Algebraic differential equations of Clairaut type from the differential-algebraic standpoint

By Keiji NISHIOKA

(Received Jan. 17, 1978) (Revised Aug. 19, 1978)

§0. Introduction.

Let k be an algebraically closed ordinary differential field of characteristic zero, and K be a one-dimensional algebraic function field over k. We assume that K is a differential extension of k.

The following definition is due to M. Matsuda [3]: K is said to be *free* from parametric singularities if $\nu_P(t') \ge 0$ for each prime divisor P of K, where ν_P is the normalized valuation belonging to P and t is a prime element in P.

Let F be an algebraically irreducible element of $k\{y\}$ of the first order, and K(F; k) be the associated differential algebraic function field with F over k. Then, M. Matsuda [3] obtained the following theorem: Suppose that K(F; k) is free from parametric singularities. Then, it is of Riccati type over k if its genus g is zero; it is a differential elliptic function field over k if g is one.

We say that K is of Clairaut type over k if the following two conditions are satisfied:

(i) k contains an element x such that x'=1;

(ii) There exists an element y of K such that K=k(y, y') with G(y-xy', y')=0, where G is an irreducible polynomial over the field of constants of k.

Under the assumption (i), K is of Clairaut type if and only if $K = k(K_0)$, where K_0 is the field of constants of K (cf. § 1).

M. Matsuda [4, pp. 5-6] expected that the following statement is true: Suppose that K(F; k) is free from parametric singularities. Then, there exists a differential extension field k^* of k which satisfies the following two conditions:

(iii) The field of constants of k^* is the same as that of k;

(iv) $K(F; k^*)$ is of Clairaut type over k^* .

This statement is true in the case where g=0, 1. It is derived from known results (cf. § 5). We shall prove that it is true in the case where g>1 and that k itself can be taken as k^* in this case if k satisfies the condition (i).

THEOREM. Suppose that K is free from parametric singularities and the genus g is greater than one. Then, $K=k(K_0)$.

In the special case where K is a hyperelliptic function field over k, this theorem is known (Painlevé [6, p. 68], Schlesinger [8, p. 118]).

By Briot-Bouquet's theorem, k contains a nonconstant element if K(F; k) is free from parametric singularities and if its genus is greater than one (Matsuda [3]).

In §2 we shall state some known results on Weierstrass points (cf. Hurwitz [1], Iwasawa [2]).

The author wishes to express his sincere gratitude to Dr. M. Matsuda for his kind advices. He simplified the author's original proof of Theorem by introducing Lemma in § 3.

§1. Clairaut type.

PROPOSITION 1. Under the assumption (i), K is of Clairaut type if and only if $K=k(K_0)$.

PROOF. Suppose that the condition (ii) is satisfied by K. Set a=y-xy'and b=y'. Then, the differentiation of G(a, b)=0 gives us

$$y''(G_b - G_a) = 0.$$

Here, the term in the parenthesis does not vanish, since its degree in y' is less than that of G. Hence, y''=0. We have K=k(a, b) and a'=b'=0. Conversely suppose that $K=k(K_0)$. We show that K_0 is a one-dimensional algebraic function field over k_0 the field of constants of k. Since $K_0 \neq k_0$, there exists a transcendental constant a of K over k_0 . It is transcendental over k. Any constant c of K is algebraic over $k_0(a)$, because it is algebraic over k(a). We have

$$[k_0(a, c): k_0(a)] \leq [K: k(a)].$$

Hence, $[K_0: k_0(a)] \leq [K: k(a)]$. We have $K_0 = k_0(a, b)$ for some element b of K_0 , and $K = k(K_0) = k(a, b)$. Let us set y = a + bx. Then, y' = b and K = k(y, y').

§2. Weierstrass points.

Let k be an algebraically closed field of characteristic zero and K be a one-dimensional algebraic function field over k of genus g. For a divisor A of K we shall define a vector space over k:

 $L(A) = \{x \in K; (x)A \text{ is an integral divisor}\} \cup \{0\};$

here (x) is the principal divisor of x in K different from zero. Its dimension is finite and denoted by l(A). Let P be a prime divisor of K. Then, there exist g positive integers n_1, \dots, n_g such that $L(P^n) \neq L(P^{n-1})$ for any positive integer n different from n_1, \dots, n_g . The prime divisor P is called a Weierstrass point of K if the set $\{n_1, \dots, n_g\}$ is not $\{1, 2, \dots, g\}$. If g is greater than one, the set of Weierstrass points of K is finite and its cardinarity N satisfies

$$N \geq 2g + 2$$

The equality holds if and only if K is a hyperelliptic function field over k.

§3. Hurwitz's formula.

Let M be a subfield of K containing k properly. Then, it is a one-dimensional algebraic function field over k. We have Hurwitz's formula:

$$2g = \sum (e_{P'} - 1) + 2eg_0 - 2(e - 1);$$

here e = [K: M]; g_0 denotes the genus of M; P' runs over prime divisor of M; $e_{P'}$ denotes the ramification exponent of P' with respect to M.

LEMMA. Suppose that P_i and u_i $(1 \le i \le r)$ are prime divisors and elements of K respectively such that for each i we have $\nu_{P_i}(u_i) < 0$ and $\nu_Q(u_i) \ge 0$ if Q is a prime divisor different from P_i . Take $k(u_1, \dots, u_r)$ as M. Assume that g > 0and $r \ge 2g + 2$. Then, either K = M or e = 2 and $g_0 = 0$.

PROOF. Let Q_i be the restriction of P_i to M. Then, $\nu_{Q_i}(u_i) < 0$, where ν_{Q_i} is the normalized valuation belonging to Q_i . For any prime divisor P of K different from P_i , P is not an extension of Q_i because of $\nu_P(u_i) \ge 0$. Hence $Q_i = P_i^e$. We have

$$\sum_{P'} (e_{P'}-1) \geq r(e-1).$$

By Hurwitz's formula

$$g \geqq (e-1)g + eg_0$$
 ,

since $r \ge 2g+2$. Therefore, either e=1 or e=2 and $g_0=0$, because g>0.

§4. Proof of Theorem.

Let $\{P_1, \dots, P_r\}$ be the set of all Weierstrass points of K. Then,

$$r \geq 2g + 2$$
.

Set $P=P_1$. There exists a positive integer n such that

$$l(P^{n-1}) \leq l(P^n) = l(P^{n+1}).$$

Take an element u of $L(P^n)$ which does not belong to $L(P^{n-1})$. Let Q be any prime divisor of K different from P. By our assumption that K is free

from parametric singularities, we have $\nu_Q(t'_Q) \ge 0$, where t_Q is a prime element in Q. Hence, $\nu_Q(u') \ge 0$, because $\nu_Q(u) \ge 0$. We shall prove that $\nu_P(t'_P) > 0$. To the contrary, let us suppose that $\nu_P(t'_P)=0$. Then u' is contained in $L(P^{n+1})$ but not in $L(P^n)$. This contradicts our assumption on n. Hence, $\nu_P(t'_P) > 0$. There is a positive integer m such that $m \le g$ and $l(P^m)=2$. Let $\{1, u\}$ be a basis of $L(P^m)$. Then,

$$u' = a + bu$$

with a, b in k. For any P_i different from P, there is an element ε_i of k such that

 $\nu_{P_i}(u-\varepsilon_i)>0$.

We have

$$\varepsilon_i' = a + b \varepsilon_i$$
.

since $\nu_{P_i}(t'_{P_i}) > 0$. Set $v = u - \varepsilon_2$. Then, $(v) = EP^{-m}$, where E is an integral divisor of degree m. By inequalities

$$m \leq g < 2g + 1 \leq r - 1$$

there is an index *i* such that $\nu_{P_i}(v)=0$. Take such an index *i*. We have $\varepsilon_i \neq \varepsilon_2$. Set

$$w = (u - \varepsilon_2)/(\varepsilon_i - \varepsilon_2)$$

Then, it is an element of $L(P^m)$ being a transcendental constant over k. Thus, for every Weierstrass point P_i , there exists a transcendental constant w_i over k such that for each i we have $\nu_{P_i}(w_i) < 0$ and $\nu_Q(w_i) \ge 0$ if Q is a prime divisor different from P_i . Let M denote $k(w_1, \dots, w_r)$. By Lemma, either K=M or e=2 and $g_0=0$. Suppose that we are in the latter case. Then, r=2g+2. Let k_0 and M_0 denote the fields of constants of k and M respectively. Then, $M=k(M_0)$ and M_0 is $k_0(w_1, \dots, w_r)$ being a one-dimensional algebraic function field over k_0 . The genus of M_0 is zero, since it is not greater than g_0 (cf. Rosenlicht [7, Lemma 3]). Hence, there exists a transcendental constant γ over k such that $M_0=k_0(\gamma)$. We have $M=k(\gamma)$. There exists an element y of K such that K=M(y) and

$$y^2 = \prod(\gamma - \alpha_i)$$
 $(1 \leq i \leq s)$,

where s=2g+1 or 2g+2; α_i is in k and $\alpha_i \neq \alpha_j$ $(i \neq j)$. Changing indices i if necessary, we assume that

$$\nu_{P_i}(\gamma - \alpha_i) > 0$$
 $(1 \leq i \leq s)$.

We have $\alpha'_i=0$, since $\gamma'=0$ and $\nu_{P_i}(t'_i)>0$; here t_i is a prime element in P_i . This proves $\gamma'=0$. §5. Case g=0, 1.

Let Ω be a universal extension of k.

PROPOSITION 2. Suppose that K is free from parametric singularities, and that g is either 0 or 1. Then, there exists a differential subfield k^* of Ω finitely generated over k which satisfies (iii) and the following two conditions:

(v) K and k^* are linearly disjoint over k;

(vi) $k^*(K)$ is generated by its constants over k^* .

PROOF. Case g=0. We have K=k(t) with

(1) $t'=a+bt+ct^2; a, b, c \in k$

for some element t of K (cf. [3, Theorem F]). Let us set $k_1^* = k$ and define k_r^* inductively as follows: If the set of all solutions of (1) in k_r^* is infinite, then we set $k_{r+1}^* = k_r^*$. In the contrary case let us take a generic point u of the general solution of (1) over $k_r^*(t)$ in Ω . If the field of constants of $k_r^*(u)$ is k_0 , then we set $k_{r+1}^* = k_r^*(u)$. In the contrary case, there exist in Ω infinitely many solutions of (1) which are algebraic over k_r^* : For we consider the rational function field $\Sigma(u)$ over Σ , where Σ is the algebraic closure of k_r^* : Let γ be a transcendental constant of $\Sigma(u)$ over Σ , and let P be a prime divisor of $\Sigma(u)$ such that $\nu_P(\gamma-\gamma_1)>0$ and $\nu_P(u-\xi)>0$ for some constant γ_1 of Σ and some element ξ of Σ : We have $\nu_P(u'-\xi')>0$, and ξ is a solution of (1): Since such prime divisors exist infinitely, it follows that Σ contains infinitely many solutions of (1). We take a solution v of (1) in Σ which is different from any solution of (1) in k_r^* , and set $k_{r+1}^* = k_r^*(v)$. Thus, k_r^* is defined inductively. Let us set $k^* = k_4^*$. Then, k^* satisfies (iii), (v), and it contains three solutions t_1 , t_2 , t_3 of (1) different from each other. The crossratio

$$\{(t-t_1)(t_3-t_2)\} / \{(t-t_2)(t_3-t_1)\}$$

is a transcendental constant c^* over k^* . We have $k^*(t) = k^*(c^*)$.

Case g=1. Since g=1, we have K=k(u, v) with

$$v^2 = R(u) = u(u^2 - 1)(u - \delta); \ \delta \in k; \ \delta^2 \neq 0, 1$$

for some elements u and v of K. By our assumption K is free from parametric singularities, if u'=0, then $\delta'=0$ and v'=0 (cf. [3, p. 452]). In this case we can set $k^*=k$. Suppose that $u'\neq 0$. Then, $\delta'=0$, K=k(u, u') and

(2)
$$(u')^2 = \lambda R(u); \ \lambda \in k; \ \lambda \neq 0$$

(cf. [3, p. 451]). If K contains a transcendental constant over k, then there exists in k a nonsingular solution of (2) (cf. [3, p. 453]). In this case we set $k^*=k$. In the contrary case let us take a generic point ξ of the general solution over K in Ω : We set $k^*=k(\xi, \xi')$: The field of constants of k^* is

the same as that of k(u, u'), that is k_0 . In any case k^* satisfies (iii), (v), and it contains a nonsingular solution ξ of (2). Let us define a new differentiation signed by the dot in $k^*(u, u')$ by

$$\dot{x}=\mu x', \quad \mu^2=\lambda^{-1}(2/\delta),$$

and set

$$w=2\xi/(1+\xi)$$
, $z=2u/(1+u)$.

Then, $k^*(u, u') = k^*(z, \dot{z}), w \in k^*$, and w, z satisfy

$$(\dot{y})^2/4 = S(y) = y(1-y)(1-\kappa^2 y)$$
, $\ddot{y} = 2S_y$, $\kappa^2 = (1+\delta)/(2\delta)$.

We define two elements a and b of $k^*(z, \dot{z})$ by

$$\begin{split} a &= \left\{ z(1-w)(1-\kappa^2 w) - \dot{z} \dot{w}/2 + w(1-z)(1-\kappa^2 z) \right\} / (1-\kappa^2 z w)^2 ,\\ 2b &= \left\{ C(w, z) \dot{z} - C(z, w) \dot{w} \right\} / (1-\kappa^2 z w)^3 , \end{split}$$

where

$$C(w, z) = \kappa^2 z \{ w(1-z)(1-\kappa^2 z) + z(1-w)(1-\kappa^2 w) \}$$
$$-(1-\kappa^2 z w)^2 + 2S(z)/z .$$

Then, a=b=0, $b^2=S(a)$ and

$$z = \{a(1-w)(1-\kappa^2 w) + b\dot{w} + w(1-a)(1-\kappa^2 a)\} / (1-\kappa^2 a w)^2,$$
$$\dot{z} = \{C(a, w)\dot{w} + 2C(w, a)b\} / (1-\kappa^2 a w)^3$$

(cf. [3, pp. 452-453], [4]). We have

$$k^{*}(u, u') = k^{*}(z, z) = k^{*}(a, b)$$
.

References

- [1] A. Hurwitz, Ueber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann., 41 (1892), 401-442.
- [2] K. Iwasawa, Theory of algebraic function fields (in Japanese), Iwanami Shoten, Tokyo, 1952.
- [3] M. Matsuda, Algebraic differential equations of the first order free from parametric singularities from the differential-algebraic standpoint, J. Math. Soc. Japan, 30 (1978), 447-455.
- [4] M. Matsuda, Lectures on algebraic differential equations of the first order, preprint.
- [5] K. Nishioka, Transcendental constants over the coefficient fields in differential elliptic function fields, Pacific J. Math., 74 (1978), 191-197.
- [6] P. Painlevé, Leçons sur la théorie analytique des équations différentielles, professées à Stockholm, Paris, 1897.
- [7] M. Rosenlicht, The nonminimality of the differential closure, Pacific J.Math., 52 (1974), 529-537.

Algebraic differential equations

[8] L. Schlesinger, Einführung in die Theorie der gewöhnlichen Differentialgleichungen auf functionentheorisher Grundlage, Walter de Gruyter, 1922.

> Keiji NISHIOKA Department of Mathematics Osaka University Toyonaka, Osaka 560 Japan