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Introduction

In the present paper we offer a formal treatment of some simplest classes
of the asymptotic methods. Our result is summarized in Theorem 4.5 below.
It tells when a given element admits an asymptotic expansion, and also shows
the canonical way to derive its expansion.

In many branches of mathematics, various asymptotic methods provide
powerful tools, often exhibiting a strong resemblance. This leads one to a
suspicion that there be a common structure in these methods of analysis. For
instance, in many classes of asymptotic analysis, an asymptotic expansion is
just one into homogeneous parts, as a formal series expansion. Thus, for
such classes, a speculation may be done that there be an action of the multi-
plicative group $R_{+}$ of positive real numbers. We actually observe such $R_{+}-$

actions exist in several standard examples as discussed in \S 7.
We thus begin by introducing the notion of a differentiable $R_{+}$-action $G$

in a multiplicatively convex Fr\’echet algebra $A$ (see \S 1). However, most
formal constructions below will be carried out without referring to the algebra
structure of $A$ . The assumption of $A$ being an algebra is mainly to reflect
some important cases. The differentiable $R_{+}$-action in $A$ leads us to define a
scale $\{B^{\rho} ; \rho\in R\}$ of Fr\’echet spaces, and the spaces $\Gamma^{\mu},$ $\mu\in C$, of G-homogeneous
elements (see \S 2). We then construct the analogues of the spaces of formal
series, $C^{\mu}$ , from $\Gamma^{\mu}’ s$ . We can thus introduce the notions of developable ele-
ments and their developments, as generalizations of elements admitting asymp-
totic expansions and their expansions. The spaces $D^{\mu}$ of developable elements
are shown to be Fr\’echet spaces. The mappings $\alpha^{\mu}$ , assigning to each element
in $D^{\mu}$ its development in $C^{\mu}$ , are then continuous (see \S 3). Sufficient condi-
tions on surjectivity of $\alpha^{\mu}$ will be discussed in \S 5. Of course, in such a
general situation, $\alpha^{\mu}$ are not necessarily surjective (see Example 7.5). The
spaces $D^{\mu}$ are characterized in terms of the boundary behavior of the differen-
tiable $R_{+}$-action. This permits us to write down the mappings $\alpha^{\mu}$ as a variant
of the Taylor expansion (see \S 4, Theorem 4.5 in particular). We supplement
in \S 6 the cases when $A$ is a Fr\’echet Montel space.
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There are asymptotic classes of practical importance where the groups
$R_{+}^{2}$ or $R_{+}^{3}$ act. Such classes will be discussed elsewhere.

We add a notational remark here. We write $C$ and $R$, respectively, for
the fields of complex and real numbers. $Z$ stands for the ring of rational
integers. We write $R^{+}$ and $Z^{+}$ , respectively, for the sets of non-negative reals
and non-negative integers. Thus, the superscripted $+means$ the non-negative
part. On the other hand, we show by the subscripted $+the$ positive part. In
particular, $R_{+}$ is the multiplicative group of positive reals. Embedding $R_{+}$ in
$R$, we see that the closure of $R_{+}$ in $R$ coincides with $R^{+}$ . In this sense, we
may write $R_{+}=R^{+-}$ denoting the closure operation.

During the course of preparation, we had many valuable discussions with
T. Ichinose. Without such conversations, this article would not take the
present form. In particular, he introduced to us the work of E. A. Michael.

\S 1. A differentiable $R_{+}$-action.

Let $A$ be a locally multiplicatively convex topological algebra over $C$.
Namely, $A$ is topologized by a system of semi-norms $\Sigma$ such that the (separa-
tely continuous) multiplication in $A$ satisfies the following relation:

(1.1) $p(f\cdot g)\leqq p(f)p(g)$ , $f,$ $g\in A,$ $ p\in\Sigma$ .

We assume for simplicity that $A$ is unitary, $1\in A$ . For more details about
locally multiplicatively convex topological algebras, we refer to Michael [7].

DEFINITION 1.1. Let $X$ be a locally convex topological vector space over
$C$. A family of linear operators $G=\{G_{t} ; t\in R_{+}\}$ in $X$ is called a differentiable
$R_{+}$-action in $X$ if the following three conditions are fulfilled:

(1.2) For any compact set $K$ in $R_{+}$ and any continuous semi-norm $P$ on $X$

there exists a continuous semi-norm $q$ on $X$ such that $p(G_{t}f)\leqq q(f)$

for any $f\in X$ and $t\in K$.
(1.3) For any $f\in X,$ $G_{t}f$ is strongly differentiable in $t$ .
(1.4) For any $t,$ $s\in R_{+},$ $G_{t}G_{s}=G_{s}G_{t}=G_{ts}$ and $G_{1}=id$ .

This definition is suPplemented by the following when $A$ is a locally mul-
tiplicatively convex topological algebra.

DEFINITION 1.2. A family of linear operators $G=\{G_{t} ; t\in R_{+}\}$ in $A$ is called
a differentiable $R_{+}$ -action in $A$ if $G$ satisfies (1.2), (1.3), (1.4) (X replaced by
$A)_{f}$ and

(1.5) For any $t\in R_{+},$ $G_{t}$ is multiplicative, that is, $G_{t}(f\cdot g)=G_{t}f\cdot G_{t}g$ for
any $f,$ $g\in A$ and $G_{t}1=1$ .
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From now on we assume that $A$ is a multiplicatively convex Fr\’echet
algebra, that is, a locally multiplicatively convex topological algebra whose
underlying linear space is Fr\’echet. We fix a system of semi-norms $\{p_{n} ; n\in Z^{+}\}$

in $A$ satisfying (1.1) and $p_{n}(f)\leqq p_{n+1}(f)$ for any $f\in A$ . Some of the discussions
below are actually done under weaker assumptions on $A$ . In particular, a few
results hold good without the algebra structure of $A$ . Note that in Definition
1.2 the requirement (1.2) is in fact a consequence of (1.3) and (1.4) since $A$ is
Fr\’echet (see Komura [6], Proposition 1.1). In this respect, we Prepare the
following

DEFINITION 1.3. A differentiable $R_{+}$-action $G$ in $A$ is said to be strong if
$G$ satisfies, instead of (1.2), the condition:

(1.6) For any $t_{0}\in R_{+}$ and $n\in Z^{+}$ there exist $m\in Z^{+}$ and $c\in R_{+}$ such
that $p_{n}(G_{t}f)\leqq cp_{m}(f)$ for any $f\in A$ and $t\geqq t_{0}$ .

PROPOSITION 1.4. Let $t\in R_{+}$ and set

(1.7) $Ef=G_{\iota^{-1}}(t\frac{d}{dt}G_{t}f)$ , $f\in A$ .

Then $E$ is independent of $t$ and a continuous linear operatOr in A. Furthermore,
we have

(1.8) $EG_{r}=G_{r}E$ for all $r\in R_{+},$

(1.9) $E(f\cdot g)=Ef\cdot g+f\cdot Eg$ , $f,$ $g\in A$ .
PROOF. Let $H_{s}=G_{t}$ for $t=e^{s},$ $s\in R$. Then $H=\{H_{s} ; s\in R\}$ is a locally

equi-continuous group of linear operators in $A$ . This is a consequence of
(1.2), (1.3) and (1.4). Let $E_{1}$ be the infinitesimal generator of $H$. Then $E_{1}$ is
a closed linear operator (Komura [6], Proposition 1.4.) and dePned on all of

$A$ , thus is continuous. Since $\frac{d}{ds}H_{s}=t\frac{d}{dt}G_{t}$ for $t=e^{s}$, we have $E=E_{1}$ . (1.8)

is then immediate and (1.9) follows from (1.7) and (1.5). Q. E. D.
DEFINITION 1.5. We call $E$ the Euler Peld of the differentiable $R_{+}$-action $G$ .
Let $\mu\in C$. $f\in A$ is called G-homogeneous of degree $\mu$ if

(1.10) $G_{t}f=t^{\mu}f$ for all $t\in R_{+}$ .
PROPOSITION 1.6. (Euler). Let $f\in A$ . $f$ is G-homogeneous of degree $\mu$ if

and only if
(1.11) $Ef=\mu f$ .

PROOF. (1.7) and (1.10) immediately imply (1.11). On the other hand, we

have $EG_{t}f=\mu G_{t}f$ from (1.11) via (1.8). Now by (1.7), $t\frac{d}{dt}G_{t}f=\mu G_{t}f$, or
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equivalently, $\frac{d}{dt}(i^{-\mu}G_{t}f)=0$ . Q. E. D.

\S 2. The asymptotic class.

Let $G$ be a differentiable $R_{+}$-action in a multiplicatively convex Fr\’echet
algebra $A$ . For $\rho\in R$, we denote by $B^{\rho}$ the totality of $f\in A$ such that for
any $a\in R_{+}$ the set

(2.1) $\{t^{-\rho}G_{t}f;t\geqq a\}$ is bounded in $A$ .

By virtue of (1.2), it is enough to assume (2.1) only for $a=1$ .
PROPOSITION 2.1. Let $\rho,$

$\sigma$ be any real numbers. Then

(2.2) $B^{\rho}$ is a Fr\’echet space.

(2.3) If $\rho\leqq\sigma_{f}$ then $B^{\rho}\subset B^{\sigma}$ with the continuous injection.

(2.4) The maPping $M_{\rho,\sigma}$ : $B^{\rho}\times B^{\sigma}\ni(f, g)\rightarrow f\cdot g\in B^{\rho+\sigma}$ is bilinear continuous.

PROOF. A system of semi-norms in $B^{\rho}$ is given by

(2.5) $p_{n}^{\rho}(f)=\sup_{t\geq 1}p_{n}(t^{-\rho}G_{t}f)$ , $n\in Z^{+},$ $f\in B^{\rho}$ .

We prove the completeness $B^{\rho}$ . Let $f_{j},$ $j\in Z^{+}$ , be a Cauchy sequence in $B^{\rho}$ .
Then since $p_{n}(f_{j}-f_{k})\leqq p_{n}^{\rho}(f_{j}-f_{k})$ for any $n\in Z^{+},$ $\{f_{j}\}$ is a Cauchy sequence
in $A$ . Let $f$ be the limit of $\{f_{j}\}$ in $A$ . It suffices to show that $f\in B^{\rho}$ , for
$B^{\rho}$ and its eventual completion are both embedded in $A$ . Take any $n\in Z^{+}$

and set
$\phi_{j}(t)=p_{n}(t^{-\rho}G_{t}f_{j})$ , $j\in Z^{+}$ .

Since, by the triangle inequality,

$|\phi_{j}(t)-\phi_{k}(t)|\leqq p_{n}^{\rho}(f_{j}-f_{k})$ ,

we see that $\{\phi_{j}(t)\}$ is a Cauchy sequence in $ C_{b}[1, +\infty$ ), the Banach space of
uniformly bounded continuous functions on $t\geqq 1$ . Thus, there is a $\phi(t)\in$

$C_{b}[1, +\infty)$ such that $\phi_{j}(t)\rightarrow\phi(t)$ in $ C_{b}[1, +\infty$ ). On the other hand, for each $t\geqq 1$ ,
$t^{-\rho}G_{t}f_{j}\rightarrow t^{-\rho}G_{t}f$ in $A$ . Therefore, $\phi(t)=p_{n}(t^{-\rho}G_{t}f)$ and $f\in B^{\rho}$ . Other asser-
tions of the proposition are obvious. Q. E. D.

In view of (2.3), we write $B^{-\infty}=\bigcap_{\rho\in R}B^{\rho}$ .

PROPOSITION 2.2. $B^{-\infty}$ is a multiplicatively convex Fr\’echet algebra.
PROOF. That $B^{-\infty}$ is a Fr\’echet space is obvious. A system of semi-norms

in $B^{-\infty}$ is given by

(2.6) $p_{n}^{-m}(f)$ , $n,$ $m\in Z^{+},$ $f\in B^{-\infty}$ ,
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by virtue of (2.3) and (2.5). Then

$p_{n}^{-m}(f\cdot g)\leqq p_{n}^{-m/2}(f)p_{n}^{-m/2}(g)\leqq p_{n}^{-m}(f)p_{n}^{-m}(g)$

because of (1.5). Q. E. D.
PROPOSITION 2.3. If the differentiable $R_{+}$ -action is strong, then $B^{\rho}=A$ for

$\rho\geqq 0$ .
PROOF. Obvious from (1.6) and (2.1). Q. E. D.
PROPOSITION 2.4. $f\in B^{\rho}$ if and only $iJ^{-}$

(2.7) $p_{n}((\frac{d}{dt})^{k}G_{t}f)\leqq C_{n,k}i^{\rho-k}$ , $t\geqq 1$ ,

for all $n,$ $k\in Z^{+}$ with some Positive constants $C_{n.k}$ .
PROOF. (2.7) for $k=0$ is just the requirement (2.1). We observe that the

Euler field $E$ preserves $B^{\rho}$ by virtue of (1.8). By the induction, we have

(2.8) $(\frac{d}{dt})^{k}G_{t}f=t^{-k}\sum_{j=1}^{k}a_{j}^{k}E^{j}G_{t}f$ , $f\in A,$ $k\in Z^{+}\backslash 0$ ,

(2.9) $a_{k}^{k}=1$ , $a_{1}^{k}=(-1)^{k-1}(k-1)$ !, $a_{j}^{k}=-(k-1)a_{j}^{k-1}+a_{j-1}^{k-1}$

for $j=2,$ $\cdots$ , $k-1$ .
(2.7) now follows from (2.8). Q. E. D.

Let us denote by $\Gamma^{\mu}$ the totality of G-homogeneous elements of degree $\mu$ .
Let $M_{\mu\cdot\nu}$ be the mapping, defined by restricting the multiplication in $A$ , as (2.4).

PROPOSITION 2.5. Let $\mu,$ $\nu$ be any complex numbers. Then

(2.10) $\Gamma^{\mu}$ is a closed subspace of $A$ and of $B^{\rho},$ $\rho>{\rm Re}\mu$ .

(2.11) $\Gamma^{\mu}\cap\Gamma^{\nu}=\{0\}$ if $\mu\neq\nu$ .
(2.12) $M_{\mu.\nu}$ is bilinear continuous from $\Gamma^{\mu}\times\Gamma$“ to $\Gamma^{\mu+\nu}$ .

PROOF. Obvious. Q. E. D.
PROPOSITION 2.6. $\Gamma^{0}\neq\{0\}$ . If $G$ is strong, $\Gamma^{\mu}=\{0\}$ for ${\rm Re}\mu>0$.
PROOF. $1\in\Gamma^{0}$ by (1.5). Let $f\in\Gamma^{\mu}$ for ${\rm Re}\mu>0$ . Then $G_{t}f=t^{\mu}f$, while, bv

(1.6), $p_{n}(G_{t}f)\leqq cp_{m}(f)$ for $t\geqq 1$ if $G$ is strong. The last assertion also follows
from the equi-continuity of $G_{t},$ $t\geqq 1$ (see Yosida [11], Chapter [IX]).

Q. E. D.
We end this section with a few words on the differentiable $R_{+}$-action in

$B^{-\infty}$. Namely, we have
PROPOSITION 2.7. The differentiable $R_{+}$ -action $G$ induces in $B^{-\infty}$ a diJfferen-

tiable $R_{+}$-action which is strong.
PROOF. That $G$ acts as a differentiable $R_{+}$-action in $B^{-\infty}$ is obvious. We

verify that it is strong. Let $r\in R_{+}$ and $f\in B^{-\infty}$ . Then, for $n,$ $m\in Z^{+}$ .
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$p_{n}^{-m}(G_{r}f)=\sup_{t\geqq 1}t^{m}p_{n}(G_{t}G_{r}f)$

$=r^{-m}\sup_{t\geqq 1}(rt)^{m}P_{n}(G_{tr}f)$ .
Thus,

(2.13) $p_{n}^{-m}(G_{r}f)\leqq r^{-m}p_{n}^{-m}(f)$ for $r\geqq 1$ . Q. E. D.

By the construction of $B^{-\infty}$, it is clear that for any $\mu\in C,$ $\mu-E$ is injective
in $B^{-\infty}$. We can say a little more.

PROPOSITION 2.8. For any $\mu\in C,$ $\mu-E$ has a continuous inverse in $B^{-\infty}$ .
PROOF. Let $f\in B^{-\infty}$ . We solve the equation

(2.14) $\mu g-Eg=f$

in $B^{-\infty}$ . By (1.7), we then have

$\mu G_{s}g-s\frac{d}{ds}G_{s}g=G_{s}f$ ,

or, equivalently,

$\frac{d}{ds}(s^{-\mu}G_{s}g)=-s^{-\mu-1}G_{s}f$ .

Hence, (2.14) is solved by

(2.15) $g=\int_{1}^{\infty}s^{-\mu}G_{s}fds/s$ .

Now we verify that $g\in B^{-\infty}$ . For any $t\in R_{+}$ ,

$G_{t}g=\int_{1}^{\infty}s^{-\mu}G_{st}fds/s$ .

Therefore, for $m\in Z^{+},$ $ m>-{\rm Re}\mu$ , and $n\in Z^{+}$ ,

$p_{n}(G_{t}g)\leqq\int_{1}^{\infty}s^{-\rho}p_{n}(G_{st}f)ds/s$ , $\rho={\rm Re}\mu$ ,

$\leqq p_{n}^{-m}(f)\int_{1}^{\infty}s^{-\rho}(st)^{-m}ds/s$

$\leqq t^{-m}(\rho+m)^{-1}p_{n}^{-m}(f)$ .
That is,

(2.16) $p_{n}^{-m}(g)\leqq(m+{\rm Re}\mu)^{-1}p_{n}^{-m}(f)$

for $m+{\rm Re}\mu>0$ . Q. E. D.
COROLLARY 2.9. Let $P(E)$ be any non-trivial pOlynOmial in $E$ with complex

coefficients. Then $P(E)$ is an isomorphism of $B^{-\infty}$ .
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\S 3. The formal asymptotic class.

We keep the assumptions and notations of \S 2. Let $\mu\in C$, and set

(3.1) $C^{\mu}=\prod_{J\in z+}\Gamma^{\mu-J}$ .

Since $\Gamma^{\mu-j}$ are Fr\’echet spaces (see (2.10)), $C^{\mu}$ carries a natural Fr\’echet structure
(see, $e$ . $g.$ , Treves [9], p. 94). A system of semi-norms in $C^{\mu}$ is given by

(3.2) $q_{n,N}^{\prime A}(f_{*})=\sum_{j=0}^{N}p_{n}^{\rho-j}(f_{j})$ , $n_{f}N\in Z^{+},$ $ p={\rm Re}\mu$ ,

for $f_{*}=(f_{0}, \cdots , f_{jf} )\in C^{\mu}$ . Furthermore, $C^{\mu}$ is canonically identified with a
closed subspace of $C^{\mu+1}$ .

Let $f_{*}=(f_{0}, \cdots , f_{j}, )\in C^{\mu},$ $g_{*}=(g_{0}, \cdots , g_{k}, )\in C^{v},$ $f_{j}\in\Gamma^{\mu-j}$, $g_{k}\in\Gamma^{\nu-k}$ ,
$j,$ $k\in Z^{+}$ . We define

(3.3) $N_{\mu\cdot\nu}(f_{*}, g_{*})=(h_{0}, ’ h_{t}, )$

by

(3.4)
$h_{t}=\sum_{j+k=t}f_{j}\cdot g_{k}$ , $l\in Z^{+}$ .

Then $N_{\mu,\nu}$ is a continuous bilinear mapping from $C^{\mu}\times C^{\nu}$ to $C^{\mu+\nu}$ . Summariz-
ing, we have shown

PROPOSITION 3.1. Let $\mu,$
$\nu$ be any complex numbers. Then

(3.5) $C^{\mu}$ is a Fr\’echet space.

(3.6) $C^{\mu}$ is a closed subspace of $C^{\mu+1}$ .

(3.7) $N_{\mu,\nu}$ is bilinear continuous from $C^{\mu}\times C^{\nu}$ to $C^{\mu+\nu}$ .
(3.8) $C^{\mu}\cap C^{\nu}=\{0\}$ if $\mu-\nu\not\in Z$ .

PROOF. (3.8) follows from (3.1) and (2.11). Q. E. D.
COROLLARY 3.2. Let $C$ be the strict inductive limit of $C^{j},$ $j\in Z$. Then $C$ is

a locally multiplicatively convex toPological algebra. $N_{j,k},$ $j_{f}k\in Z$, is the restric-
tion to $C^{f}\times C^{k}$ of the multiPlication of $C$.

PROOF. Immediate from the definition of the strict inductive limit (see,
$e$ . $g.$ , Treves [9], Chapter 13). Q. E. D.

DEFINITION 3.3. An element $f\in A$ is said to be developable if there is an
element $f_{*}=(f_{0_{f}}\ldots , f_{jf} )\in C^{\mu}$ such that for any $N\in Z^{+}$

(3.9) $f-\sum_{J<N}f_{j}\in B^{\rho- N}$ , $\rho={\rm Re}\mu$ .

This $f_{*}$ is called a development of $f$.
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By virtue of (2.11), if $f$ is developable, then its development $f_{*}$ is uniquely
determined.

Let us denote by $D^{\mu}$ the totality of developable elements $f$ with their
developments $f_{*}=(f_{0}, \cdots , f_{j}, )\in C^{\mu}$ . Let $\alpha_{N}^{\mu}$ , $N\in Z^{+}$ , be the mapping

(3.10) $\alpha_{N}^{\rho r}$ : $D^{\mu}\ni f\rightarrow(f_{0}, \cdots , f_{N-1}, f-\sum_{j<N}f_{j})\in\prod_{j<N}\Gamma^{\mu-j}\times B^{\rho-N}$ ,

where $\rho={\rm Re}\mu$ . We decompose $\alpha_{N}^{\mu}=\pi_{N}^{u}\times\epsilon_{N}^{\mu},$ $\pi_{N}^{\mu}$ and $\epsilon_{N}^{\mu}$ being respectively
the projections to the first product space and to the last factor. We equip
$D^{\mu}$ with the coarsest topology rendering all $\alpha_{N}^{\mu}$ continuous. Then $D^{\mu}$ is a
Fr\’echet space, continuously embedded in $B^{\rho},$ $\rho={\rm Re}\mu$ . A system of semi-norms
in $D^{\mu}$ is given by

(3.11) $q_{n.N}^{\mu}(\pi_{N}^{\mu}(f))$ and $p_{n}^{\beta-N}(\epsilon_{N}^{\mu}(f))$ , $f\in D^{\mu}$ ,

$n,$ $N\in Z^{+},$ $\rho={\rm Re}\mu$ .
Furthermore, $D^{\mu}$ is a closed subspace of $D^{\mu+1}$ . Let $M_{\mu}$ , . be the mapping de-
fined by the restriction of the multiplication in $A$ . Then it is immediately
seen that $M_{\mu\nu}$ is continuous from $D^{\mu}\times D^{\nu}$ to $D^{\mu+\nu}$. Thus, we have shown

PROPOSITION 3.4. Let $\mu,$
$\nu$ be any complex numbers. Then

(3.12) $D^{\mu}$ is a Fr\’echet sPace.

(3.13) $D^{\mu}$ is a closed subsPace of $D^{\mu+1}$ .
(3.14) $M_{\mu}$ , . is continuous bilinear from $D^{\mu}\times D^{\nu}$ to $D^{\mu+\nu}$ .
(3.15) $D^{\mu}\cap D^{\nu}=B^{-\infty}$ if $\mu-\nu\not\in Z$ .

PROOF. (3.15) follows from (3.8) and (3.9). Q. E. D.
COROLLARY 3.5. For any $k\in Z_{f}^{+}$

(3.16)
$D^{\mu}=\sum_{J<k}\Gamma^{\mu-j}+D^{\mu- k}$

as a topOlOgjcal direct sum, and $\sum_{J<k}\Gamma^{\mu-j}$ and $D^{\mu- k}$ are closed subspaces of $D^{\mu}$ .
PROOF. The mapping $\epsilon_{k}^{\prime 1}$ is continuous from $D^{\mu}$ onto $D^{\mu-k}$ and $(\epsilon_{k}^{\mu})^{2}=\epsilon_{k}^{\alpha}’$ .

Furthermore, $\sum_{j<k}\Gamma^{\mu-j}=(id-\epsilon_{\dot{n}}^{u})D^{\mu}$ . Q. E. D.

Since $B^{-\infty}=\bigcap_{k\in Z+}D_{f}^{\mu-k}B^{-\infty}$ is a closed subspace of $D^{\mu}$ . However, in general,

$B^{-\infty}$ has no topological complement in $D^{\mu}$ (see Examples in \S 7).
Note that if $\Gamma^{\mu}=\{0\}$ , then $D^{\mu}=D^{\mu- j}$ for some $j\in Z^{+}$ if $\Gamma^{\mu- j}\neq\{0\}$ and

$\Gamma^{\mu-k}=\{0\}$ for $k<j$. If such $j$ does not exist, then $D^{\mu}=B^{-\infty}$ .
DEFINITION 3.6. We denote by $\alpha^{\mu}$ the mapping which assigns to each

element of $D^{\mu}$ its development in $C^{\mu}$ .
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Then we have the following
PROPOSITION 3.7. Let $\mu,$

$\nu$ be any complex numbers. Then

(3.17) $\alpha^{\mu}$ is continuous linear from $D^{\mu}$ to $C^{\mu}$ .
(3.18) $\alpha^{\mu}\circ M_{\mu,\nu}=N_{\mu\nu^{\circ}}$ ( $\alpha^{\mu}$ xa“).

(3.19) ker $\alpha^{\mu}=B^{-\infty}$

PROOF. Obvious. Q. E. D.
PROPOSITION 3.8. Let $D$ be the strict inductive limit of $D^{j},$ $j\in Z$. Then $D$

is a locally multiplicatively convex topOlOgical algebra. $M_{f.k},$ $j,$ $k\in Z_{f}$ in (3.14),
is the restriction to $D^{j}\times D^{k}$ of the multiPlication of D. Furthermore, $B^{-\infty}$ is a
closed ideal of D. There is a continuous algebra homomorPhism $\alpha$ from $D$ to $C$,
whose restriction to $D^{j}$ coincides with $\alpha^{j}$, and ker $\alpha=B^{-\infty}$ .

PROOF. Obvious from the definitions. Q. E. D.

\S 4. A characterization of the spaces $D^{\mu}$ .
We keep the previous assumptions and notations. In particular, recall that

$R^{+}$ is the set of non-negative reals so that $R^{+}$ is the closure of $R_{+}$ in $R$ .
For $k\in Z^{+}$ , we denote by $\mathcal{E}^{k}(R^{+} ; A)$ the totality of A-valued functions

$u(s)$ defined on $R_{+}$ , strongly continuously differentiable in $R_{+}$ up to k-times

such that $\lim_{s\rightarrow 0}(\frac{d}{ds})^{j}u(s)$ exist for $j=0,$ $\cdots$ , $k$ . In other words, $u(s)\in \mathcal{E}^{k}(R^{+} ; A)$

if and only if $u(s)$ is the restriction to $R_{+}$ of an A-valued function defined in
a neighborhood of $R^{+}$ , strongly continuously differentiable up to k-times. We
set

$\mathcal{E}^{\infty}(R^{+} ; A)=\bigcap_{k\in z+}\mathcal{E}^{k}(R^{+} ; A)$ .

$\mathcal{E}^{\infty}(R^{+} ; A)$ is naturally a multiplicatively convex Fr\’echet algebra.
Namely, (1.1) is fulfilled by the system $\{p_{n.k.l} ; n, k, l\in Z^{+}\}$ of semi-norms

in $\mathcal{E}^{\infty}(R^{+} ; A)$ . Here we set, for $u\in \mathcal{E}^{\infty}(R^{+} ; A)$ ,

(4.1) $p_{n,k,l}(u)=^{\tau_{0\leqq}}\Psi\sup_{s\leq t,0\leqq j\leqq k}2^{k+j}p_{n}((\frac{d}{ds})^{j}u(s))$ .

Note that for any $r\in R_{+}$ and $u\in \mathcal{E}^{\infty}(R^{+} ; A)$

(4.2) $(G_{r}u)(s)=G_{\gamma}u(s)$

dePnes a differentiable $R_{+}$-action in $\mathcal{E}^{\infty}(R^{+} ; A)$ , commuting with the differen-
tiation and multiplication by $s$ .

Let $A_{j}=A,$ $j\in Z^{+}$ , be a countable family of copies of $A$ . We set $A^{\sim}$

$=\prod_{j\in Z+}A_{j}$ with the product topology. Then $A^{\sim}$ is a Fr\’echet space. For
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$u\in \mathcal{E}^{\infty}(R^{+} ; A)$ , let $\tau(u)\in A^{\sim}$ by

(4.3) $\tau(u)=(u_{0}, \cdots u_{j}, )$ ,

$u_{j}=\lim_{s\rightarrow 0}(\frac{d}{ds})^{j}u(s)/j!$ , $j\in Z^{+}$ .

PROPOSITION 4.1. $\tau$ is continuous linear from $\mathcal{E}^{\infty}(R^{+} ; A)$ onto $A^{\sim}$ .
PROOF. That $\tau$ is continuous linear is obvious. We verify the surjectivity

of $\tau$. Let $\phi\in C^{\infty}(R)$ such that $\phi(s)=1$ for $s<1/2$ and $\phi(s)=0$ for $s>1$ . Let
us set

$C_{j.k}=\sup_{0\leqq s\leqq 1}|(\frac{d}{ds})^{k}(s^{j}\phi(s))|$ , $j,$ $k\in Z^{+}$ .

Let $a_{j}\in A,$ $j\in Z^{+}$ , be given. We can choose by the diagonal procedure an
increasing sequence $\{r_{j} ; j\in Z^{+}\}$ of positive numbers such that for each $n$ ,
$k\in Z^{+}$ ,

(4.4) $\sum_{j\geqq k}(r_{j})^{k-j}C_{j,k}p_{n}(a_{j})$ converges.

Let
$u(s)=\sum_{j\in z+}\phi(sr_{j})s^{j}a_{j}$ .

Then, for each $n,$ $k\in Z^{+}$ ,

$p_{n}(\sum_{j\geqq k}(\frac{d}{ds})^{k}(\phi(sr_{j})s^{j})a_{j})$

$\leqq\sum_{j\geqq k}(r_{j})^{k-f}C_{j,k}p_{n}(a_{j})$

for all $s\geqq 0$ . Thus, by (4.4), we see $u(s)\in \mathcal{E}^{\infty}(R^{+} ; A)$ . Furthermore,

$(\frac{d}{ds})^{j}u(s)|_{s=0}=j!a_{j}$ . Q. E. D.

For each $\mu\in C$, let us denote by $F^{\mu}$ the totality of $s^{\mu}G_{s}^{-1}f,$ $f\in A$ , such that
$s^{\mu}G_{s}^{-1}f\in \mathcal{E}^{\infty}(R^{+} ; A)$ .

PROPOSITION 4.2. For each $\mu\in C,$ $F^{\mu}$ is a closed subspace of $\mathcal{E}^{\infty}(R^{+} ; A)$ .
PROOF. Let $u_{j}(s)=s^{\mu}G_{s^{-1}}f_{j}\in F^{\mu},$ $j\in Z^{+}$ . Assume $u_{j}(s)$ converge to a $u(s)$

in $\mathcal{E}^{\infty}(R^{+} ; A)$ . Then since $u_{j}(s)$ is a Cauchy sequence in $\mathcal{E}^{\infty}(R^{+} ; A),$ $f_{f}$ is a
Cauchy sequence in $B^{\rho},$ $\rho={\rm Re}\mu$ , in view of (4.1) and (2.5). Thus, there is an
$f\in B^{\rho}$ to which $f_{j}$ converges in $B^{\rho}$ and so in $A$ . In $particular_{f}$ for each $s\in R_{+}$ ,
$u(s)=s^{\mu}G_{s}^{-1}f$ and $s^{\mu}G_{s^{-1}}f\in \mathcal{E}^{\infty}(R^{+} ; A)$ . Q. E. D.

Note that $u(s)\in F^{\mu}$ if and only if $u(s)\in \mathcal{E}^{\infty}(R^{+} ; A)$ and

$G_{r}u(s)=r^{\mu}u(sr^{-1})$

for all $r\in R_{+}$ . This also proves Proposition 4.2.
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Now we study behaviors of $G_{s}^{-1}f,$ $f\in A$ , in $\mathcal{E}^{\infty}(R^{+} ; A)$ .
LEMMA 4.3. Set

(4.5) $u(s;f)=G_{s^{-1}}f$ , $f\in A$ .

Then for $k\in Z^{+}\backslash 0$, we have
$k$

(4.6) $(\frac{d}{ds})^{k}u(s ; f)=\sum_{j=1}b_{j}^{k}s^{-j-k}(\frac{d}{dr})^{j}G_{r}f|_{r=s^{-1}}$ ,

(4.7) $b_{k}^{k}=(-1)^{k},$ $b_{1}^{k}=(-1)^{k}k$ !, $b_{j}^{k}=-\{(k+j-1)b_{j}^{k-1}+b_{j-1}^{k-1}\}$ ,

$2\leqq j\leqq k-1$ .
Furthermore,

(4.8) $u(s;af+bg)=au(s;f)+bu(s;g)$ , $a,$ $b\in C$, $f,$ $g\in A$ .
(4.9) $u(s;f\cdot g)=u(s;f)\cdot u(s;g)$ .

(4.10 $G_{r}u(s;f)=u(s;G_{r}f)=u(sr^{-1} ; f)$ , $r\in R_{+}$ .
PROOF. Obvious. Q. E. D.
COROLLARY 4.4. Let $f\in B^{\rho-j},$ $j\in Z^{+}$ . Then

(4.11) $p_{n}((\frac{d}{ds})^{k}(s^{\rho}u(s;f))\leqq C_{n,k}s^{j-k}$

for $0<s\leqq 1,$ $n,$ $k\in Z^{+},$ $C_{n,k}$ being Positive constants independent of $s$ .
PROOF. This follows immediately from (4.6) and (2.7). Q. E. D.
In particular, if $j\geqq 1,$ $s^{\rho}u(s;f)$ vanishes to the $(j-1)$-th order at $s=0$

when $f\in B^{\rho-j}$ . Thus, $s^{\mu}u(s;f)\in \mathcal{E}^{j-1}(R^{+} ; A)$ if $f\in B^{\rho-j},$ $\rho={\rm Re}\mu$ . On the
other hand, if $f\in\Gamma^{\mu-j},$ $j\in Z^{+}$ , then $s^{\mu}u(s;f)=s^{j}u(1;f)$ , so $s^{\mu}u(s;f)\in \mathcal{E}^{\infty}(R^{+} ; A)$ .

Now we are ready to state and prove our main result. For each $\mu\in C$,
we define a mapping $i^{\mu}$ from $D^{\mu}$ to $F^{\mu}$ by

(4.12) $i^{\mu}(f)=s^{\mu}G_{s^{-1}}f$ , $f\in D^{\mu}$ .
Thus, $i^{\mu}(f)=s^{\mu}u(s;f)$ in the above notation. Recall that $D^{\mu}$ is the space of
developable elements.

THEOREM 4.5. $i^{\mu}$ is an isomorphism of $D^{\mu}$ onto $F^{\mu}$ . Furthermore,

(4.13) $\alpha^{\mu}=\tau\circ i^{\mu}$ .
PROOF. Let $f\in D^{\mu}$ . Then $\alpha^{\mu}(f)=(f_{0}, \cdots , f_{jf} )\in C^{\mu},$ $f_{j}\in\Gamma^{\mu-j}$, and for any

$N\in Z^{+},$
$ f-\sum_{j<N}f_{j}\in B_{f}^{\rho-N}\rho={\rm Re}\mu$ . But since

$s^{\mu}u(s ; f)=\sum_{J<N}s^{j}u(1 ; f)+s^{\mu}u(Sjf-\sum_{!<N}f_{j})$

and $s^{\mu}u(s;f-\sum_{j<N}f_{j})\in \mathcal{E}^{N-1}(R^{+} ; A)$ , we have
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$s^{\mu}u(s;f)\in \mathcal{E}^{\infty}(R^{+} ; A)$ .
Thus, $i^{\mu}$ is defined on all of $D^{\mu}$ . $i^{\mu}$ is clearly injective. $i^{\mu}$ is continuous in
view of (4.1) and (3.11). (4.13) is then immediate. Now let $f\in A$ be such that
$s^{\mu}u(s;f)\in \mathcal{E}^{\infty}(R^{+} ; A)$ . Let us set

(4.14) $f_{j}=(\frac{d}{ds})^{j}(s^{\mu}u(s;f))|_{s=0}/j!_{f}$ $j\in Z^{+}$ ,

and for any $N\in Z^{+}$

$v_{N}(s;f)=s^{\mu}u(s;f)-\sum_{J<N}s^{j}f_{j}$ .
Then, since $s^{\mu}u(s;f)\in \mathcal{E}^{\infty}(R^{+} ; A)$ ,

(4.15) $p_{n}((\frac{d}{ds})^{k}v_{N}(s;f))\leqq C_{n,N,k}$ min $(1, s^{N-k})$ , $0<s\leqq 1$ ,

for any $n,$ $k\in Z^{+},$ $C_{n.N.k}$ some positive constants. On the other hand, since
$G_{r},$ $r\in R_{+}$ , define a differentiable $R_{+}$-action in $S^{\infty}(R^{+} ; A)$ , commuting with the
differentiation and multiplication by $s$ , and since $G_{r}s^{\mu}u(s;f)=r^{\mu}(sr^{-1})^{\mu}u(sr^{-1} ; f)$ ,

we have
$G_{r}v_{N}(s;f)=G_{\tau}s^{\mu}u(s;f)-\sum_{J<N}s^{j}G_{r}f_{j}$

$=s^{\mu}u(s;G_{r}f)-\sum_{j<N}r^{\mu-j}s^{j}f_{j}$ .

Hence, we have $G_{r}f_{j}=r^{\mu-j}f_{j}$ , or $f_{j}\in\Gamma^{\mu-j}$ . Furthermore,

$v_{N}(s;f)=s^{\mu}u(s;f-\sum_{j<N}f_{j})f$

and (4.15) now implies

$p_{n}(G_{t}(f-\sum_{J<N}f_{j}))\leqq C_{n,N}t^{\rho-N}$ , $t\geqq 1$ , $\rho={\rm Re}\mu$

for $n\in Z^{+}$ with some positive constants $C_{n.N}$ . That is,

$f-\sum_{J<N}f_{j}\in B^{\rho- N}$ ,

thus completing the proof. Q. E. D.
The above theorem gives a characterization of developable elements. How-

ever, in practice, to check the conditions $s^{\mu}G_{s^{-1}}f\in \mathcal{E}^{\infty}(R^{+} ; A)$ for $f\in A$ is
essentially equivalent to give the development of $f$. Also compare with Wasow
[10], Chapter III, \S 9, p. 39.

\S 5. The surjectivity of the mapping $\alpha^{\mu}$ .
We keep the notations and assumptions of the previous sections. We first

note the following observation.
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PROPOSITION 5.1. $\alpha^{\mu}$ is suriectite if and only if $ F^{\mu}+ker\tau$ is a closed sub-
space of $\mathcal{E}^{\infty}(R^{+} ; A)$ .

PROOF. If $\alpha^{\mu}$ is surjective, then $\tau(F^{\mu})=C^{\mu}$ by Theorem 4.5. Since $C^{\mu}$ is
a closed subspace of $A^{\sim},$ $\tau^{-1}(C^{\mu})=F^{\mu}+ker\tau$ is closed. On the other hand, if
$ F^{\mu}+ker\tau$ is closed, then $C(F^{\mu}+ker\tau)=\tau^{-1}(C\tau(F^{\mu}))$ is open. $Thus_{f}C\tau(F^{\mu})$ is
open since $\tau$ is an open mapping. The set $N\in ZU_{+}\prod_{J<N}\Gamma^{\mu-j}$ being dense in $C^{\mu}$ ,

$\tau(F^{\mu})=C_{f}^{\mu}$ proving the surjectivity of $\alpha^{\mu}$ in view of (4.13). Q. E. D.
The trouble here is that we have few informations on closedness of $F^{\mu}$

$+ker\tau$ . In fact, it happens that even if $F^{\mu}\cap ker\tau=\{0\},$ $ F^{\mu}+ker\tau$ is not a
closed subspace of $\mathcal{E}^{\infty}(R^{+} ; A)$ .

For practical purposes, it is thus desirable and often more interesting to
give conditions assuring a direct proof of the surjectivity of the mapping $\alpha^{\mu}$ .

DEFINITION 5.2. An element $e\in A$ is called a convergence factor for the
differentiable $R_{+}$-action $G$ if the following two conditions are fulfilled:

(5.1) There is a positive number $\kappa$ such that

$p_{n}(G_{t}e)\leqq C_{n}\min(1_{f}t‘‘)$

for all $n\in Z^{+}$ and $t\in R_{+}$ with some constants $C_{n}>0$ .

(5.2) $p_{n}(1-G_{t}e)\leqq C_{n.N}t^{-N}$

for all $N,$ $n\in Z^{+},$ $t\geqq 1$ , with some constants $C_{n,N}>0$.
The requirement (5.1) implies that $G_{\tau}e\in B^{0}$ for any $r\in R_{+}$ . (5.2) means

that $1-e\in B^{-\infty}$, whence $1-G_{r}e\in B^{-\infty}$ for any $r\in R_{+}$ . Furthermore note that
it follows from (5.1)

(5.3) $p_{n}(t^{-\mathcal{K}}G_{t}e)\leqq C_{n}$

for all $n\in Z^{+}$ and $t\in R_{+}$ .
The following proposition shows that there are cases without convergence

factors.
PROPOSITION 5.3. Let $G$ be a strong differentiable $R_{+}$-action. If there is a

convergence factor $e$ for $G$ , then $B^{-\infty}$ is dense in $A$ .
PROOF. Let $f\in A$ . Then $f-G_{r^{-1}}e\cdot f\in B^{-\infty}$ for any $r\geqq 1$ . By (5.3), $G_{\tau^{-1}}e\cdot f$

$\rightarrow 0$ as $ r\rightarrow+\infty$ . Q. E. D.
PROPOSITION 5.4. Let $e\in A$ satisfy (5.3). Then for any $f\in B^{p}$ and $r\geqq 1$ , we

have

(5.4) $p_{n}^{0+\kappa}(r^{\kappa}G_{r}^{-1}e\cdot f)\leqq C_{n}p_{n}^{\rho}(f)f$ $n\in Z^{+}$ .
Here $p_{n}^{\rho},$ $p_{n}^{o+\kappa}$ are semi-norms defined by (2.5).

PROOF. By (1.1) and (1.5), we have
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$p_{n}^{\rho\perp\kappa}(r^{K}G_{r^{-1}}e\cdot f)=\sup_{t\geqq 1}t^{-\rho-\kappa}p_{n}(G_{t}(\mu G_{r^{-1}}e\cdot f))$

$\leqq\sup_{t\geqq 1}t^{-\rho- K}p_{n}(r^{\kappa}G_{tr^{-1}}e)p_{n}(G_{t}f)$

$\leqq\sup_{i\geq 1}p_{n}(t^{-\kappa}r^{\kappa}G_{tr^{-1}}e)\sup_{t\geqq}p_{n}(t^{-\rho}G_{t}f)$

$\leqq C_{n}p_{n}^{\rho}(f)$ . Q. E. D.

The following proposition gives a sufficient condition for the surjectivity
of $\alpha^{\mu}$ . Its proof is a variant of classical ones (cf. \S 7).

PROPOSITION 5.5. If there is a convergence factor $e$ for the differentiable
$R_{+}$-action $G$ , then, for any $\mu\in C$, the mapping $\alpha^{\mu}$ is surjective.

PROOF. Let $f_{j}\in\Gamma^{\mu-j},$ $j\in Z^{+}$ be given. We show that there is an $f\in D^{\mu}$

such that for any $N\in Z^{+}$

(5.5) $f-\sum_{J<N}f_{j}\in B^{\rho- N}$ , $\rho={\rm Re}\mu$ .

In view of Proposition 5.4, we can, by applying the diagonal $process_{f}$ choose
an increasing sequence $r_{j}\geqq 1,$ $j\in Z^{+}$ , such that for any $m\in Z^{+}$ the set

(5.6) $\{2^{j}G_{r_{j^{-1}}}e\cdot f_{j} ; j\geqq m\}$ is bounded in $B^{\rho-m+\kappa}$ .

Let $w_{j}=G_{r_{j^{-1}}}e,$ $j\in Z^{+}$ , and $f=\sum_{j\in z+}w_{j}\cdot f_{j}$ . Then since

$f=\sum_{J<M+1}w_{j}\cdot f_{j}+\sum_{j\geqq M+1}w_{j}\cdot f_{j}$ ,

and if we take $M=the$ integral part of $\kappa$, then by (5.6) and (5.1), we see $f\in B^{p}$ .
Furthermore, for any $N\in Z^{+}$ , since

$f-\sum_{!<N}f_{j}=\sum_{!<N}(w_{j}-1)\cdot f_{j}+\sum_{j=N}^{N+M}w_{j}\cdot f_{j}+\sum_{j\geqq N+M+1}w_{j}\cdot f_{j}$ ,

(5.5) holds good in view of (5.6), (5.1) and (5.2). Q. E. D.
Essentially the same proof gives the following
COROLLARY 5.6. Assume that there be a convergence factor for the differen-

tiable $R_{+}$ -action. Let $f_{j}\in B^{m_{J_{f}}}j\in Z^{+}$ , be given. Here $m_{j}$ is a decreasing sequence
tending to $-\infty$ . Then there is an $f\in B^{m_{0}}$ such that for any $N\in Z^{+}$

$f-\sum_{!<N}f_{j}\in B^{m_{N}}$ .

This $f$ is uniquely determined up to the terms in $B^{-\infty}$ .
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\S 6. The case when $A$ is a Montel space.

In practical cases, $A$ is often a Montel space. We supplement the pro-
perties of the spaces $B^{\rho},$ $\Gamma_{f}^{\mu}C^{\mu},$ $D^{\mu}$ under the additional hypothesis that $A$

is a Montel space, keeping the assumptions and notations of the previous
section.

The following proposition is then most fundamental.
PROPOSITION 6.1. Let $\rho,$

$\sigma$ be any real numbers with $\rho<\sigma$ . Let $I_{\sigma,p}$ :
$B^{\rho}\rightarrow B^{\sigma}$ be the inclusion maPping (2.3). If $A$ is a Montel space, then $I_{\sigma,\rho}$ maps
every bounded set in $B^{\rho}$ to a relatively compact set in $B^{\sigma}$ .

PROOF. Let $W$ be a bounded set in $B^{p}$ . Thus, there is a sequence $C_{n}$ ,
$n\in Z_{f}^{+}$ of positive constants such that

(6.1) $p_{n}(t^{-\rho}G_{t}f)\leqq C_{n}$ , $f\in W$, $t\geqq 1$ .
Fix an $n\in Z^{+}$ and set

(6.2) $\phi_{f}(t)=p_{n}(t^{-\sigma}G_{t}f)$ , $f\in W$ .
$\phi_{f}(t)$ are continuous functions of $t\geqq 1$ , and $\phi_{f}(t)\geqq 0$ . Since $\rho<\sigma,$ $(6.1)$ implies

(6.3) $|\phi_{f}(t)|\leqq C_{n}$ , $t\geqq 1,$ $f\in W$ .
Furthermore, for any $\epsilon>0$, there exists a $t_{0}\geqq 1$ such that

(6.4) $|\phi_{f}(t)|<\epsilon$ , $t\geqq t_{0},$ $f\in W$ .

On the other hand, it follows from (2.8) that

$\frac{d}{dt}(t^{-\sigma}G_{t}f)=-\sigma t^{-\sigma-1}G_{t}f+t^{-\sigma-1}G_{t}Ef$ ,

whence

$p_{n}(\frac{d}{dt}(t^{-\sigma}G_{t}f))\leqq C_{n}^{\prime}$ , $t\geqq 1,$ $f\in W$ ,

with a constant independent of $t$ and $f$. $Thus_{f}$ for $t\geqq 1,$ $t+h\geqq 1$ ,

(6.5) $|\phi_{f}(t+h)-\phi_{f}(t)|\leqq\int_{t}^{t+h}p_{n}(\frac{d}{ds}(s^{-\sigma}G_{s}f))ds$

$\leqq C_{n}^{\prime}|h|$

for all $f\in W$. (6.3), (6.4) and (6.5) imply, by the Ascoli-Arzela theorem, that
$\phi_{f}(t)_{f}f\in W$, form a relatively compact set in the Banach space $ C_{b}[1, +\infty$ ) (see

the proof of Proposition 2.1). Since $A$ is Montel, and $W$ is bounded in $A$ ,
there is a sequence $f_{j}\in W$ converging in $A$ to a $g\in A$ . We may assume
$\phi_{f_{j}}(t)$ converge to a $\phi(t)$ in $ C_{b}[1, +\infty$ ). Then $\phi(t)=\phi_{g}(t)$ or $g\in B^{\sigma}$ . Similarly
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we see $g\in B^{\sigma}$
‘ for any $\sigma^{\prime}>\rho$ . Now the same argument applied to $\{f_{j}-g\}$

implies that $\{f_{j}-g\}$ converges in $B^{\sigma}$ . Q. E. D.
COROLLARY 6.2. Let $A$ be Montel. For any bounded set $W$ in $B^{\rho},$ $\rho\in R$ ,

the topOlOgies induced on $W$ from all $B^{\sigma},$ $\sigma>\rho$ , and from A coincide.
PROOF. Immediate from Proposition 6.1. Q. E. D.
COROLLARY 6.3. If $A$ is Montel, then so is $B^{-\infty}$ .
PROOF. Immediate from (2.6) and Proposition 6.1. Q. E. D.
COROLLARY 6.4. If $A$ is a Montel space, then so is $\Gamma^{\mu}$ for each $\mu\in C$.
PROOF. Since $\Gamma^{\mu}$ is a closed subspace of $A,$ $B^{\rho},$ $\rho>{\rm Re}\mu$ , the topologies

induced by all $B^{\rho},$ $\rho>{\rm Re}\mu$ , to $\Gamma^{\mu}$ coincide. The corollary now follows from
Proposition 6. 1. Q. E. D.

COROLLARY 6.5. If $A$ is a Montel space, then so is $C^{\mu}$ for each $\mu\in C$.
PROOF. $C^{\mu}$ is the product of Montel spaces $\Gamma^{\mu- j}$ . Q. E. D.
COROLLARY 6.6. If $A$ is a Montel spacef then so is $D^{\mu}$ for each $\mu\in C$.
PROOF. This follows from Proposition 6.1, Corollary 6.4 and (3.11).

Q. E. D.
COROLLARY 6.7. If $A$ is a Montel sPace, then so are the $sPacesC$ and $D$ .
PROOF. $C$ and $D$ are strict inductive limits of Montel spaces. Q. E. D.

\S 7. Some standard examples.

We illustrate our theory by five standard examples. The mappings $\alpha^{\mu}$

are surjective except in the last example. All examples also fall in the situa-
tion of \S 6.

EXAMPLE 7.1. (The classical Taylor expansion). Let $A=\mathcal{E}(R^{n})$ , the ring
of C-valued $C^{\infty}$ functions on the n-dimensional Euclid space $R^{n}$ . We equip
$\mathcal{E}(R^{n})$ with its standard multiplicatively convex Fr\’echet algebra structure (see

Michael [7], Proposition 2.4, h), p. 48). Namely, (1.1) is satisfied by the fol-
lowing system of semi-norms in $\mathcal{E}(R^{n})$ :

(7.1) $p_{j.k}(f)=\sup_{|x|\xi ja|\leqq k}2|+k|\partial_{x}^{\alpha}f(x)|$

for $f\in \mathcal{E}(R^{n})_{f}j,$ $k\in Z^{+}$ . Here $\alpha=(\alpha_{1}, \cdots , \alpha_{n})\in(Z^{+})^{n},$ $|\alpha|=\alpha_{1}+\cdots+\alpha_{n},$ $\partial_{x}^{\alpha}$

$=\partial^{|\alpha|}/(\partial x_{1})^{\alpha_{1}}\cdots(\partial x_{n})^{\alpha_{n}}$ and $|x|=(x_{1}^{2}+\cdots+x_{n}^{2})^{1/2}$ for $x=(x_{1}, \cdots , x_{n})\in R^{n}$ .
The multiplicative group $R_{+}$ acts on $R^{n}$ by

$g_{t}$ : $R^{n}\ni x\rightarrow t^{-1}x\in R^{n}$ , $t\in R_{+}$ .
For $f\in \mathcal{E}(R^{n})$ , we set

$(G_{t}f)(x)=f(g_{t}x)$ , $t\in R_{+}$ .
Then $G=\{G_{t} ; t\in R_{+}\}$ is immediately seen to be a differentiable $R_{+}$-action in
$\mathcal{E}(R^{n})$ . Furthermore, $G$ is strong. Thus, $B^{\rho}=\mathcal{E}(R^{n})$ for $\rho\geqq 0$ . For $\rho<0$, we
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have $f\in B^{\rho}$ if and only if

$|(\partial_{x}^{\alpha}f)(x)|\leqq C$ min $(1, |x|^{-\rho-|\alpha|})$

for $|x|\leqq l,$ $|\alpha|\leqq m,$ $I,$ $m\in Z^{+},$ $C$ being some positive constant depending only
on 1, $m$ . Therefore,

$B^{-j}=$ { $f\in \mathcal{E}(R^{n});(\partial_{x}^{\alpha}f)(O)=0$ for $|\alpha|\leqq j-1$ }

for $j\in Z^{+}$ and $B^{-j+\theta}=B^{-j}$ for $0\leqq\theta<1$ . $B^{-\infty}$ is thus the set of flat functions
at $x=0$ .

Furthermore, $\Gamma^{\mu}=\{0\}$ for non-real $\mu$ and also for $\mu>0$ . If $j\in Z^{+}$ , then

$\Gamma^{-j}=the$ totality of homogeneous polynomials of degree $j$ ,

and $\Gamma^{-j+\theta}=\{0\}$ when $0<\theta<1$ . For $j\in Z^{+}$ ,

$C^{-j}=\{\sum_{k=j}^{\infty}\sum_{|\alpha|=k}a_{\alpha}x^{\alpha}$ ; $a_{\alpha}\in C\}$

with the topology of simple convergence of the coefficients (see Treves [9],

Example III, p. 91.) Here $x^{a}=x_{1}^{\alpha_{1}}\cdots x_{n}^{\alpha_{n}}$ for $\alpha=(\alpha_{1}, \cdots , \alpha_{n})\in(Z^{+})^{n}$ and $x$

$=(x_{1}, \cdots , x_{n})\in R^{n}$ . If $\theta\in C_{f}0<{\rm Re}\theta<1$ or ${\rm Im}\theta\neq 0,$ $C^{-j-\theta}=\{0\}$ .
Every element of $\mathcal{E}(R^{n})$ is developable, and thus, $D^{-j}=B^{-j},$ $j\in Z^{+}$ . Other

$D^{\mu}$ spaces reduce to $B^{-\infty}$ . Developments of elements in $D^{-j}$ are nothing but
their classical Taylor expansions at the origin. The mappings $\alpha^{-j}$ are surjec-
tive. There is no convergence factor for the differentiable $R_{+}$ -action (in the
sense of Definition 5.2). The surjectivity of $\alpha^{-j}$ can be proved in an analogous
way to the proof of Proposition 4.1. For another proof, see Treves ([9],

Theorem 38.1). A proof is also given at the end of the following Example
7.2. The space $B^{-\infty}$ has no topological complement in $D^{-j}$ (see Glaeser [3],

IV. Prolongement de Whitney et prolongateur, p. 130).

EXAMPLE 7.2. Let $A^{\wedge}=\mathcal{E}(R^{n}\backslash \{0\})$ , the ring of C-valued $C^{\infty}$ functions on
$R^{n}\backslash \{0\}$ with the standard multiplicatively convex Fr\’echet algebra structure.
Namely, (1.1) is satisfied by the following system of semi-norms in $\mathcal{E}(R^{n}\backslash \{0\})$ :

$p_{j,k}(f)=\sup_{1j^{-1}\leqq|x|\leqq\alpha|\leqq k}2^{|a|+k}|\partial_{x}^{a}f(x)|$

for $f\in \mathcal{E}(R^{n}\backslash \{0\}),$ $j,$ $k\in Z^{+},$ $j>0$ . The multiplicative group $R_{+}$ acts on $R^{n}\backslash \{0\}$ by

$\hat{g}_{t}$ : $R^{n}\backslash \{0\}\ni x\rightarrow t^{-1}x\in R^{n}\backslash \{0\}$ , $t\in R_{+}$ .

For $f\in \mathcal{E}(R^{n}\backslash \{0\})$ , we set

$(\hat{G}_{t}f)(x)=f(\hat{g}_{t}x)$ , $t\in R_{+}$ .
Then $\hat{G}=\{\hat{G}_{t} ; t\in R_{+}\}$ is a differentiable $R_{+}$-action in $\mathcal{E}(R^{n}\backslash \{0\})$ . In $the;present$
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example, we write $\hat{B}^{\rho},\hat{\Gamma}_{f}^{\mu}\hat{C}^{\mu},\hat{D}^{\mu}$ etc. instead of $B^{p},$ $\Gamma^{\mu},$ $C^{\mu},$ $D^{\mu}$ etc. to avoid
any possible confusion with the previous example.

For $\rho\in R,$ $f\in\hat{B}^{\rho}$ if and only if

$|(\partial_{x}^{a}f)(x)|\leqq C|x|^{-\rho-|\alpha|}$

for $0<|x|\leqq l,$ $|\alpha|\leqq m,$ $\alpha\in(Z^{+})^{m},$ $I,$ $m\in Z^{+},$ $C$ being a positive constant depend-
ing only on 1, $m$ . In particular, for $\rho<0,$ $f\in\hat{B}^{\rho}$ vanishes to the order $p-1$ at
$x=0$ if $p$ is the integral part of $-\rho$ . Hence, $\hat{B}^{-\infty}$ coincides with the set of
$C^{\infty}$ functions on $R^{n}$ vanishing to the infinite order at $x=0$ (compare with
Example 7.1).

Note the diffeomorphim $R^{n}\backslash \{0\}\cong S^{n-1}\times R_{+}$ . Then $\hat{\Gamma}^{0}$ coincides with $\mathcal{E}(S^{n-1})$ ,
the space of $C^{\infty}$ functions on $S^{n-1}$ . For each $\mu\in C,\hat{\Gamma}^{\mu}$ is isomorphic to $\hat{\Gamma}^{0}$

and $f\in\hat{\Gamma}^{\mu}$ if and only if $|x|^{\mu}f\in\hat{\Gamma}^{0}$ . Hence, for $\mu\in C$,

$\hat{C}^{\mu}=\{|x|^{-\mu}\sum_{j=0}^{\infty}a_{j}(x)|x|^{j} ; a_{j}\in\hat{\Gamma}^{0}\}$

with the product topology. There is a convergence factor for the differentiable
$R_{+}$ -action $\hat{G}$ , namely, $e(x)\in C_{0}^{\infty}(R^{n})$ such that $e(x)=1$ in a neighborhood of $x=0$ .
Now let us compare with the previous example. Then $B^{-\infty}=\hat{B}^{-\infty}$ and for $j\in Z^{+}$ ,
$B^{-j}\subset\hat{B}^{-j}$ and $\Gamma^{-j}$ is a closed (in fact finite dimensional) subspace of $\hat{\Gamma}^{-j}$ . Thus,
$C^{-j}$ is a closed subspaces of $\hat{C}^{-j}$ . Furthermore, if $f_{j}\in B^{-j},$ $j\in Z^{+}$ , then there
is an $f\in\hat{B}^{0}$ such that $f-\sum_{j<k}f_{j}\in\hat{B}^{-k}$ (Corollary 5.6). This $f$ belongs to $\mathcal{E}(R^{n})$

since the elements in $\hat{B}^{-k}$ are differentiable at $x=0$ up to $(k-1)$-times. Then
by the same reason $f-\sum_{j<k}f_{j}\in B^{-k}$ . Therefore we give a proof of the surjec-

tivity of $\alpha$ in Example 7.1 by using a convergence factor in the present exam-
ple.

EXAMPLE 7.3. (The algebra of symbols). Let $X$ be a paracompact $C^{\infty}$

manifold of dimension $n$ , and $U$ a principal $R_{+}$-bundle over X. $U$ is thus a
cone bundle over $X$ (see Boutet de Monvel [1], H\"ormander [5]). Since $R_{+}$ is
contractible, $U$ is trivial, $U=X\times R_{+}$ . Let $A=S(U)$, the ring of C-valued $C^{\infty}$

functions on $U$ with the standard (multiplicatively convex) Fr\’echet (algebra)
structure as defined in a similar way to (7.1). We denote by $g_{t}$ the $R_{+}$ -action
on $U$, that is,

$g_{t}$ : $U\ni(x, r)\rightarrow(x, tr)\in U$ , $t\in R_{+}$ .
For $p\in S(U)_{f}$ we set

$(G_{t}p)(x, r)=p(g_{t}(x, r))$ , $t\in R_{+}$ .
Then $G=\{G_{t} ; t\in R_{+}\}$ is a differentiable $R_{+}$-action in $S(U)$ . In this $case_{f}$ we
write $S^{\rho},$ $\rho\in R$, instead of $B^{\rho}$ . Then $S^{\rho}\ni p$ if and only if
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$|\Lambda\partial_{r}^{k}p(x, r)|\leqq Cr^{\rho-k}$ , $\partial_{r}=\partial/\partial r$ ,

for $x\in K,$ $r\geqq r_{0},$ $k\in Z^{+},$ $\Lambda$ any differential operator on $X,$ $r_{0}$ any positive num-
ber, $K$ any compact subset of $X$, and $C$ a positive constant depending only on
$K,$ $r_{0},$

$k$ and $\Lambda$ . $p\in\Gamma^{\mu}$ if and only if

$p(x, tr)=t^{\mu}p(x, r)$ , $t\in R_{+},$ $\mu\in C$ .
Therefore, $\Gamma^{0}$ is isomorphic to $\mathcal{E}(X)$ and $p\in\Gamma^{\mu}$ if and only if $r^{-\mu}p\in\Gamma^{0}$ . $C^{\mu}$

is the totality of formal sums $\sum_{j=0}^{\infty}p_{j}$ with $p_{j}$ homogeneous of degree $\mu-j$ . If

$P$ is developable, its development is just the usual asymptotic expansion (see
H\"ormander [4], [5], for instance). Thus, developable elements are essentially
classical symbols. A convergence factor $e(x, r)$ for the differentiable $R_{+}$ -action
is given by $e(x, r)=e(r)\in S(U)$ such that $e(r)=1$ for $r>1$ and $e(r)=0$ for $r<1/2$ .

Let $V=X\times R^{+}$ and consider $\mathcal{E}(V)$ , the space of $C^{\infty}$ functions on $V$ . Recall
that $R^{+}$ is the set of non-negative reals. Thus, $f\in \mathcal{E}(V)$ if and only if $f$ is a
restriction to $X\times R^{+}$ of a $C^{\infty}$ function defined on a neighborhood of $X\times R^{+}$ in
$X\times R$ . In the customary notations, $S^{\rho}\cap \mathcal{E}(V)$ is written as $S_{1,0}^{\rho}(U)$ (see H\"or-

mander [4]). In applications to the theory of pseudo-differential operators,
$p\in S_{1,0}^{\rho}(U)$ is usually understood as vanishing near the zero section. It is
well-known that many important symbols admit asymptotic expansions (clas-

sical symbols), that $is_{f}$ developable in our terminology.
EXAMPLE 7.4. (The classical asymptotic expansion in an open sector).

Let $\Sigma$ be an open sector in $C\backslash \{0\}$ , given by

$z\in C$ , $z\neq 0$ , arg $z|<p$

for some positive $p$ . Let $A=O(\Sigma)$ , the ring of holomorphic functions on $\Sigma$

with the standard (multiplicatively convex) Fr\’echet (algebra) structure. Namely,
for any compact subset $K$ of $\Sigma$,

$p_{K}(f)=\sup_{z\in K}|f(z)|$ , $f\in \mathcal{O}(\Sigma)$ ,

is a semi-norm satisfying (1.1). The multiplicative group $R_{+}$ acts on $\Sigma$ by

$g_{t}$ : $\Sigma\ni z\rightarrow tz\in\Sigma$ , $t\in R_{+}$ .

For $f\in O(\Sigma)$ , we set

$(G_{t}f)(z)=f(g_{t}z)$ , $t\in R_{+}$ .
Then $G=\{G_{t} ; t\in R_{+}\}$ is a differentiable $R_{+}$-action in $o(\Sigma)$ . For $\rho\in R$, we
write $0^{\rho}$ instead of $B^{p}$ . Then $f\in O^{\rho}$ if and only if

$|f(z)|\leqq C|z|^{p}$
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for all $ z\in\Sigma$ such that arg $z|\leqq p_{0},$ $|z|\geqq q_{0},$ $p_{0},$ $q_{0}$ any positive numbers and
$p_{0}<p$ . $C$ is a positive constant depending only on $p_{0}$ and $q_{0}$ . $Thus_{f}$ in the
classical notation, $O^{\rho}=O(z^{\rho})$ (see, $e$ . $g.$ , Erdelyi [2], Olver [8], Wasow [10]).

$\Gamma^{\mu}=\{az^{\mu} ; a\in C\}$ , $\mu\in C$ ,

where $z^{\mu}=\exp(\mu\log z)$ . $C^{\mu}$ is the totality of the formal series

$z^{\mu}\sum_{f=0}^{\infty}a_{j}z^{-j}$ , $a_{j}\in C_{f}$

with the topology of simple convergence of the coefficients (see Treves [9],

Example III, p. 91). If $f$ is $developable_{f}$ then its development is the classical
asymptotic expansion of $f$ (see, $e$ . $g.$ , Erdelyi [2], Olver [8], Wasow [10]).

A convergence factor for the differentiable $R_{+}$ -action is given by

$e(z)=1-e^{-z^{\lambda}}$

with $0<\lambda<\pi/2p$ (compare with Olver [8], p. 22, Wasow [10], p. 42). Note
that the above construction is also valid for holomorphic functions on $\Sigma$ with
values in any multiplicatively convex Fr\’echet algebra.

EXAMPLE 7.5. Let $A=O(C^{n})$, the ring of entire analytic functions on $C^{n}$ ,

equipped with the standard multiplicatively convex Fr\’echet algebra structure.
The group $R_{+}$ acts in $C^{n}$ by

$g_{t}$ : $C^{n}\ni z\rightarrow t^{-1}z\in C^{n}$ , $t\in R_{r}$ .
Then

$(G_{t}f)(z)=f(g_{t}z)$ , $f\in o(C^{n})$ , $t\in R_{+}$ ,

determines a strong differentiable $R_{+}$ -action in $O(C^{n})$ . For $\rho\geqq 0,$ $B^{o}=\mathcal{O}_{\backslash }^{(}C^{n\backslash }\backslash $

$f\in B^{-j},$ $j\in Z^{+}$ , if and only if $f$ vanishes to the j-th order at $z=0$ .
$B^{-j+\theta}=B^{-j+1}$ for $0<\theta\leqq 1$ . $B^{-\infty}=\{0\}$ . For $j\in Z^{+},$ $\Gamma^{-j}$ is the totality of

homogeneous polynomials of degree $j$ . Other $\Gamma^{\mu}’ s$ reduce to $\{0\}$ . Thus $D^{-j}$

$=B^{-j}$ for $j\in Z^{+}$ and other $D^{\mu}$ spaces reduce to $\{0\}$ . The mappings $\alpha^{-j}$ are
nothing but the Taylor expansion at $z=0$ . Clearly $\alpha^{-j}$ are not surjective.
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