Algebraic differential equations of Clairaut type from the differential-algebraic standpoint

By Keiji Nishioka

(Received Jan. 17, 1978)
(Revised Aug. 19, 1978)

§0. Introduction.

Let k be an algebraically closed ordinary differential field of characteristic zero, and K be a one-dimensional algebraic function field over k. We assume that K is a differential extension of k.

The following definition is due to M . Matsuda [3]: K is said to be free from parametric singularities if $\nu_{P}\left(t^{\prime}\right) \geqq 0$ for each prime divisor P of K, where ν_{P} is the normalized valuation belonging to P and t is a prime element in P.

Let F be an algebraically irreducible element of $k\{y\}$ of the first order, and $K(F ; k)$ be the associated differential algebraic function field with F over k. Then, M. Matsuda [3] obtained the following theorem: Suppose that $K(F ; k)$ is free from parametric singularities. Then, it is of Riccati type over k if its genus g is zero; it is a differential elliptic function field over k if g is one.

We say that K is of Clairaut type over k if the following two conditions are satisfied:
(i) k contains an element x such that $x^{\prime}=1$;
(ii) There exists an element y of K such that $K=k\left(y, y^{\prime}\right)$ with $G\left(y-x y^{\prime}, y^{\prime}\right)=0$, where G is an irreducible polynomial over the field of constants of k.

Under the assumption (i), K is of Clairaut type if and only if $K=k\left(K_{0}\right)$, where K_{0} is the field of constants of K (cf. §1).
M. Matsuda [4, pp. 5-6] expected that the following statement is true: Suppose that $K(F ; k)$ is free from parametric singularities. Then, there exists a differential extension field k^{*} of k which satisfies the following two conditions:
(iii) The field of constants of k^{*} is the same as that of k;
(iv) $K\left(F ; k^{*}\right)$ is of Clairaut type over k^{*}.

This statement is true in the case where $g=0,1$. It is derived from known results (cf. §5). We shall prove that it is true in the case where $g>1$ and that k itself can be taken as k^{*} in this case if k satisfies the condition (i).

Theorem. Suppose that K is free from parametric singularities and the genus g is greater than one. Then, $K=k\left(K_{0}\right)$.

In the special case where K is a hyperelliptic function field over k, this theorem is known (Painlevé [6, p. 68], Schlesinger [8, p. 118]).

By Briot-Bouquet's theorem, k contains a nonconstant element if $K(F ; k)$ is free from parametric singularities and if its genus is greater than one (Matsuda [3]).

In § 2 we shall state some known results on Weierstrass points (cf. Hurwitz [1], Iwasawa [2]).

The author wishes to express his sincere gratitude to Dr. M. Matsuda for his kind advices. He simplified the author's original proof of Theorem by introducing Lemma in $\S 3$.

§ 1. Clairaut type.

Proposition 1. Under the assumption (i), K is of Clairaut type if and only if $K=k\left(K_{0}\right)$.

Proof. Suppose that the condition (ii) is satisfied by K. Set $a=y-x y^{\prime}$ and $b=y^{\prime}$. Then, the differentiation of $G(a, b)=0$ gives us

$$
y^{\prime \prime}\left(G_{b}-G_{a}\right)=0 .
$$

Here, the term in the parenthesis does not vanish, since its degree in y^{\prime} is less than that of G. Hence, $y^{\prime \prime}=0$. We have $K=k(a, b)$ and $a^{\prime}=b^{\prime}=0$. Conversely suppose that $K=k\left(K_{0}\right)$. We show that K_{0} is a one-dimensional algebraic function field over k_{0} the field of constants of k. Since $K_{0} \neq k_{0}$, there exists a transcendental constant a of K over k_{0}. It is transcendental over k. Any constant c of K is algebraic over $k_{0}(a)$, because it is algebraic over $k(a)$. We have

$$
\left[k_{0}(a, c): k_{0}(a)\right] \leqq[K: k(a)] .
$$

Hence, $\left[K_{0}: k_{0}(a)\right] \leqq[K: k(a)]$. We have $K_{0}=k_{0}(a, b)$ for some element b of K_{0}, and $K=k\left(K_{0}\right)=k(a, b)$. Let us set $y=a+b x$. Then, $y^{\prime}=b$ and $K=k\left(y, y^{\prime}\right)$.

§ 2. Weierstrass points.

Let k be an algebraically closed field of characteristic zero and K be a one-dimensional algebraic function field over k of genus g. For a divisor A of K we shall define a vector space over k :

$$
L(A)=\{x \in K ;(x) A \text { is an integral divisor }\} \cup\{0\} ;
$$

here (x) is the principal divisor of x in K different from zero. Its dimension is finite and denoted by $l(A)$. Let P be a prime divisor of K. Then, there
exist g positive integers n_{1}, \cdots, n_{g} such that $L\left(P^{n}\right) \neq L\left(P^{n-1}\right)$ for any positive integer n different from n_{1}, \cdots, n_{g}. The prime divisor P is called a Weierstrass point of K if the set $\left\{n_{1}, \cdots, n_{g}\right\}$ is not $\{1,2, \cdots, g\}$. If g is greater than one, the set of Weierstrass points of K is finite and its cardinarity N satisfies

$$
N \geqq 2 g+2 \text {. }
$$

The equality holds if and only if K is a hyperelliptic function field over k.

§ 3. Hurwitz's formula.

Let M be a subfield of K containing k properly. Then, it is a one-dimensional algebraic function field over k. We have Hurwitz's formula:

$$
2 g=\sum_{P^{\prime}}\left(e_{P^{\prime}}-1\right)+2 e g_{0}-2(e-1) ;
$$

here $e=[K: M]$; g_{0} denotes the genus of $M ; P^{\prime}$ runs over prime divisor of M; e_{P}, denotes the ramification exponent of P^{\prime} with respect to M.

Lemma. Suppose that P_{i} and $u_{i}(1 \leqq i \leqq r)$ are prime divisors and elements of K respectively such that for each i we have $\nu_{P_{i}}\left(u_{i}\right)<0$ and $\nu_{Q}\left(u_{i}\right) \geqq 0$ if Q is a prime divisor different from P_{i}. Take $k\left(u_{1}, \cdots, u_{r}\right)$ as M. Assume that $g>0$ and $r \geqq 2 g+2$. Then, either $K=M$ or $e=2$ and $g_{0}=0$.

Proof. Let Q_{i} be the restriction of P_{i} to M. Then, $\nu_{Q_{i}}\left(u_{i}\right)<0$, where $\nu_{Q_{i}}$ is the normalized valuation belonging to Q_{i}. For any prime divisor P of K different from P_{i}, P is not an extension of Q_{i} because of $\nu_{P}\left(u_{i}\right) \geqq 0$. Hence $Q_{i}=P_{i}{ }^{e}$. We have

$$
\sum_{P^{\prime}}\left(e_{P^{\prime}}-1\right) \geqq r(e-1) .
$$

By Hurwitz's formula

$$
g \geqq(e-1) g+e g_{0}
$$

since $r \geqq 2 g+2$. Therefore, either $e=1$ or $e=2$ and $g_{0}=0$, because $g>0$.

§4. Proof of Theorem.

Let $\left\{P_{1}, \cdots, P_{r}\right\}$ be the set of all Weierstrass points of K. Then,

$$
r \geqq 2 g+2
$$

Set $P=P_{1}$. There exists a positive integer n such that

$$
l\left(P^{n-1}\right) \leqq l\left(P^{n}\right)=l\left(P^{n+1}\right) .
$$

Take an element u of $L\left(P^{n}\right)$ which does not belong to $L\left(P^{n-1}\right)$. Let Q be any prime divisor of K different from P. By our assumption that K is free
from parametric singularities, we have $\nu_{Q}\left(t_{Q}^{\prime}\right) \geqq 0$, where t_{Q} is a prime element in Q. Hence, $\nu_{Q}\left(u^{\prime}\right) \geqq 0$, because $\nu_{Q}(u) \geqq 0$. We shall prove that $\nu_{P}\left(t_{P}^{\prime}\right)>0$. To the contrary, let us suppose that $\nu_{P}\left(t_{P}^{\prime}\right)=0$. Then u^{\prime} is contained in $L\left(P^{n+1}\right)$ but not in $L\left(P^{n}\right)$. This contradicts our assumption on n. Hence, $\nu_{P}\left(t_{P}^{\prime}\right)>0$. There is a positive integer m such that $m \leqq g$ and $l\left(P^{m}\right)=2$. Let $\{1, u\}$ be a basis of $L\left(P^{m}\right)$. Then,

$$
u^{\prime}=a+b u
$$

with a, b in k. For any P_{i} different from P, there is an element ε_{i} of k such that

$$
\nu_{P_{i}}\left(u-\varepsilon_{i}\right)>0 .
$$

We have

$$
\varepsilon_{i}^{\prime}=a+b \varepsilon_{i},
$$

since $\nu_{P_{i}}\left(t_{P_{i}}^{\prime}\right)>0$. Set $v=u-\varepsilon_{2}$. Then, $(v)=E P^{-m}$, where E is an integral divisor of degree m. By inequalities

$$
m \leqq g<2 g+1 \leqq r-1
$$

there is an index i such that $\nu_{P_{i}}(v)=0$. Take such an index i. We have $\varepsilon_{i} \neq \varepsilon_{2}$. Set

$$
w=\left(u-\varepsilon_{2}\right) /\left(\varepsilon_{i}-\varepsilon_{2}\right) .
$$

Then, it is an element of $L\left(P^{m}\right)$ being a transcendental constant over k. Thus, for every Weierstrass point P_{i}, there exists a transcendental constant w_{i} over k such that for each i we have $\nu_{P_{i}}\left(w_{i}\right)<0$ and $\nu_{Q}\left(w_{i}\right) \geqq 0$ if Q is a prime divisor different from P_{i}. Let M denote $k\left(w_{1}, \cdots, w_{r}\right)$. By Lemma, either $K=M$ or $e=2$ and $g_{0}=0$. Suppose that we are in the latter case. Then, $r=2 g+2$. Let k_{0} and M_{0} denote the fields of constants of k and M respectively. Then, $M=k\left(M_{0}\right)$ and M_{0} is $k_{0}\left(w_{1}, \cdots, w_{r}\right)$ being a one-dimensional algebraic function field over k_{0}. The genus of M_{0} is zero, since it is not greater than g_{0} (cf. Rosenlicht [7, Lemma 3]). Hence, there exists a transcendental constant γ over k such that $M_{0}=k_{0}(\gamma)$. We have $M=k(\gamma)$. There exists an element y of K such that $K=M(y)$ and

$$
y^{2}=\Pi\left(\gamma-\alpha_{i}\right) \quad(1 \leqq i \leqq s),
$$

where $s=2 g+1$ or $2 g+2 ; \alpha_{i}$ is in k and $\alpha_{i} \neq \alpha_{j}(i \neq j)$. Changing indices i if necessary, we assume that

$$
\nu_{P_{i}}\left(\gamma-\alpha_{i}\right)>0 \quad(1 \leqq i \leqq s) .
$$

We have $\alpha_{i}^{\prime}=0$, since $\gamma^{\prime}=0$ and $\nu_{P_{i}}\left(t_{i}^{\prime}\right)>0$; here t_{i} is a prime element in P_{i}. This proves $y^{\prime}=0$.

§ 5. Case $g=0,1$.

Let Ω be a universal extension of k.
Proposition 2. Suppose that K is free from parametric singularities, and that g is either 0 or 1 . Then, there exists a differential subfield k^{*} of Ω finitely generated over k which satisfies (iii) and the following two conditions:
(v) K and k^{*} are linearly disjoint over k;
(vi) $k^{*}(K)$ is generated by its constants over k^{*}.

Proof. Case $g=0$. We have $K=k(t)$ with

$$
\begin{equation*}
t^{\prime}=a+b t+c t^{2} ; a, b, c \in k \tag{1}
\end{equation*}
$$

for some element t of K (cf. [3, Theorem F]). Let us set $k_{1}^{*}=k$ and define k_{r}^{*} inductively as follows: If the set of all solutions of (1) in k_{r}^{*} is infinite, then we set $k_{r+1}^{*}=k_{r}^{*}$. In the contrary case let us take a generic point u of the general solution of (1) over $k_{r}^{*}(t)$ in Ω. If the field of constants of $k_{r}^{*}(u)$ is k_{0}, then we set $k_{r+1}^{*}=k_{r}^{*}(u)$. In the contrary case, there exist in Ω infinitely many solutions of (1) which are algebraic over k_{r}^{*} : For we consider the rational function field $\Sigma(u)$ over Σ, where Σ is the algebraic closure of k_{r}^{*} : Let γ be a transcendental constant of $\Sigma(u)$ over Σ, and let P be a prime divisor of $\Sigma(u)$ such that $\nu_{P}\left(\gamma-\gamma_{1}\right)>0$ and $\nu_{P}(u-\xi)>0$ for some constant γ_{1} of Σ and some element ξ of Σ : We have $\nu_{P}\left(u^{\prime}-\xi^{\prime}\right)>0$, and ξ is a solution of (1): Since such prime divisors exist infinitely, it follows that Σ contains infinitely many solutions of (1). We take a solution v of (1) in Σ which is different from any solution of (1) in k_{r}^{*}, and set $k_{r+1}^{*}=k_{r}^{*}(v)$. Thus, k_{r}^{*} is defined inductively. Let us set $k^{*}=k_{1}^{*}$. Then, k^{*} satisfies (iii), (v), and it contains three solutions t_{1}, t_{2}, t_{3} of (1) different from each other. The crossratio

$$
\left\{\left(t-t_{1}\right)\left(t_{3}-t_{2}\right)\right\} /\left\{\left(t-t_{2}\right)\left(t_{3}-t_{1}\right)\right\}
$$

is a transcendental constant c^{*} over k^{*}. We have $k^{*}(t)=k^{*}\left(c^{*}\right)$.
Case $g=1$. Since $g=1$, we have $K=k(u, v)$ with

$$
v^{2}=R(u)=u\left(u^{2}-1\right)(u-\delta) ; \delta \in k ; \delta^{2} \neq 0,1
$$

for some elements u and v of K. By our assumption K is free from parametric singularities, if $u^{\prime}=0$, then $\delta^{\prime}=0$ and $v^{\prime}=0$ (cf. [3, p. 452]). In this case we can set $k^{*}=k$. Suppose that $u^{\prime} \neq 0$. Then, $\delta^{\prime}=0, K=k\left(u, u^{\prime}\right)$ and

$$
\begin{equation*}
\left(u^{\prime}\right)^{2}=\lambda R(u) ; \lambda \in k ; \lambda \neq 0 \tag{2}
\end{equation*}
$$

(cf. [3, p. 451]). If K contains a transcendental constant over k, then there exists in k a nonsingular solution of (2) (cf. [3, p. 453]). In this case we set $k^{*}=k$. In the contrary case let us take a generic point ξ of the general solution over K in Ω : We set $k^{*}=k\left(\xi, \xi^{\prime}\right)$: The field of constants of k^{*} is
the same as that of $k\left(u, u^{\prime}\right)$, that is k_{0}. In any case k^{*} satisfies (iii), (v), and it contains a nonsingular solution ξ of (2). Let us define a new differentiation signed by the dot in $k^{*}\left(u, u^{\prime}\right)$ by

$$
\dot{x}=\mu x^{\prime}, \quad \mu^{2}=\lambda^{-1}(2 / \delta),
$$

and set

$$
w=2 \xi /(1+\xi), \quad z=2 u /(1+u)
$$

Then, $k^{*}\left(u, u^{\prime}\right)=k^{*}(z, \dot{z}), w \in k^{*}$, and w, z satisfy

$$
(\dot{y})^{2} / 4=S(y)=y(1-y)\left(1-\kappa^{2} y\right), \quad \ddot{y}=2 S_{y}, \quad \kappa^{2}=(1+\grave{o}) /(2 \delta)
$$

We define two elements a and b of $k^{*}(z, \dot{z})$ by

$$
\begin{aligned}
a= & \left\{z(1-w)\left(1-\kappa^{2} w\right)-\dot{z} \dot{w} / 2+w(1-z)\left(1-\kappa^{2} z\right)\right\} /\left(1-\kappa^{2} z w\right)^{2} \\
& 2 b=\{C(w, z) \dot{z}-C(z, w) \dot{w}\} /\left(1-\kappa^{2} z w\right)^{3}
\end{aligned}
$$

where

$$
\begin{aligned}
C(w, z)= & \kappa^{2} z\left\{w(1-z)\left(1-\kappa^{2} z\right)+z(1-w)\left(1-\kappa^{2} w\right)\right\} \\
& -\left(1-\kappa^{2} z w\right)^{2}+2 S(z) / z
\end{aligned}
$$

Then, $a=b=0, b^{2}=S(a)$ and

$$
\begin{aligned}
z= & \left\{a(1-w)\left(1-\kappa^{2} w\right)+b \dot{w}+w(1-a)\left(1-\kappa^{2} a\right)\right\} /\left(1-\kappa^{2} a w\right)^{2} \\
& \dot{z}=\{C(a, w) \dot{w}+2 C(w, a) b\} /\left(1-\kappa^{2} a w\right)^{3}
\end{aligned}
$$

(cf. [3, pp. 452-453], [4]). We have

$$
k^{*}\left(u, u^{\prime}\right)=k^{*}(z, z)=k^{*}(a, b)
$$

References

[1] A. Hurwitz, Ueber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann., 41 (1892), 401-442.
[2] K. Iwasawa, Theory of algebraic function fields (in Japanese), Iwanami Shoten, Tokyo, 1952.
[3] M. Matsuda, Algebraic differential equations of the first order free from parametric singularities from the differential-algebraic standpoint, J. Math. Soc. Japan, 30 (1978), 447-455.
[4] M. Matsuda, Lectures on algebraic differential equations of the first order, preprint.
[5] K. Nishioka, Transcendental constants over the coefficient fields in differential elliptic function fields, Pacific J. Math., 74 (1978), 191-197.
[6] P. Painlevé, Leçons sur la théorie analytique des équations différentielles, professées à Stockholm, Paris, 1897.
[7] M. Rosenlicht, The nonminimality of the differential closure, Pacific J.Math., 52 (1974), 529-537.
[8] L. Schlesinger, Einführung in die Theorie der gewöhnlichen Differentialgleichungen auf functionentheorisher Grundlage, Walter de Gruyter, 1922.

Keiji Nishioka
Department of Mathematics
Osaka University
Toyonaka, Osaka
560 Japan

