_{i}(f)$ $:=\Phi_{i}(f)-\kappa_{i}f(i)$ , $f\in \mathfrak{D}(\mathfrak{A})$ , $i=0,1$ . (7)

The hypothesis that $\mathfrak{D}(A)$ is dense in $C$ implies that the operator given by

(1) and the boundary conditions $\hat{\Phi}_{i}(f)=0,$ $i=0,1$ , is the infinitesimal generator
(denoted by $\hat{A}$ ) of a $s$ . $c$ . $n$ . $c$ . semigroup in $C$.

Fix $\lambda>0$ and consider the (nonnegative) solutions $f_{0},$ $f_{1}$ of the equation
$\mathfrak{A}f-\lambda f=0$ , satisfying the conditions $f_{0}(0)=1,$ $f_{0}(1)=0,$ $f_{1}(0)=0,$ $f_{1}(1)=1$ . In [4],

p. 247, it was shown that

$F(x):=1-f_{0}(x)-f_{1}(x)>0$ $(0<x<1)$ . (8)

Moreover
$(D_{x}F)(0)>0$ , $(D_{x}F)(1)<0$ . (9)

To show $e$ . $g$ . the first relation, assume $(D_{x}F)(0)=0$ . Together with $F(O)=0$

this implies
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$(D_{m}D_{x}F)(0)=-\lambda-\int_{0}^{1}F(y)\tilde{n}_{0}(dy)\leqq-\lambda<0$ ,

a contradiction to (8).

From the inequalities (8) and (9) we get

$\hat{\Phi}_{0}(f_{0})+\hat{\Phi}_{0}(f_{1})=\int_{0}^{1}x^{-1}F(x)dq_{0}(x)+\sigma_{0}\lambda>0$

and a corresponding relation for $\hat{\Phi}_{1}$ , therefore

$\hat{\Phi}_{0}(f_{0})>-\hat{\Phi}_{0}(f_{1})\geqq 0$ , $\hat{\Phi}_{1}(f_{1})>-\hat{\Phi}_{1}(f_{0})\geqq 0$ . (10)

The resolvents $R_{\lambda}$ and $\hat{R}_{\lambda}$ of $A$ and $\hat{A}$ resp. are connected by the relation

$R_{\lambda}f=R_{\lambda}f-c_{0}(f)f_{0}-c_{1}(f)f_{1}$ , $f\in C$ , (11)

with

$c_{0}(f):=\frac{1}{\Delta}\left|\begin{array}{ll}\kappa_{0}(R_{\lambda}f)(0) & \hat{\Phi}_{0}(f_{1})\\\kappa_{1}(R_{\lambda}f)(1) & \hat{\Phi}_{1}(f)+\kappa_{1}\end{array}\right|$ ,

$c_{1}(f):=\frac{1}{\Delta}\left|\begin{array}{ll}\hat{\Phi}_{0}(f_{0})+\kappa_{0} & \kappa_{0}(R_{\lambda}f)(0)\\\hat{\Phi}_{1}(f_{0}) & \kappa_{1}(\hat{R}_{\lambda}f)(1)\end{array}\right|$ ,

$\Delta:=\kappa_{0}\kappa_{1}+\kappa_{1}\hat{\Phi}_{0}(f_{0})+\kappa_{0}\hat{\Phi}_{1}(f_{1})+\hat{\Phi}_{0}(f_{0})\hat{\Phi}_{1}(f_{1})-\hat{\Phi}_{0}(f_{1})\hat{\Phi}_{1}(f_{0})>0$ .
$lff\geqq 0$ , we find from (10) and $R_{\lambda}f\geqq 0$ that $c_{0}(f)\geqq 0,$ $c_{1}(f)\geqq 0$ , hence

$R_{\lambda}f\leqq\hat{R}_{\lambda}f$ . (12)

Suppose now $e$ . $g$ . $\kappa_{0}>0$ . Then $c_{0}(1)\geqq(\lambda\Delta)^{-1}\kappa_{0}\hat{\Phi}_{1}(f_{1})>0$ and

$(R_{\lambda}1)(O)=(\hat{R}_{\lambda}1)(0)-c_{0}(1)<(R_{\lambda}1)(0)=\lambda^{-1}$ . (13)

Assume $O\in supp\mu_{0}$ for the invariant measure $\mu_{0}$ of $(T_{t}^{*})_{t\geq 0}$ . Then (13) implies

$\lambda^{-1}\int_{0}^{1}d\mu_{0}=\int_{0}^{1}(R_{\lambda}1)d\mu_{0}<\lambda^{-1}\int_{0}^{1}d\mu_{0}$ ,

which is impossible.
COROLLARY 7. If $\kappa_{0},$

$\kappa_{1}>0$ , the semigroup $(T_{t}^{*})_{t\geqq 0}$ does not have an invariant
measure. If $e$ . $g$ . $\kappa_{1}>0$, there exists an invariant measure $\mu_{0}$ of $(T_{t}^{*})_{t\geqq 0}$ if and
only if $\Phi_{0}(f)=\sigma_{0}(\mathfrak{U}f)(0)$ ; in this case $\mu_{0}$ is the Point measure concentrated at $0$ .

Indeed, (12) implies
$R_{\lambda}^{*}\leqq\hat{R}_{\lambda}^{*}$ . (14)
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Suppose now $\mu_{0}$ is an invariant measure of $(T_{t}^{*})_{t\geqq 0}$ . Then $\mu_{0}=\lambda R_{\lambda}^{*}\mu_{0}\leqq\lambda\hat{R}_{\lambda}^{*}\mu_{0}$,
which implies $\mu_{0}=\lambda\hat{R}_{\lambda}^{*}\mu_{0}$ . By Lemma 3 we have supp $\mu_{0}=[0,1]$ or $supp\mu_{0}$

$\subset\{0,1\}$ . If $\kappa_{0}+\kappa_{1}>0$, the first case is excluded by Lemma 6. Now the first
statement of the corollary follows immediately. If, in particular, $\kappa_{1}>0,$ $\kappa_{0}=0$

and $\mu_{0}$ is an invariant measure of $(T_{t}^{*})_{t\geqq 0}$ , it must be a point measure at $0$ .
Hence $0$ is absorbing and $(Af)(O)=0$ .

The inequality (12) and Theorem 5 have the following consequence.
THEOREM 8. SuPpose the functionals $\hat{\Phi}_{i}$ in (7) satisfy the following conditions:
1) $\hat{\Phi}_{i}(f)\neq\sigma_{i}(\mathfrak{A}f)(i),$ $i=0,1$ ;
2) for at least one index $i=0$ or 1 the functional $\hat{\Phi}_{i}$ is not of the form

$\hat{\Phi}_{i}(f)=\sigma_{i}(\mathfrak{A}f)(i)+(f(i)-f(j))\delta_{i}$ , $j\neq i$ , $\sigma_{i}+\delta_{i}>0$ .
Then there exists a subinvariant measure $\mu_{0}$ of $(T_{t}^{*})_{t\geqq 0}$ with the ProPerty

$supp\mu_{0}=[0,1]$ .
Indeed, by Theorem 5, the semigroup $(\hat{T}_{t}^{*})_{t\geq 0}$ corresponding to the operator

$\hat{A}$ has an invariant measure $\mu_{0}$ with supp $\mu_{0}=[0,1]$ and from (14) we get

$\lambda R7\mu_{0}\leqq\lambda R7\mu_{0}=\mu_{0}$ .
Now if $f\in C,$ $f\geqq 0_{f}$ it follows for $t>0$ (see [3]):

$(T_{t}^{*}\mu_{0})(f)=\mu_{0}(T_{t}f)=\lim_{k\uparrow\infty}k\cdot t^{-1}\mu_{0}(R_{k/t}^{k}f)$

$=\lim_{k\uparrow\infty}k\cdot t^{-1}(R_{k/t}^{*k}\mu_{0})(f)\leqq\mu_{0}(f)$ .

4. Absolute continuity of the invariant measure.

In this section we suPpose that the conditions of Lemma 4 are satisfied.
Then our general hypothesis (3) about the boundary condition implies

$Q_{i}$ $:=\int_{0}^{1}dq_{i}>0$, and we can assume $Q_{i}=1(i=0,1)$ . Let $m_{0}$ and $M$ denote the

following measures on $[0,1]$ :

$dm_{0}(x):=\sigma_{0}d\delta_{0}(x)+\sigma_{1}d\delta_{1}(x)+dm(x)$ ,

$dM(x):=\sigma_{0}d\delta_{0}(x)+\sigma_{1}d\delta_{1}(x)+\rho(x)dm(x)$ ,

$\rho(x):=1-\int_{x}^{1}(y-x)y^{-1}dq_{0}(y)-\int_{0}^{x}(x-y)(1-y)^{-1}dq_{1}(y)$ ,

where $\delta_{i}$ is the unit measure concentrated at $i,$ $i=0,1$ . The measure $M$ was
introduced in [6]. It is the invariant measure of the adjoint of the semigroup
generated by $D_{m}D_{x}$ with boundary conditions (2) in $C$.

By $\Gamma$ we denote the kernel
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$\Gamma(x, s):=\left\{\begin{array}{l}\int_{y=0}^{s}(s-y)\tilde{n}_{x}(dy),\\\int_{y=s}^{1}(y-s)\tilde{n}_{x}(dy),\end{array}\right.$ $0\leqq s<x\leqq 11\geqq s>x\geqq 0$

.

Evidently, $\Gamma(x, O)=\Gamma(x, 1)=0(0<x<1)$ , and it is easy to see that for $x$ fixed

$\Gamma(x_{f}\cdot)$ is m-summable, and $\int_{0}^{1}\Gamma(x, s)\varphi(s)dm(s)$ is a continuous function of $x$

if $\varphi\in C$.
THEOREM 9. SuPpose the conditions $1$ ) $-3$) of Lemma 4 are satisfied and

$Q_{i}=1(i=0,1)$ . Then the invariant measure $\mu_{0}$ of $(T_{t}^{*})_{t\geqq 0}$ of Theorem 5 is
absolutely continuous with respect to $m_{0}$ and its density $g_{0}$ $:=d\mu_{0}/dm_{0}$ belongs
to $L^{\infty}(m_{0})$ .

PROOF. If $f\in \mathfrak{D}(A),$ $f(x)=f_{0}+f_{0}^{\prime}+\int_{0}^{x}(x-s)\varphi(s)dm(s)$ , we have

$(Af)(x)=\varphi(x)+b(x)(f_{0}^{\prime}+\int_{0}^{x}\varphi(s)dm(s))$

$+\int_{0}^{1}\int_{x}^{y}(y-s)\varphi(s)dm(s)\tilde{n}_{x}(dy)$ .

Integration by parts shows that the relation $\int_{0}^{1}Afd\mu_{0}=0$ $(f\in \mathfrak{D}(A))$ is equiv-

alent to

$\int_{0}^{1}\varphi(s)[\int_{0}^{1}\Gamma(x, s)d\mu_{0}(x)dm(s)+d\mu_{0}(s)+\int_{s}^{1}bd\mu_{0}dm(s)]$

$+f_{0}^{\prime}\int_{0}^{1}b(x)d\mu_{0}(x)=0$ . (15)

The boundary conditions are equivalent to the following relations:

$\sigma_{0}(\varphi(0)+b(0)f_{0}^{\prime}+\int_{0}^{1}\int_{0}^{y}(y-s)\varphi(s)dm(s)\tilde{n}_{0}(dy))$

$-\int_{0}^{1}x^{-1}\int_{0}^{x}(x-s)\varphi(s)dm(s)dq_{0}(x)-f_{0}^{\prime}=0$ ,

$\sigma_{1}(\varphi(1)+b(1)(f_{0}^{\prime}+\int_{0}^{1}\varphi dm)+\int_{0}^{1}\int_{1}^{y}(y-s)\varphi(s)dm(s)\tilde{n}_{1}(dy))$

$+\int_{0}^{1}\int_{x}^{1}(x-s)(1-x)^{-1}\varphi(s)dm(s)dq_{1}(x)+f_{0}^{\prime}+\int_{0}^{1}\varphi(s)dm(s)=0$ , (16)

which can be written as
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$f_{\acute{0}}(\sigma_{0}b(0)-1)+\int_{0}^{1}\varphi(s)d\nu_{0}(s)=0$ ,

$f_{0}^{\prime}(\sigma_{1}b(1)+1)+\int_{0}^{1}\varphi(s)d\nu_{1}(s)=0$ .

Here $\nu_{0},$ $\nu_{1}$ are measures on $[0,1]$ which can easily be calculated from (16).
They are absolutely continuous with respect to $m_{0}$ .

SuPpose first $\sigma_{0}b(0)-1\neq 0$ . Then

$f_{0}^{\prime}=-(\sigma_{0}b(0)-1)^{-1}\int_{0}^{1}\varphi(s)d\nu_{0}(s)$ ,

and (15) gives

$\int_{0}^{1}\varphi(s)[\int_{0}^{1}\Gamma(x, s)d\mu_{0}(x)dm(s)+d\mu_{0}(s)+\int_{s}^{1}bd\mu_{0}dm(s)]$

$-(\sigma_{0}b(0)-1)^{-1}\int_{0}^{1}\varphi d\nu_{0}$

(17)

for all functions $\varphi\in C$ with the property

$(\sigma_{1}b(1)+1)\int_{0}^{1}\varphi d\nu_{0}-(\sigma_{0}b(0)-1)\int_{0}^{1}\varphi d\nu_{1}=0$ .

Hence, with a suitable choice of $\mu_{0}$ , we have

$\int_{0}^{1}\Gamma(x, s)d\mu_{0}(x)dm(s)+d\mu_{0}(s)+\int_{s}^{1}bd\mu_{0}dm(s)-(\sigma_{0}b(0)-1)^{-1}\int_{0}^{1}bd\mu_{0}d\nu_{0}(s)$

$=(\sigma_{1}b(1)+1)d\nu_{0}(s)-(\sigma_{0}b(0)-1)d\nu_{1}(s)$ , (18)

and the statement follows.
If $\sigma_{1}b(1)+1=0$ and $\sigma_{0}b(0)-1=0$ , then $\mu_{0}$ satisfies the equation

$\int_{0}^{1}\Gamma(x, s)d\mu_{0}(x)dm(s)+d\mu_{0}(s)+\int_{s}^{1}bd\mu_{0}dm(s)=c_{0}d\nu_{0}(s)+c_{1}d\nu_{1}(s)$ (19)

with some constants $c_{0},$ $c_{1}$ and the condition $\int_{0}^{1}bd\mu_{0}=0$ . Evidently, (19) implies

the absolute continuity of $\mu_{0}$ with respect to $m_{0}$ .
By $g_{0}(\in L^{1}(m_{0}))$ we denote the density of $\mu_{0}$ with respect to $m_{0}$ : $d\mu_{0}(x)$

$=g_{0}(x)dm_{0}(x)$ . The relations (18) or (19) imply an integral equation for $g_{0}$ .
For simplicity we shall give it only in the case $\sigma_{0}=\sigma_{1}=0$ . Then the boundary

conditions (16) simplify to $\int_{0}^{1}\varphi(s)\rho(s)dm(s)=0$ , and (18) becomes
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$\int_{0}^{1}\Gamma(x, s)g_{0}(x)dm(x)+g_{0}(s)$

$=-\int_{s}^{1}b(x)g_{0}(x)dm(x)+\int_{0}^{1}bg_{0}dm\cdot\int_{s}^{1}(x-s)x^{-1}dq_{0}(x)+\rho(s)$ ,

$a$ . $e$ . with respect to $m_{0}$ . Both terms on the left hand side are nonnegative
and the right hand side is continuous, hence $g_{0}$ is in $L^{\infty}(m_{0})$ .

5. A relation between $\mathfrak{U}$ , invariant measures and boundary conditions.

In the following we need some more properties of the operator $\mathfrak{A}$ in (1).

LEMMA 10. The boundary problem $\mathfrak{A}f=1,$ $f(O)=f(1)=0_{f}$ has a solution
$f\in \mathfrak{D}(\mathfrak{A})$ .

PROOF. The lemma will be proved if we show that the restriction $A_{0}$ of
$\mathfrak{U}$ by the boundary conditions $f(O)=f(1)=0$ , defined in $C_{0}$ $:=\{f\in C:f(O)=f(1)$

$=0\}$ does not have the eigenvalue zero. In this case the resolvent $R_{\lambda}^{(0)}$ of $A_{0}$

exists at $\lambda=0$, it can be extended to all of $C$ and $f:=R_{0}^{(0)}1$ is the function
with the stated properties.

In order to calculate $R_{\lambda}^{(0)}$ we consider the restriction $A$ of $\mathfrak{U}$ by the
boundary conditions

$f^{\prime}(O)-\kappa_{0}f(O)=0$ , $f^{\prime}(1)+\kappa_{1}f(1)=0$ .
Then the corresponding operator $\hat{A}$ is defined by the conditions $f^{\prime}(O)=f^{\prime}(1)=0$,
and from (11) letting $\kappa_{0},$ $\kappa_{1}\rightarrow\infty$ we get for fixed $\lambda>0$ with $f_{0_{f}}f_{1}$ defined in
section 3:

$R\lambda^{0)}f=R_{\lambda}f-(R_{\lambda}f)(O)f_{0}-(R_{\lambda}f)(1)f_{1}$ . (20)

Denote by $\hat{\mu}_{0}$ the invariant measure of the semigroup $(F_{t}^{*})_{t\geqq 0}$ . From Theorem 5
it follows $supp\hat{\mu}_{0}=[0,1]$ and Lemma 2 implies

$(R_{\lambda}g,\hat{\mu}_{0})=\lambda^{-1}(g,\hat{\mu}_{0})$ . (21)

If $A_{0}v=0$ , we have $R_{\lambda}^{(0)}v=\lambda^{-1}v$ and $v$ does not change sign. Now from (20)

and (21) it follows
$(R_{\lambda}v)(0)(f_{0}, \rho_{0})+(R_{\lambda}v)(1)(f_{1}, \beta_{0})=0$ .

which is equivalent to
$(R_{\lambda}v)(O)=(\hat{R}_{\lambda}v)(1)=0$ .

Hence (20) implies $\lambda^{-1}v=R_{\lambda}^{(0)}v=R_{\lambda}v$, that is $\hat{A}v=0$ . Using Lemma 4 we
find $v=c1$ , and from $v(O)=0$ we get finally $c=0,$ $v=0$ .

The function $f$ in Lemma 10 is $-E_{x}\tau$, where $\tau$ denotes the first exit time
of $(0,1)$ for the canonical Feller process corresponding to $\mathfrak{A}$ and boundary
conditions (2).
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Denote in this section by $A$ always a restriction of $\mathfrak{U}$ by boundary con-
ditions (2) satisfying the conditions $1$ ) $-3$) of Lemma 4. Then $f=1$ is the
(unique) solution of the equation $Af=0$, hence by the relation $\Vert R_{\lambda}\Vert\leqq\lambda^{-1},$ $\lambda>0$,
the function 1 cannot belong to $\Re(A)$ , and Lemma 10 implies

$\Re(A)\neq\Re(\mathfrak{A})$ . (22)

For the quotient space $\mathfrak{D}(\mathfrak{A})/\mathfrak{D}(A)$ we have

dim $(\mathfrak{D}(\mathfrak{A})/\mathfrak{D}(A))=2$ (23)

(see $e$ . $g$ . $[4]$ , proof of Theorem 4). Moreover, as dim $(\Re(\mathfrak{U})/\Re(A))\leqq\dim(C/\Re(A))$

$=1$ , relation (22) implies dim $(\Re(\mathfrak{A})/\Re(A))=1$ . As a consequence we have the
following result.

LEMMA 11. Under the conditions of Lemma 4 there exists a solution
$h_{0}\in \mathfrak{D}(\mathfrak{U})\backslash \mathfrak{D}(A)$ of the equation $\mathfrak{A}h=0$ . Every solution $h$ of this equation is of
the form $h=c_{0}h_{0}+c_{1}1$ with some constants $c_{0},$ $c_{1}$ .

In case $b=0$ we have evidently (up to scalar multiples) $h_{0}(x)=x$ .
The equation $\mathfrak{A}h=0$ is equivalent to the integral equation

$\varphi(x)+b(x)\int_{0}^{x}\varphi dm+\int_{0}^{1}\int_{x}^{y}(y-s)\varphi(s)dm(s)\tilde{n}_{x}(dy)=-b(x)h^{\prime}(0)$ , (24)

where $h(x)=h(0)+xh^{\prime}(0)+\int_{0}^{x}(x-s)\varphi(s)dm(s)$ . The left hand side of (24) is of

the form $(I+G)\varphi$ with some compact operator $G$ in $C$ (see [4], p. 247).

LEMMA 12. The homogeneous integral equation $(I+G)\varphi=0$ corresPonding
to (24) has a nontrivial solution $\varphi\neq 0$ if and only if $h_{0}^{\prime}(0)=0$ , where $h_{0}$ denotes
the solution given in Lemma 11.

PROOF. If $h_{0}^{\prime}(0)=0$ we have $h_{0}(x)=h_{0}(0)+\int_{0}^{x}(x-s)\varphi_{0}(s)dm(s)$ and the func-

tion $\varphi_{0}\neq 0$ is a solution of $(I+G)\varphi=0$ . On the other hand, if $h_{0}^{\prime}(0)\neq 0$, Lemma
11 implies that there is exactly one function $\varphi_{0}$ satisfying $(I+G)\varphi_{0}=-bh_{0}^{\prime}(0)$ ,

that is the homogeneous equation $(I+G)\varphi=0$ has only the obvious solution
$\varphi=0$ .

The function $h_{0}$ can always be chosen such that $h_{0}(0)=0$ . Then the
condition of Lemma 12 holds if and only if the initial problem

$\mathfrak{A}h=0$ , $h(O)=h^{\prime}(O)=0$

has a nontrivial solution. We do not know if this can really haPpen. It is
impossible if one of the following conditions is satisfied:

1) $b(x)=0$ $(x\in[0,1])$ ;
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2) $\sup_{x}|b(x)|(m(1)-m(0))+\sup_{x}n_{x}([0,1])<1$ ;

3) supp $n_{x}\supset[x, 1]$ $(x\in[0,1])$ .

Indeed, in the first case we can choose $h_{0}(x)\equiv x$ . If condition 2) is satis-
fied, the homogeneous equation

$\varphi(x)+b(x)\int_{0}^{x}\varphi dm+\int_{0}^{1}\int_{x}^{y}(y-s)\varphi(s)dm(s)\tilde{n}_{x}(dy)=0$

can only have the obvious solution $\varphi=0$ . If the third condition holds the
statement follows as in [4], Lemma 3.

The function $h_{0}$ in Lemma 11 has evidently the property $|\Phi_{0}(h_{0})|^{2}$

$+|\Phi_{1}(h_{0})|^{2}\neq 0$ . We choose $h_{1}\in \mathfrak{D}(\mathfrak{A})$ such that

$\mathfrak{D}(\mathfrak{A})=1$ . $s.\{\mathfrak{D}(A), h_{0}, h_{1}\}$ . (25)
Then

$\Delta:=\left|\begin{array}{ll}\Phi_{0}(h_{0}) & \Phi_{0}(h_{1})\\\Phi_{1}(h_{0}) & \Phi_{1}(h_{1})\end{array}\right|\neq 0$ ,

otherwise with some complex number $\gamma$ we would have $\gamma h_{0}-h_{1}\in \mathfrak{D}(A)$ , which
is impossible. If $\mu_{0}$ is the measure given by Theorem 5, then

$\int_{0}^{1}\mathfrak{A}h_{1}d\mu_{0}\neq 0$ .

Indeed, otherwise $h_{1}\in \mathfrak{D}(A)$ or $\mathfrak{A}h_{1}=0$ . But the first relation is impossible by
(25) and (23), the second relation is impossible by (25) and Lemma 11.

THEOREM 13. For arbitrary $f\in \mathfrak{D}(\mathfrak{A})$ we have

$\int_{0}^{1}\mathfrak{A}f=$ . (26)

Indeed,
$f:=f-\Delta^{-1}\{-\Phi_{0}(f)\Phi_{1}(h_{0})+\Phi_{1}(f)\Phi_{0}(h_{0})\}h_{1}$

$-\Delta^{-1}\{\Phi_{0}(f)\Phi_{1}(h_{1})-\Phi_{1}(f)\Phi_{0}(h_{1})\}h_{0}\in \mathfrak{D}(A)$ ,

and $\int_{0}^{1}\mathfrak{A}fd\mu_{0}=0$ is evidently equivalent to (26).

Choose now $h_{1}$ as the solution of the initial problem $\mathfrak{A}h_{1}=-1,$ $h_{1}(0)=h_{1}(1)=0$ .
Then the maximum principle implies $h_{1}\geqq 0_{f}$ and we have

$\Phi_{0}(h_{1})\leqq 0$ , $\Phi_{1}(h_{1})\leqq 0$ .
With a solution $h_{0}$ : $\mathfrak{A}h_{0}=0,$ $h_{0}\not\in \mathfrak{D}(A)$ , we normalize the functionals $\Phi_{i}$ by
the conditions
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$\Phi_{0}(h_{0})=-1$ or $0$ , $\Phi_{1}(h_{0})=1$ or $0$ . (27)

This implies $\Delta>0$ . The invariant measure $\mu_{0}>0$ can be chosen such that
$\Delta^{-1}\int \mathfrak{U}h_{1}d\mu_{0}=-1_{f}$ and (26) simplifies to

$\int_{0}^{1}\mathfrak{A}fd\mu_{0}=\Phi_{0}(f)\gamma_{0}+\Phi_{1}(f)\gamma_{1}$ , (28)

where $\gamma_{0}=\Phi_{1}(h_{0}),$ $\gamma_{1}=-\Phi_{0}(h_{0})$ .
Suppose now $\gamma_{0}=\gamma_{1}=1$ . Then we have

$\mu_{0}(\{i\})=\sigma_{i}$ , $i=0,1$ . (29)
Indeed, (28) implies

$\mu_{0}(\{0\})(\mathfrak{A}f)(0)+\mu_{0}(\{1\})(\mathfrak{A}f)(1)+\int_{0+}^{1-}\mathfrak{A}fd\mu_{0}=\sigma_{0}(\mathfrak{A}f)(0)+\sigma_{1}(\mathfrak{A}f)(1)$

(30)
$+\int_{0}^{1}(f(0)-f(s))s^{-1}dq_{0}(s)+\int_{0}^{1}(f(1)-f(s))(1-s)^{-1}dq_{1}(s)$ .

Choose a sequence $(\varphi_{n})\subset C$, $\varphi_{n}(0)=1,$ $\varphi_{n}(x)\geqq 0,$ $\varphi_{n}(x)\downarrow 0(n\rightarrow\infty, 0<x\leqq 1)$ .
Putting $f(x)=f_{n}(x)=\int_{0}^{x}(x-s)\varphi_{n}(s)dm(s)$ in (30) and letting $ n\rightarrow\infty$ we get

$\mu_{0}(\{0\})=\sigma_{0}$ .

6. Quadratic forms connected with $\mathfrak{U}$ .
In the following we have to impose two more conditions:
(d) $b(x)=0$ $(x\in[0,1])$ .
(e) The Lebesgue measure is absolutely continuous with respect to $m$ and

the corresponding density $\nu;=dx/dm$ is a continuous function.
The first condition is mainly for technical reason. It implies that we

can choose $e$ . $g$ . $h_{0}(x)=x$ , and the normalization (27) of the functionals $\Phi_{i}$

amounts to

$\int_{0}^{1}dq_{i}=1$ , $i=0,1$

(here we suppose again $\kappa_{0}=\kappa_{1}=0$). Condition (e) implies $e$ . $g$ .
$|f|^{2}\in \mathfrak{D}(D_{m}D_{x})$ if $f\in \mathfrak{D}(D_{m}D_{x})$ .

We now suppose that the functionals $\Phi_{i}$ are such that the corresponding
$\hat{\Phi}_{i},$ $i=0,1$ , satisfy the conditions 2) and 3) of Lemma 4. By $\mu_{0}$ we denote the
invariant measure of the semigroup $(7_{t}^{*})_{t\geqq 0}$ (see Theorem 5), normalized
according to the foregoing section (that is there we have to put $\hat{\Phi}_{i}$ instead
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of $\Phi_{i},$ $i=0,1$). By Theorem 8, $\mu_{0}$ is a subinvariant measure of the semigroup
$(T_{t}^{*})_{t\geqq 0}$ , and from (28) we have

$\int_{0}^{1}\mathfrak{A}fd\mu_{0}=\hat{\Phi}_{0}(f)+\hat{\Phi}_{1}(f)$
$(f\in \mathfrak{D}(D_{m}D_{x}))$ . (31)

If $f,$ $g\in C$ we put $[f, g]:=\int_{0}^{1}f(x)\overline{g(x)}d\mu_{0}(x)$ and shall calculate ${\rm Re}[Af, f]$

and ${\rm Im}$ [A $f,$ $f$] $(f\in \mathfrak{D}(A))$ .
To do this we consider for arbitrary $f\in \mathfrak{D}(D_{m}D_{x})$ the function $g$ :

$g(x)=\int_{0}^{x}f^{\prime}(s)\overline{f(s)}ds$ . Condition (b) implies $g\in \mathfrak{D}(D_{m}D_{x})$ and we get

$(\mathfrak{U}g)(x)=(D_{m}D_{x}f)(x)\overline{f(x)}+|f^{\prime}(x)|^{2}\nu(x)$

$+\int_{0}^{1}[\int_{x}^{y}f^{\prime}(s)\overline{f(s)}ds-(y-x)f^{\prime}(x)\overline{f(x)}]\overline{n}_{x}(dy)$ .

From (31), $\int_{0}^{1}\mathfrak{A}gd\mu_{0}=\hat{\Phi}_{0}(g)+\hat{\Phi}_{1}(g)$ , which is equivalent to

$[\mathfrak{A}f, f]=-\int_{0}^{1}|f^{\prime}(x)|^{2}\nu(x)d\mu_{0}(x)+\hat{\Phi}_{0}(g)+\hat{\Phi}_{1}(g)$

$-\int_{0}^{1}\int_{0}^{1}[\int_{x}^{y}f^{\prime}(s)\overline{f(s)}ds-(f(y)-f(x))\overline{f(x)}]\tilde{n}_{x}(dy)d\mu_{0}(x)$ . (32)

SuPpose now $f\in \mathfrak{D}(A)$ , that is $f$ satisfies also the boundary conditions (2).

Then

$\hat{\Phi}_{0}(g)=-\int_{0}^{1}[|f(s)-f(0)|^{2}-\int_{0}^{s}(f(t)-f(0))\overline{f^{\prime}(t)}dt]s^{-1}dq_{0}(s)$

$-\overline{f(0)}[\sigma_{0}(\mathfrak{A}f)(0)+\kappa_{0}f(0)]+\sigma_{0}(\mathfrak{A}g)(0)$

and a similar expression for $\hat{\Phi}_{1}(g)$ . Using Theorem 9 and

$-\overline{f(0)}(\mathfrak{U}f)(0)+(\mathfrak{A}g)(0)$

$=|f^{\prime}(0)|^{2}\nu(0)+\int_{0}^{1}[\int_{0}^{y}j^{\prime}(s)\overline{f(s)}d_{S}-\overline{f(0)}(f(y)-f(0))]\overline{n}_{0}(dy)$ ,

it follows from (32)

[A $f,$ $f$] $=-\int_{0}^{1}|J(x)|^{2}g_{0}(x)dx$

$-\int_{0+}^{1-}\int_{0}^{1}[\int_{x}^{y}f^{\prime}(s)\overline{f(s)}ds-\overline{f(x)}(f(y)-f(x))]\tilde{n}_{x}(dy)d\mu_{0}(x)$
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$-\int_{0}^{1}[|f(s)-f(0)|^{2}-\int_{0}^{s}(f(t)-f(0))\overline{f^{\prime}(t)}dt]s^{-1}dq_{0}(s)-\kappa_{0}|f(0)|^{2}$

$-\int_{0}^{1}[|f(s)-f(1)|^{2}-\int_{l}^{1}(f(1)-f(t))\overline{f^{\prime}(t)}dt](1-s)^{-1}dq_{1}(s)-\kappa_{1}|f(1)|^{2}$ .

With the relations

${\rm Re}\int_{i}^{s}(f(t)-f(i))\overline{f^{\prime}(t)}dt=|f(i)-f(s)|^{2}/2$ , $i=0,1$ ,

${\rm Re}[\int_{x}^{y}f^{\prime}(s)\overline{f(s)}d_{S}-\overline{f(x)}(f(y)-f(x))]=|f(y)-f(x)|^{2}/2$ ,

${\rm Im}[\int_{x}^{y}f^{\prime}(s)\overline{f(s)}ds-\overline{f(x)}f(y)]={\rm Im}\int_{x}^{y}\overline{f^{\prime}(s)}\int_{s}^{y}f^{\prime}(t)dt\cdot ds$

we get finally

${\rm Re}[Af, f]$

$=-\int_{0}^{1}x$

$-\frac{1}{2}\int_{0}^{1}|f(s)-f(0)|^{2}s^{-1}dq_{0}(s)-\frac{1}{2}\int_{0}^{1}|f(s)-f(1)|^{2}(1-s)^{-1}dq_{1}(s)$

$-\kappa_{0}|f(0)|^{2}-\kappa_{1}|f(1)|^{2}f$

${\rm Im}[Af, f]$

$={\rm Im}\int_{0+}^{1-}\int_{0}^{1}\int_{x}^{y}\overline{f^{\prime}(s)}\int_{s}^{y}f^{\prime}(t)d$ tds $\tilde{n}_{x}(dy)d\mu_{0}(x)$

$+{\rm Im}[\int_{0}^{1}\int_{0}^{S}\int_{0}^{t}f^{\prime}(u)du\overline{f^{\prime}(t)}dts^{-1}dq_{0}(s)$

$+\int_{0}^{1}\int_{s}^{1}\int_{t}^{1}f^{\prime}(u)du\overline{f^{\prime}(t)}dt(1-s)^{-1}dq_{1}(s)]$ .
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