On a theorem for linear evolution equations of hyperbolic type

By Kazuo Kobayasi

(Received Jan. 18, 1978)
(Revised Oct. 19, 1978)

0. Introduction.

In [1] and [2] T. Kato gave some fundamental and important theorems about evolution operator associated with linear evolution equations

$$
d u / d t+A(t) u=f(t), \quad 0 \leqq t \leqq T
$$

of "hyperbolic" type in a Banach space X. Here, f is a given function from $[0, T]$ into $X, A(t)$ is a given linear operator which is a negative generator of a C_{0}-semigroup in X, and the unknown function u is from $[0, T]$ into X. Those theorems are useful in applications to symmetric hyperbolic systems of partial differential equations (for example, see [3] and [7]). The proofs were carried out by using a device due to Yosida $[8,9]$, and the proof of Theorem 6.1 of [1] was simplified later by Dorroh [4]. It is assumed in those articles that $A(t)$ is norm continuous from $[0, T]$ into $B(Y, X)$, where Y is a Banach space densely and continuously embedded in X. However, we find it useful to strengthen the theorems by replacing the norm continuity of $A(t)$ with strong continuity. The purpose of the present paper is to show that Theorem 6.1 of [1] is still valid if we assume the strong continuity of $A(t)$ instead of the norm continuity of it. In Section 1 our result is stated. In Section 2 we give a proof of it. In this paper we refer to [1] for notations and definitions.

The author would like to express his hearty thanks to Professor T. Kato for his valuable advice through his letter.

1. Statement of Theorem.

Let X and Y be Banach spaces such that Y is densely and continuously embedded in X. We denote by $\|\|$ and $\| \|_{Y}$ norms of X and Y, respectively, and by $B(Y, X)$ the set of all bounded linear operators on Y to X. The operator norm of $A \in B(Y, X)$ is denoted by $\|A\|_{Y, X}$. We write $B(X)$ for $B(X, X)$ and $\|A\|$ for $\|A\|_{X, X}$. Let $\{A(t)\}$ be a family of linear operators in X, defined for $t \in I=[0, T]$, such that $-A(t)$ is the infinitesimal generator of
a C_{0}-semigroup in X (see [5]). We assume that:
(A) $\{A(t)\}$ is stable with the constants of stability M, β in the sense of Kato [1, Definition 3.1].
(B) $Y \subset D(A(t))$ for each t, and $A(\cdot)$ is strongly continuous on I to $B(Y, X)$.
(C) There is a family $\{S(t)\}$ of isomorphisms of Y onto X, defined for $t \in I$, such that $S(\cdot)$ is strongly continuously differentiable on I to $B(Y, X)$ and

$$
\begin{equation*}
S(t) A(t) S(t)^{-1}=A(t)+B(t), B(t) \in B(X), t \in I, \tag{1.1}
\end{equation*}
$$

where $B(\cdot)$ is strongly continuous on I to $B(X)$.
Then we have
Theorem. Under conditions (A), (B) and (C) there exists a unique family $\{U(t, s)\}$ of linear operators on X, defined on the triangle $\Delta: T \geqq t \geqq s \geqq 0$, with the following properties.
(a) $U(t, s)$ is strongly continuous on Δ to $B(X)$ and $\|U(t, s)\| \leqq M e^{\beta(t-s)}$.
(b) $U(t, s) U(s, r)=U(t, r), U(s, s)=1, \quad(t, s),(s, r) \in \Delta$.
(c) $U(t, s) Y \subset Y$, and $U(t, s)$ is strongly continuous on Δ to $B(Y)$.
(d) $d U(t, s) y / d t=-A(t) U(t, s) y, \quad y \in Y,(t, s) \in \Delta$.
(e) $d U(t, s) y / d s=U(t, s) A(s) y, \quad y \in Y,(t, s) \in \Delta$.

2. Proof of Theorem.

In this section we assume that (A), (B) and (C) hold. Let $P=\left\{t_{k}\right\}$ be a sequence such that $0 \leqq t_{0}<t_{1}<\cdots<t_{k}<\cdots \leqq T$ and $t_{\infty}=\lim _{k \rightarrow \infty} t_{k}$. Then, for such a P we define an operator $U(t, s ; P), t_{0} \leqq s \leqq t<t_{\infty}$, by

$$
U(t, s ; P)=U_{j}\left(t-t_{j}\right) \prod_{p=k+1}^{j-1} U_{p}\left(t_{p+1}-t_{p}\right) U_{k}\left(t_{k+1}-s\right)
$$

whenever $t \in\left[t_{j}, t_{j+1}\right)$, $s \in\left[t_{k}, t_{k+1}\right), k<j$, and

$$
U(t, s ; P)=U_{k}(t-s)
$$

whenever $t, s \in\left[t_{k}, t_{k+1}\right)$, where $U_{p}(t)$ is a C_{0}-semigroup in X generated by $-A\left(t_{p}\right)$. Here we have used the convention that $\prod_{p=k}^{j} U_{p}=U_{j} \prod_{p=k}^{j-1} U_{p}$ if $j \geqq k$ and $\prod_{p=k}^{j} U_{p}=1$ if $j<k$. Also, for an operator-valued function $F(t)$ defined on I, we define a step function $F(t ; P)$ by

$$
F(t ; P)=F\left(t_{k}\right), \quad t \in\left[t_{k}, t_{k+1}\right), \quad k=0,1,2, \cdots .
$$

We note here that by conditions (A) and (C) $\left\{U_{p}(t)\right\}$ leaves Y invariant and forms a C_{0}-semigroup in Y (see Proposition 4.4 of [1]). Hence, for each $y \in Y U(t, s ; P) y$ is continuous in Y-norm in t and s. We note also that
conditions (A) and (C) imply

$$
\begin{equation*}
\|U(t, s ; P)\| \leqq M e^{\beta(t-s)},\|U(t, s ; P)\|_{Y} \leqq \tilde{M} e^{\tilde{\beta}(t-s)} \tag{2.1}
\end{equation*}
$$

with suitable constants $\tilde{M}, \tilde{\beta}$ (see (4.3) of [1]). On the other hand, the uniform boundedness theorem and the strongly continuous differentiability of $S(\cdot)$ imply that $\|A(t)\|_{Y, X},\|B(t)\|,\|S(t)\|_{Y, X}$ and $\left\|S(t)^{-1}\right\|_{X, Y}$ are bounded in t.

Lemma 1. Let $P=\left\{t_{k}\right\}$ be a sequence such that $0 \leqq t_{0}<t_{1}<\cdots<t_{k}<\cdots \leqq T$ and $t_{\infty}=\lim _{k \rightarrow \infty} t_{k}$, and let $t_{k} \leqq t_{k}^{\prime \prime}<t_{k+1}, k=0,1,2, \cdots$. Then we have
(f) for any $x \in X, \lim _{k \rightarrow \infty} U\left(t_{k}^{\prime \prime}, t_{0} ; P\right) x$ exists in X
(g) for any $y \in Y, \lim _{k \rightarrow \infty} U\left(t_{k}^{\prime \prime}, t_{0} ; P\right) y$ exists in Y.

Proof. To prove (f) it suffices to show that (f) is true for all $x \in Y$, since Y is dense in X. But this is obvious from the fact that

$$
\begin{aligned}
\left\|(d / d t) U\left(t, t_{0} ; P\right) x\right\| & =\left\|A(t ; P) U\left(t, t_{0} ; P\right) x\right\| \\
& \leqq\|A(t ; P)\|_{Y, X}\left\|U\left(t, t_{0} ; P\right)\right\|_{Y}\|x\|_{Y} \\
& \leqq c\|x\|_{Y}
\end{aligned}
$$

by (2.1) and the boundedness of $\|A(t)\|_{Y, X}$ in t. Here and in what follows c denotes various constants, which need not be the same throughout. For the proof of (g) we begin by showing the estimate

$$
\begin{equation*}
\left\|S\left(t_{k}^{\prime \prime}\right) U\left(t_{k}^{\prime \prime}, t_{i} ; P\right) S\left(t_{i}\right)^{-1} x-U\left(t_{k}^{\prime \prime}, t_{i} ; P\right) x\right\| \leqq c\|x\|\left(t_{k}^{\prime \prime}-t_{i}\right) \tag{2.2}
\end{equation*}
$$

for all $x \in X$ and $0 \leqq i \leqq k$. To verify this it suffices to show that (2.2) holds for each $x \in Y$, since Y is dense in X. To this end we use the identity

$$
\begin{align*}
& S\left(t_{k}^{\prime \prime}\right) U\left(t_{k}^{\prime \prime}, t_{i} ; P\right) S\left(t_{i}\right)^{-1} x-U\left(t_{k}^{\prime \prime}, t_{i} ; P\right) x \tag{2.3}\\
&= S\left(t_{k}^{\prime \prime}\right)\left(S\left(t_{k}\right)^{-1}-S\left(t_{k}^{\prime \prime}\right)^{-1}\right) U\left(t_{k}^{\prime \prime}, t_{i} ; P\right) x \\
& \quad+\sum_{j=i}^{k-1} S\left(t_{k}^{\prime \prime}\right) U\left(t_{k}^{\prime \prime}, t_{j+1} ; P\right)\left(S\left(t_{j}\right)^{-1}-S\left(t_{j+1}\right)^{-1}\right) U\left(t_{j+1}, t_{i} ; P\right) x \\
& \quad-\int_{t_{i}}^{t_{k}^{\prime \prime}} S\left(t_{k}^{\prime \prime}\right) U\left(t_{k}^{\prime \prime}, \sigma ; P\right) S(\sigma ; P)^{-1} B(\sigma ; P) U\left(\sigma, t_{i} ; P\right) x d \sigma
\end{align*}
$$

for $x \in Y$ and $0 \leqq i \leqq k$, which is obtained by differentiating

$$
S\left(t_{k}^{\prime \prime}\right) U\left(t_{k}^{\prime \prime}, \sigma ; P\right) S(\sigma ; P)^{-1} U\left(\sigma, t_{i} ; P\right) x
$$

in σ and integrating over [$\left.t_{i}, t_{k}^{\prime \prime}\right]$ (use (1.1) also). Since $S(\cdot)^{-1}$ is Lipschitz continuous in $B(X, Y)$ (see [4]) and since $\|S(t)\|_{Y, X},\left\|S(t)^{-1}\right\|_{X, Y}$ and $\|B(t)\|$ are bounded in t as noted above, it follows easily from (2.1) that the right hand of (2.3) is majorized in norm of X by $c\|x\|\left(t_{k}^{\prime \prime}-t_{i}\right)$. Thus we see that (2.2) holds for each $x \in Y$.

Now let $x \in X$, and put $w_{i}=S\left(t_{i}\right) U\left(t_{i}, t_{0} ; P\right) S\left(t_{0}\right)^{-1} x$ and $W(t, s ; P)$ $=S(t) U(t, s ; P) S(s)^{-1}-U(t, s ; P)$. Then, by (2.1) and (2.2) we have

$$
\begin{align*}
\left\|W\left(t_{k}^{\prime \prime}, t_{i} ; P\right) w_{i}\right\| & \leqq c\left\|w_{i}\right\|\left(t_{k}^{\prime \prime}-t_{i}\right) \tag{2.4}\\
& \leqq c\|x\|\left(t_{k}^{\prime \prime}-t_{i}\right) .
\end{align*}
$$

On the other hand, since $S\left(t_{k}^{\prime \prime}\right) U\left(t_{k}^{\prime \prime}, t_{0} ; P\right) S\left(t_{0}\right)^{-1} x=S\left(t_{k}^{\prime \prime}\right) U\left(t_{k}^{\prime \prime}, t_{i} ; P\right) S\left(t_{i}\right)^{-1} w_{i}$ $=W\left(t_{k}^{\prime \prime}, t_{i} ; P\right) w_{i}+U\left(t_{k}^{\prime \prime}, t_{i} ; P\right) w_{i}$, we obtain from (2.4)

$$
\begin{aligned}
a_{k, j} & \equiv\left\|S\left(t_{j}^{\prime \prime}\right) U\left(t_{j}^{\prime \prime}, t_{0} ; P\right) S\left(t_{0}\right)^{-1} x-S\left(t_{k}^{\prime \prime}\right) U\left(t_{k}^{\prime \prime}, t_{0} ; P\right) S\left(t_{0}\right)^{-1} x\right\| \\
& \leqq\left\|W\left(t_{j}^{\prime \prime}, t_{i} ; P\right) w_{i}\right\|+\left\|W\left(t_{k}^{\prime \prime}, t_{i} ; P\right) w_{i}\right\|+\left\|U\left(t_{j}^{\prime \prime}, t_{i} ; P\right) w_{i}-U\left(t_{k}^{\prime \prime}, t_{i} ; P\right) w_{i}\right\| \\
& \leqq c\|x\|\left\{\left(t_{j}^{\prime \prime}-t_{i}\right)+\left(t_{k}^{\prime \prime}-t_{i}\right)\right\}+\left\|U\left(t_{j}^{\prime \prime}, t_{i} ; P\right) w_{i}-U\left(t_{k}^{\prime \prime}, t_{i} ; P\right) w_{i}\right\| .
\end{aligned}
$$

Since $\lim _{k \rightarrow \infty} U\left(t_{k}^{\prime \prime}, t_{i} ; P\right) w_{i}$ exists in X for each i by (f), it follows that

$$
\lim _{k, j \rightarrow \infty} \sup _{k, j} \leqq c\|x\|\left(t_{\infty}-t_{i}\right)
$$

for all i. Therefore, by letting $i \rightarrow \infty$ we see that $\lim _{k, j \rightarrow \infty} a_{k, j}=0$, which means that $\lim _{k \rightarrow \infty} S\left(t_{k}^{\prime \prime}\right) U\left(t_{k}^{\prime \prime}, t_{0} ; P\right) S\left(t_{0}\right)^{-1} x$ exists in X. Obviously, this is equivalent to (g).

The following is our key lemma.
Lemma 2. For each $\varepsilon>0, y \in Y$ and $s \in[0, T)$ there exists a partition $P=P(\varepsilon, s, y): s=t_{0}<t_{1}<\cdots<t_{N}=T$ of the interval $[s, T]$ such that
(h) $t_{k+1}-t_{k} \leqq \varepsilon, k=0,1,2, \cdots, N-1$,
(i) $\left\|\left(A\left(t^{\prime}\right)-A(t)\right) U(t, s ; P) y\right\| \leqq \varepsilon$ for all $t, t^{\prime} \in\left[t_{k}, t_{k+1}\right], k=0,1,2, \cdots$, $N-1$.

Proof. Set $t_{0}=s$ and inductively define t_{k+1} in the following manner: If $t_{k}=T$, then set $t_{k+1}=t_{k}$; if $t_{k}<T$, then set $t_{k+1}=t_{k}+h_{k}$, where h_{k} is the largest number such that the following conditions (1) and (2) hold.
(1) $0<h_{k} \leqq \varepsilon, t_{k}+h_{k} \leqq T$.
(2) $\left\|\left(A\left(t^{\prime}\right)-A\left(t_{k}\right)\right) u_{k}\left(t-t_{k}\right)\right\| \leqq \varepsilon$ for all $t, t^{\prime} \in\left[t_{k}, t_{k}+h_{k}\right]$, where $u_{k}(t)$ $=U_{k}(t) \prod_{j=0}^{k-1} U_{j}\left(t_{j+1}-t_{j}\right) y$.
Since $u_{k}(t)$ is continuous in $Y, A\left(t^{\prime}\right) u_{k}(t)$ is continuous in X-norm jointly in t, t^{\prime} by virtue of (B). This implies that $h_{k}>0$.

Now, if we can show that there is an integer N such that $t_{N}=T$, then the proof will be complete. To this end assume, for contradiction, that $t_{k}<T$ for all k; and put $t_{\infty}=\lim _{k \rightarrow \infty} t_{k}$ and $P^{\prime}=\left\{t_{k}\right\}$. By the definition of h_{k}, we can see that for all sufficiently large k there exist $t_{k}^{\prime}, t_{k}^{\prime \prime} \in\left[t_{k}, t_{k+1}\right)$ such that

$$
\begin{equation*}
\left\|\left(A\left(t_{k}^{\prime}\right)-A\left(t_{k}\right)\right) u_{k}\left(t_{k}^{\prime \prime} \quad t_{k}\right)\right\| \geqq \varepsilon / 2: \tag{2.5}
\end{equation*}
$$

Otherwise there would be an integer k such that $h_{k}<\varepsilon$ and $\|\left(A\left(t^{\prime}\right)-A\left(t_{k}\right)\right)$ $\cdot u_{k}\left(t-t_{k}\right) \|<\varepsilon / 2$ for all $t, t^{\prime} \in\left[t_{k}, t_{k+1}\right)$. Since $u_{k}(\cdot)$ is continuous in Y and $A(\cdot)$ is strongly continuous, we can take a $\delta>0$ such that $h_{k}+\delta \leqq \varepsilon, t_{k+1}+\delta \leqq T$ and $\left\|\left(A\left(t^{\prime}\right)-A\left(t_{k}\right)\right) u_{k}\left(t-t_{k}\right)\right\| \leqq \varepsilon$ for all $t, t^{\prime} \in\left[t_{k}, t_{k+1}+\delta\right]$. But this contradicts the definition of h_{k}.

On the other hand, according to Lemma 1 (g), the limit $\lim _{k \rightarrow \infty} U\left(t_{k}^{\prime \prime}, t_{0} ; P^{\prime}\right) y$ $=z$ exists in Y. Hence, by (B) we have

$$
\lim _{k \rightarrow \infty} A\left(t_{k}^{\prime}\right) U\left(t_{k}^{\prime \prime}, t_{0} ; P^{\prime}\right) y=\lim _{k \rightarrow \infty} A\left(t_{k}\right) U\left(t_{k}^{\prime \prime}, t_{0} ; P^{\prime}\right) y=A\left(t_{\infty}\right) z
$$

Therefore, by letting $k \rightarrow \infty$ in (2.5) (note that $u_{k}\left(t_{k}^{\prime \prime}-t_{k}\right)=U\left(t_{k}^{\prime \prime}, t_{0} ; P^{\prime}\right) y$), we have $\varepsilon / 2 \leqq 0$. This contradicts the fact that $\varepsilon>0$. Thus the lemma is proved.

Lemma 3. Let $\varepsilon_{i}>0, s_{i} \in[0, T)$ and $y_{i} \in Y, i=1,2$, and let $P_{i}=P\left(\varepsilon_{i}, s_{i}, y_{i}\right)$ be a partition of $\left[s_{i}, T\right]$ as in Lemma 2. Let \tilde{P}_{i} be any partition of $\left[s_{i}, T\right]$ which is a refinement of P_{i}. Then we have

$$
\begin{align*}
& \left\|U\left(t_{1}, s_{1} ; \tilde{P}_{1}\right) y_{1}-U\left(t_{2}, s_{2} ; \tilde{P}_{2}\right) y_{2}\right\| \tag{2.6}\\
& \quad \leqq c\left\{\left\|y_{1}-y\right\|+\left\|y_{2}-y\right\|+\varepsilon_{1}+\varepsilon_{2}+\left(\left|t_{1}-t_{2}\right|+\left|s_{1}-s_{2}\right|\right)\|y\|_{Y}\right\}
\end{align*}
$$

for all $t_{i} \in\left[s_{i}, T\right], i=1,2$, and all $y \in Y$.
Proof. We start with the identity

$$
\begin{align*}
& U\left(t_{i}, s_{i} ; P_{i}\right) y_{i}-U\left(t_{i}, s_{i} ; \tilde{P}_{i}\right) y_{i} \tag{2.7}\\
& \quad=\int_{s_{i}}^{t_{i}} U\left(t_{i}, \sigma ; \tilde{P}_{i}\right)\left(A\left(\sigma ; \tilde{P}_{i}\right)-A\left(\sigma ; P_{i}\right)\right) U\left(\sigma, s_{i} ; P_{i}\right) y_{i} a \sigma,
\end{align*}
$$

which is obtained by differentiating $U\left(t_{i}, \sigma ; \tilde{P}_{i}\right) U\left(\sigma, s_{i} ; P_{i}\right) y_{i}$ in σ and integrating over [$\left.s_{i}, t_{i}\right]$. Since \tilde{P}_{i} is a refinement of P_{i}, property (i) of Lemma 2 implies that $\left.\|\left(A\left(\sigma ; \tilde{P}_{i}\right)-A\left(\sigma ; P_{i}\right)\right) U\left(\sigma, s_{i} ; P_{i}\right) y_{i}\right) \| \leqq \varepsilon_{i}$ for $\sigma \in\left[s_{i}, T\right]$. Hence (2.1) and (2.7) give

$$
\begin{equation*}
\left\|U\left(t_{i}, s_{i} ; P_{i}\right) y_{i}-U\left(t_{i}, s_{i} ; \tilde{P}_{i}\right) y_{i}\right\| \leqq c \varepsilon_{i}, \quad i=1,2 \tag{2.8}
\end{equation*}
$$

Consequently, by (2.8) we have

$$
\begin{align*}
& \left\|U\left(t_{1}, s_{1} ; \tilde{P}_{1}\right) y_{1}-U\left(t_{2}, s_{2} ; \tilde{P}_{2}\right) y_{2}\right\| \tag{2.9}\\
& \quad \leqq c\left(\varepsilon_{1}+\varepsilon_{2}\right)+\left\|U\left(t_{1}, s_{1} ; P_{1}\right) y_{1}-U\left(t_{2}, s_{2} ; P_{2}\right) y_{2}\right\| \\
& \quad \leqq c\left(\varepsilon_{1}+\varepsilon_{2}\right)+I_{1}+I_{2}+I_{3},
\end{align*}
$$

where

$$
\begin{aligned}
& I_{1}=\left\|U\left(t_{1}, s_{1} ; P_{1}\right) y_{1}-U\left(t_{1}, s_{1} ; P_{3}\right) y_{1}\right\|, \\
& I_{2}=\left\|U\left(t_{1}, s_{1} ; P_{3}\right) y_{1}-U\left(t_{2}, s_{2} ; P_{3}\right) y_{2}\right\|, \\
& I_{3}=\left\|U\left(t_{2}, s_{2} ; P_{3}\right) y_{2}-U\left(t_{2}, s_{2} ; P_{2}\right) y_{2}\right\|,
\end{aligned}
$$

and P_{3} is the superposition of P_{1} and P_{2}. But, (2.8) gives again that $I_{1} \leqq c \varepsilon_{1}$
and $I_{3} \leqq c \varepsilon_{2}$, for P_{3} is a refinement of both P_{1} and P_{2}. Thus the lemma will be proved if we estimate I_{2}. To this end we may assume, without loss of generality, that $s_{2} \leqq s_{1}$. For each $y \in Y$ it follows easily from (2.1) that

$$
I_{2} \leqq M e^{3 T}\left(\left\|y_{1}-y\right\|+\left\|y_{2}-y\right\|\right)+\left\|U\left(t_{1}, s_{1} ; P_{3}\right) y-U\left(t_{2}, s_{2} ; P_{3}\right) y\right\| .
$$

On the other hand, since $\left\|(d / d t) U\left(t, s_{2} ; P_{3}\right) y\right\| \leqq c\|y\|_{Y}$, we have

$$
\begin{aligned}
& \left\|U\left(t_{1}, s_{1} ; P_{3}\right) y-U\left(t_{2}, s_{2} ; P_{3}\right) y\right\| \\
& \quad \leqq\left\|U\left(t_{1}, s_{1} ; P_{3}\right) y-U\left(t_{1}, s_{2} ; P_{3}\right) y\right\|+\left\|U\left(t_{1}, s_{2} ; P_{3}\right) y-U\left(t_{2}, s_{2} ; P_{3}\right) y\right\| \\
& \quad \leqq\left\|U\left(t_{1}, s_{1} ; P_{3}\right)\left(1-U\left(s_{1}, s_{2} ; P_{3}\right)\right) y\right\|+c\left|t_{1}-t_{2}\right|\|y\|_{Y} \\
& \quad \leqq c\left\|\left(1-U\left(s_{1}, s_{2} ; P_{3}\right)\right) y\right\|+c\left|t_{1}-t_{2}\right|\|y\|_{Y} \\
& \quad \leqq c\left(\left|s_{1}-s_{2}\right|+\left|t_{1}-t_{2}\right|\right)\|y\|_{Y} .
\end{aligned}
$$

Hence we see that I_{2} is majorized by

$$
c\left\{\left\|y_{1}-y\right\|+\left\|y_{2}-y\right\|+\left(\left|s_{1}-s_{2}\right|+\left|t_{1}-t_{2}\right|\right)\|y\|_{Y}\right\} .
$$

Combining (2.9) with the estimates of I_{1}, I_{2} and I_{3} shown just above, we conclude that (2.6) holds.

Now, fix $x \in X$ and $(t, s) \in \Delta$. Let $\left\{s_{n}\right\},\left\{t_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences such that $0 \leqq s_{n}<t_{n} \leqq T, y_{n} \in Y, s_{n} \rightarrow s, t_{n} \rightarrow t$, and $y_{n} \rightarrow x$ in X. Let $\left\{P_{n}\right\}$ be a sequence of partitions of [$\left.s_{n}, T\right]$ satisfying (h) and (i) of Lemma 2 with ε, s, y replaced by $1 / n, s_{n}, y_{n}$ respectively. We then define

$$
\begin{equation*}
U(t, s) x=\lim _{n \rightarrow \infty} U\left(t_{n}, s_{n} ; P_{n}\right) y_{n} \tag{2.10}
\end{equation*}
$$

It follows from (2.6) that

$$
\begin{aligned}
& \lim _{n, m \rightarrow \infty} \sup _{n}\left\|U\left(t_{n}, s_{n} ; P_{n}\right) y_{n}-U\left(t_{m}, s_{m} ; P_{m}\right) y_{m}\right\| \\
& \quad \leqq c \lim _{n, m \rightarrow \infty}\left\{\left\|y_{n}-y\right\|+\left\|y_{m}-y\right\|+1 / n+1 / m+\left(\left|t_{n}-t_{m}\right|+\left|s_{n}-s_{m}\right|\right)\|y\|_{Y}\right\} \\
& \quad=2 c\|x-y\|
\end{aligned}
$$

for each $y \in Y$. But, since Y is dense in X, this implies that

$$
\lim _{n, m \rightarrow \infty}\left\|U\left(t_{n}, s_{n} ; P_{n}\right) y_{n}-U\left(t_{m}, s_{m} ; P_{m}\right) y_{m}\right\|=0
$$

Therefore the limit $U(t, s) x$ exists in X. Similarly, we can see from (2.6) that $U(t, s) x$ is independent of the choice of such sequences $\left\{s_{n}\right\},\left\{t_{n}\right\},\left\{y_{n}\right\}$ and $\left\{P_{n}\right\}$ as above.

Lemma 4. We have
(j) $U(t, s)$ is a linear operator in X.
(k) $U(t, s)$ satisfies properties (a) and (b) of Theorem.

Proof. (j) follows easily from the fact that $U(t, s) x=\lim _{n \rightarrow \infty} U\left(t_{n}, s_{n} ; \tilde{P}_{n}\right) y_{n}$ for any refinement \tilde{P}_{n} of the partition P_{n} employed in (2.10). But, this fact is a direct consequence of Lemma 3. Next, to obtain that $U\left(t, s^{\prime}\right) U\left(s^{\prime}, s\right)$ $=U(t, s)$ for $s \leqq s^{\prime} \leqq t$, we may let $n \rightarrow \infty$ in the identity

$$
U\left(t_{n}, s_{n}^{\prime} ; P_{n}^{\prime}\right) U\left(s_{n}^{\prime}, s_{n} ; P_{n}\right) y_{n}=U\left(t_{n}, s_{n} ; P_{n}\right) y_{n},
$$

where $P_{n}^{\prime}=P_{n} \cap\left[s_{n}^{\prime}, T\right]$ and s_{n}^{\prime} is a point of P_{n} such that $s_{n}^{\prime} \rightarrow s^{\prime}$ as $n \rightarrow \infty$; note that if we set $y_{n}^{\prime}=U\left(s_{n}^{\prime}, s_{n} ; P_{n}\right) y_{n}$, then the partition P_{n}^{\prime} satisfies properties (h) and (i) with ε, s, y replaced by $1 / n, s_{n}^{\prime}, y_{n}^{\prime}$, respectively. Hence, by definition $U\left(t_{n}, s_{n}^{\prime} ; P_{n}^{\prime}\right) y_{n}^{\prime}$ converges to $U\left(t, s^{\prime}\right) U\left(s^{\prime}, s\right) x$ as $n \rightarrow \infty$. Thus we see that $U(t, s)$ satisfies (b). Finally, (2.6) gives also that $U(t, s) y$ is continuous on Δ to X for all $y \in Y$, and hence is so for all of X by continuity. This shows that (a) is true.

To investigate (e) of Theorem we use the following lemma which corresponds to Proposition 4.3 of [1].

Lemma 5. Let $r \in I$ be fixed. Then for $(t, s) \in \Delta$ and $y \in Y$

$$
\begin{align*}
& \|U(t, s) y-\exp (-(t-s) A(r)) y\| \tag{2.11}\\
& \quad \leqq c \int_{s}^{t}\|(A(\sigma)-A(r)) \exp (-(\sigma-r) A(r)) y\| d \sigma .
\end{align*}
$$

Proof. Let $P_{n}=P(1 / n, s, y)$ be a partition of $[s, T]$ as in Lemma 2. By differentiating $U\left(t, \sigma ; P_{n}\right) \exp (-(\sigma-s) A(r)) y$ in σ and integrating over [s, t], we obtain that $\exp (-(t-s) A(r)) y-U\left(t, s ; P_{n}\right) y$ equals to

$$
\int_{s}^{t} U\left(t, \sigma ; P_{n}\right)\left(A\left(\sigma ; P_{n}\right)-A(r) \exp (-(\sigma-s) A(r)) y d \sigma\right.
$$

Estimating the integral term by

$$
M e^{\beta T} \int_{s}^{t}\left\|\left(A\left(\sigma ; P_{n}\right)-A(r)\right) \exp (-(\sigma-s) A(r)) y\right\| d \sigma
$$

and going to the limit $n \rightarrow \infty$, we can get (2.11) by Lebesgue's dominated convergence theorem.

Proof of Theorem. (a) and (b) have been proved by Lemma 4 in virtue of (2.11) a similar argument to that of [1, pp. 247, 248] gives that (e) is true and that $d^{+} U(t, s) y /\left.d t\right|_{t=s}=-A(s) y$ holds for all $y \in Y$ and all $s \in[0, T)$. Thus it remains to show that (c) and (d) are valid. It, however, suffices to show (c) only (see [1, p. 253]). (c) will be proved as in [4] without any formal changes, but the arbitrary partitions of the interval $[r, T]$ used there must be replaced by the partition $P_{n}=P(1 / n, r, y)$ constructed in Lemma 2 for $\varepsilon=1 / n, s=r$ and $y \in Y$; namely, in the argument of [4] we may replace $A_{n}(t)$ and $U_{n}(t, s)$ with $A\left(t ; P_{n}\right)$ and $U\left(t, s ; P_{n}\right)$, respectively. Only a slight change
of the argument is required to justify that (8) of [4] can be deduced from (7) of [4] under our assumptions. (In [4], in order to deduce (8) from (7), the norm continuity of $A(t)$ is used.) But, this is readily justified from the fact that $\int_{s}^{t}\left\|\left(A(s)-A\left(s ; P_{n}\right)\right) U\left(s, r ; P_{n}\right) y\right\| d s$ tends to 0 as $n \rightarrow \infty$ in virtue of Lemma 2 (i).

Finally, the uniqueness of $\{U(t, s)\}$ will be proved as in [1, p. 248]. However, we must again use property (i) of Lemma 2 instead of the norm continuity of $A(t)$ as used just above to obtain that the right hand of (4.6a) of [1] tends to 0 as $n \rightarrow \infty$. We omit the detail.

Note. After the theorem was proved, the author knew that Ishii [6] had already obtained a similar result by using the Yosida approximation. In [6] some additional assumptions are assumed on $S(t)$, but the strong continuity of $A(t)$ is replaced with strong measurability.

Acknowledgement. The author wishes to express his sincere gratitude to the referee whose suggestions improved the proof of our key lemma very much.

References

[1] T. Kato, Linear evolution equations of "hyperbolic" type, J. Fac. Sci. Univ. Tokyo, Sect. I, 17 (1970), 241-258.
[2] T. Kato, Linear evolution equations of "hyperbolic" type II, J. Math. Soc. Japan, 25 (1973), 648-666.
[3] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), 181-205.
[4] J. R. Dorroh, A simplified proof of a theorem of Kato on linear evolution equations, J. Math. Soc. Japan, 27 (1975), 474-478.
[5] E. Hille and R.S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ. Vol. 31, Providence, 1957.
[6] S. Ishii, Linear evolution equation $d u / d t+A(t) u=0$: A case where $A(t)$ is strongly continuous, to appear.
[7] F. J. Massey III, Abstract evolution equations and the mixed problem for symmetric hyperbolic systems, Trans. Amer. Math. Soc., 168 (1972), 165-188.
[8] K. Yosida, Time dependent evolution equations in a locally convex space, Math. Ann., 162 (1965), 83-86.
[9] K. Yosida, Functional analysis, Springer, 1971.

Kazuo Kobayasi
Department of Mathematics
Sagami Institute of Technology
1-1-25, Tsujido-Nishikaigan
Fujisawa 251
Japan

