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0. Introduction.

In [3], A. G. Kouchnirenko presented a beautiful formula about the multi-
plicity of an isolated singularity of a hypersurfaces $V=f^{-1}(0)$ in $C^{n}$ where
$f(z)$ is assumed to have a non-degenerate Newton principal part. It states
that the multiplicity of $V$ at the origin ( $=the$ Milnor number) is equal to the
Newton number of $\Gamma_{-}(f)$ (and thus is independent of a particular choice of the
coefficients of $f(z))$ .

The purpose of this paper is to give a geometrical proof of Kouchnirenko’s
Theorem from the viewpoint of the bifurcation of the multiplicity. First we
prove that the Milnor fibration of $f(z)$ is determined by the Newton boundary
$\Gamma(f)$ if the Newton Principal Part of $f$ is non-degenerate (Theorem 2.1).

For the calculation of the multiplicity, we consider the bifurcating equation:

$z_{1}\frac{\partial f}{\partial z_{1}}-t\gamma_{1}=$ $=z_{n}\frac{\partial f}{\partial z_{n}}-t\gamma_{n}=0$ .

If $\gamma=(\gamma_{1}, \cdots , \gamma_{n})$ is generic and $t$ is suJficiently small, the bifurcating solutions
of the above equation are all simple and one finds exactly $n1$ volume $\Gamma_{-}(f)$ solu-
tions $(f\neq 0)$ (Theorem 4.2).

1. Milnor fibration.

Let $f(z_{1}, z_{2}, \cdots , z_{n})$ be an analytic function in an open neighbourhood $U$

of $C^{n}(f(O)=0)$ and assume that $f(z)$ has an isolated critical point at the origin.
We can take a positive number $\epsilon$ so that the sphere $S(r)=\{z\in C^{n}$ ; $\Vert z||2=|z_{1}|^{2}$

$+\cdots+|z_{n}|^{2}=r^{2}\}$ cuts the hypersurface $V_{0}=f^{-1}(0)$ transversely for any $ 0<r\leqq\epsilon$ .
(Therefore $V_{0}\cap S(r)$ is a smooth manifold.) Fixing such an $\epsilon$ , we can take
$\delta>0$ such that $V_{\eta}=f^{-1}(\eta)$ is non-singular in $D(\epsilon)$ and is transverse to $S(\epsilon)$ for
$ 0<|\eta|\leqq\delta$ where $D(\epsilon)=\{z\in C^{n} ; \Vert z\Vert\leqq\epsilon\}$ . Then we have a so-called Milnor
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fibration
$f:X\rightarrow S$

where $S=\{\eta\in C;0<|\eta|\leqq\delta\}$ and $X=f^{-1}(S)\cap D_{\epsilon}$ . This fibration does not depend
on the choice of $\epsilon$ and $\delta$ up to a fibre preserving diffeomorphism and we call

$\epsilon$ a stable radius of the Milnor fibration for $f(z)$ . The fibre is $(n-2)$-connected
and its $(n-1)$-th Betti number is called the Milnor number of $f(z)$ and we denote
this number by $\mu(f, 0)$ (Milnor [5]).

2. Newton boundary.

Now we recall basic notions about the Newton boundary (see [3] for detail.)

and state the first result. Let $f(z)$ be the analytic function defined by a con-
vergent power series $\sum a_{\nu}z^{\nu}$ where $\nu=(\nu_{1}, \cdots , \nu_{n})$ goes through multi-integers
$(N)^{n}$ and $z^{\nu}=z_{1}^{\nu_{1}}z_{2}^{\nu_{2}}\cdots z_{n}^{\nu_{n}}$ as usual. A polyhedron $\Gamma_{+}(f)\subset R^{n}$ is defined by
{the convex closure of $\bigcup_{\nu}(\nu+(R_{+})^{n})$ where the union is taken for all $\nu$ such

that $a_{\nu}\neq 0$}. $(R_{+}=\{x\in R;x\geqq 0\})$ . The Newton boundary $\Gamma(f)$ is by definition
the union of the compact boundaries of $\Gamma_{+}(f)$ . The polynomial $\sum_{\nu\in I(f)}a_{\nu}z^{\nu}$ is

called the Newton PrinciPal part of $f(z)$ . For a face $\Delta$ of $\Gamma(f)$ , we put $f_{\Delta}(z)$

$=\sum_{\nu\in\Delta}a_{\nu}z^{\nu}$ . We say that $f$ is nondegenera $te$ on $\Delta$ if the equation $\frac{\partial f_{\Delta}}{\partial z_{1}}=\frac{\partial f_{\Delta}}{\partial z_{2}}$

$=\ldots=\frac{\partial f_{\Delta}}{\partial z_{n}}=0$ has no solution in $(C^{*})^{n}$ . When $f$ is non-degenerate on every

face $\Delta$ of $\Gamma(f)$ , we say that $f$ has a non-degenerate Newton Principal Part. $f(z)$

is called to be convenient if the intersection of $\Gamma(f)$ with each coordinate axe
is non-empty. $\Gamma_{-}(f)$ is the compact polyhedron which is the cone over $\Gamma(f)$

with the origin as a vertex. When $f$ is convenient, the Newton number $\nu(\Gamma_{-}(f))$

is by definition $n!V_{n}-(n-1)$ ! $V_{n-1}+\cdots+(-1)^{n-1}1$ ! $V_{1}+(-1)^{n}$ where $V_{n}$ is the
n-dimensional volume of $\Gamma_{-}(f)$ and $V_{k}$ is the sum of k-dimensional volumes
of $\Gamma_{-}(f)\cap R^{I}$ where $I=\{i_{1}, i_{2}, \cdots i_{k}\}\subset\{1,2, \cdots n\}$ and $R^{I}=\{x=(x_{1}, \cdots x_{n})$ ;
$x_{i}=0$ if $i\not\in I$ }.

Our first result is:
THEOREM 2.1. SuppOse that $f(z)$ has an isolated critical Point at the origin

and that $f$ has a non-degenerate Newton Principal Part. Then the Milnor fibra-
tion at the origin is determined by the Newton boundary $\Gamma(f)$ .

COROLLARY 2.2. The toPology of singularity and $\mu(f, 0)$ are independent of
the particular choice of $f$ for a fixed $\Gamma(f)$ .

REMARK 2.3. The latter statement in Corollary 2.2 was proved by Kouch-
nirenko [3]. As for the topology of the singularity, the case $n=3$ is the only
new result. ([3], [4]).

First we prepare a few lemmas.
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LEMMA 2.4. Let $f_{t}(z)(0\leqq t\leqq 1)$ be a smooth family of analytic functions such
that $f_{t}(0)=0$ and $f_{t}(z)$ has an isolated critical point at the origin for each $t$,
$0\leqq t\leqq 1$ . Assume that $f_{t}(0\leqq t\leqq 1)$ has a uniform stable radius $\epsilon$ for Milnor fibra-
tion $i$ . $e$ . for any $ 0<r\leqq\epsilon$ and $0\leqq t\leqq 1,$ $S(r)$ cuts $f_{t}^{-1}(0)$ transversely. Then the
Milnor fibrations of $f_{0}$ and $f_{1}$ are equivalent.

The proof is easy. (See for example, Oka [7].)

The following lemma is slightly stronger than Proposition 3.6 of [3].

LEMMA 2.5. Let $f(z)$ be an analytic function which has an isolated critical
p0int at the origin. Consider the family $F(z, t)=f(z)+tz^{\nu}(0\leqq t\leqq 1)$ where $\nu=(\nu_{1}$ ,
$\ldots$

$\nu_{n}$ ) is a fixed multiinteger. If $|\nu|=\nu_{1}+\nu_{2}+\cdots+\nu_{n}\geqq\mu(f, 0)+2,$ $F(z, t)(0\leqq t$

$\leqq 1)$ has a uniform stable radius for Milnor fibration.
PROOF. By Lemma 3.5 and Proposition 3.6 of [3], $\frac{\partial F}{\partial z_{1}}\ldots$ $\frac{\partial F}{\partial z_{n}}$ generate

an ideal $J$ of $C[[z_{1}, \cdots z_{n}]]$ ( $=ring$ of the formal power series in $z_{1},$
$\cdots$

$z_{n}$ )

which is independent of $t$ and $\mathfrak{M}^{\mu(f,0)}$ is contained in $J$ where $\mathfrak{M}$ is the maxi-

mal ideal. Let $W=\{(z, t)\in C^{n}\times R;F(z, t)=0$ and 2 and $(\frac{\partial F}{\partial z_{1}},$ $\cdots$ $\frac{\partial F}{\partial z_{n}})$ are

linearly dependent over $C$ }. Suppose that $F(z, t)$ is not uniform. Then for
some $0\leqq t_{0}\leqq 1,$ $(0, t_{0})\in the$ closure of $W\cap\{z\neq 0\}$ . By the Curve Selection lemma
(Milnor [5]) we can find a real analytic curve $p(s)=(z(s), t(s)),$ $ 0\leqq s\leqq\epsilon$ , in $W$

such that $z(s)\neq 0$ for $s>0$ and $t(O)=t_{0}$ . We consider the Taylor expansion:

(2.5.1) $\left(\begin{array}{l}z(s)\\t(s)\end{array}\right)=\left(\begin{array}{l}z_{1}(s)\\\vdots\\ z_{n}(s)\\t(s)\end{array}\right)=\left(\begin{array}{l}\alpha_{1}s^{a_{1}}+higher\\\vdots\\\alpha_{n}s^{a_{n}}+higher\\+t_{0}higher\end{array}\right)$ .

We also have $\lambda(s)\in C$ expanded in a Laurent series

(2.5.2) $\lambda(s)=\lambda_{0}s^{b}+higher$

so that

(2.5.3) $F(z(s), t(s))=0$ and
$\partial F$

(2.5.4)
$\overline{\partial z_{j}}(z(s), t(s))=\lambda(s)\overline{z}_{j}(s)$ $(j=1, \cdots n)$ .

$\{a_{j}\}$ ($j=1,$ $\cdots$ , n) are positive integers (possibly $\infty$ ). $ a_{j}=\infty$ implies by defini-
tion $z_{j}(s)\equiv 0$ . Otherwise $\alpha_{j}$ is assumed to be a non-zero complex number.
Taking the differential of (2.5.3) in $s$ we get

(2.5.5) $\sum_{j=1}^{n}-\frac{F}{z_{j}}(z(s)\partial\partial t(s))\frac{dz_{j}(s)}{ds}+z(s)^{\nu}\cdot\frac{dt(s)}{ds}=0$ .

Let $a=minimum\{a_{1},0_{2}, \cdots a_{n}\}$ . Using (2.5.4), we can write
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$\frac{\partial F}{\partial z_{j}}(z(s), t(s))\cdot\frac{dz_{j}}{ds}(s)=\lambda_{0}a_{j}|\alpha_{j}|^{2}s^{2a_{j}+b-1}+\cdots$

That $a_{j}|\alpha_{j}|^{2}$ ($j=1,$ $\cdots$ , n) are positive implies

$\lim_{s\rightarrow 0}(\sum_{j\Leftarrow 1}^{n}\frac{\partial F}{\partial z_{j}}(z(s), t(s))\frac{dz_{j}}{ds}(s))/s^{2a+b-1}$

is a non-zero complex number. Assertion: $a+b\leqq\mu(f, 0)\cdot a$ . Assuming this,

we get $\lim_{s\rightarrow 0}z^{\nu}(s)\frac{dt}{ds}/s^{2a+b-1}=0$ which is a contradiction to the equation (2.5.5).

Now we prove the assertion. We may assume $a=a_{1}$ . The inclusion $\mathfrak{m}^{\mu(f,0)}\subset I$

gives us an equation

(2.5.6) $z_{1}^{\mu(f)}=\sum_{k=1}^{n}g_{k}(z)\frac{\partial f}{\partial z_{k}}$

$=\sum_{k=1}^{n}G_{k}(z, t)\frac{\partial F}{\partial z_{k}}$

where $g_{k}(z)$ and $G_{k}(z, t)$ are analytic functions. Assuming $a+b>\mu(f, 0)\cdot a$ ,
we obtain an absurd equality:

$0\neq\alpha_{1}^{\mu(f.0)}=\lim_{s\rightarrow 0}z_{1}(s)^{\mu(f.0)}/s^{\mu(f.0)\cdot a}$

$=\lim_{s\rightarrow 0k}\sum_{=1}^{n}G_{k}(z(s), i(s))\frac{\partial F}{\partial z_{k}}(z(s), t(s))/s^{\mu(f.0)\cdot a}$

$=0$ .
PROOF OF THEOREM 2.1. Suppose that we have two analytic functions $f(z)$

and $g(z)$ which have non-degenerate Newton principal parts on the same
boundary $\Gamma(=\Gamma(f)=\Gamma(g))$ . By Lemma 2.5 we may assume that $f$ and $g$ are
convenient. Because the non-degenerate condition of the Newton principal
part is an open condition (see the aPpendix and [3]), we can take a piecewise
analytic family $F(z, t)$ such that $F(z, O)=f(z)$ and $F(z, 1)=g(z)$ and $F(z, t)$ as a
function of $z$ has a non-degenerate Newton principal part on $\Gamma$ for each $t$ .
Thus the proof reduces to the following lemma by virtue of Lemma 2.4.

LEMMA 2.6. Let $F(z, t)(0\leqq t\leqq 1)$ be an analytic family such that for each
fixed $t(0\leqq t\leqq 1)F(z, t)$ is convenient and has a non-degenerate Newton principal

Part on the same boundary $\Gamma$. Then $F(z, t)(0\leqq t\leqq 1)$ has a uniform stable radiu $s$

for the Milnor fibrations.
PROOF. Assume the contrary. Then using the Curve Selection lemma we

can find a real analytic curve:

(2.6.1) $\left(\begin{array}{l}z(s)\\t(s)\end{array}\right)=\left(\begin{array}{l}z_{1}(s)\\\vdots\\ z_{n}(s)\\t(s)\end{array}\right)=\left(\begin{array}{l}\alpha_{1}s^{a_{1}}+higher\\\vdots\\\alpha_{n}s^{a_{n}}+higher\\+t_{0}higher\end{array}\right)$
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and a Laurent series

$\lambda(s)=\lambda_{0}s^{b}+higher$ $(\lambda_{0}=0\Leftrightarrow\lambda(s)\equiv 0)$

satisfying the following equations.

(2.6.2) $F(z(s), t(s))=0$ and

(2.6.3) $\frac{\partial F}{\partial z_{j}}(z(s), t(s))=\lambda(s)\overline{z}_{j}(s)$ $(j=1,2, \cdots , n)$ .
From (2.6.2) we get

(2.6.4) $\sum_{j=1}^{n}\frac{\partial F}{\partial z_{j}}(z(s), t(s))\frac{(s)}{s}+\frac{\partial F}{\partial t}(z(s)\underline{dz}_{j}dt(s))\frac{dt(s)}{ds}=0$ .

We may assume that $z_{1}(s)\neq 0,$ $\cdots$ , $z_{k}(s)\neq 0$ and $z_{k+1}(s)\equiv\ldots\equiv z_{n}(s)=0$ . Let $R^{k}$

be the subspace of $R^{n}$ defined by $x_{j}=0$ for $j>k$ . Consider the continuous

function $l_{a}(x)$ on $\Gamma\cap R^{k}$ defined by $l_{a}(x)=(x, a)=\sum_{j=1}^{k}a_{j}x_{j}$ . By the convenience

assumption on $f,$ $\Gamma\cap R^{k}\neq\emptyset$ . So let $\Delta(a)$ be the unique face of $\Gamma\cap R^{k}$ where
$l_{a}(x)$ takes the minimal value, say $d$ . See Figure A.

Figure A

Then $\frac{\partial F}{\partial z_{j}}(z(s), t(s))\frac{dz_{j}(s)}{ds}=a_{j}\alpha_{j}\frac{\partial F}{\partial}\frac{\Delta(a)}{z_{j}}(\alpha, t_{0})t^{d-1}+higher$ terms where $\alpha=$

$(\alpha_{1}, \cdots , \alpha_{k}, 0, \cdots , 0)$ . Here $F_{\Delta(a)}(z, t)$ is defined as before considering it as a
function of $z$ . Note that $F_{\Delta(a)}(z, t)$ is a function of $z_{1},$

$\cdots$ , $z_{k}$ and $t$ . Thus

the non-degeneracy assumption for $F(z, t_{0})$ implies that $\frac{\partial F_{\Delta(a)}}{\partial z_{j}}(\alpha, t_{0})\neq 0$ for

some $1\leqq j\leqq k$ , say $j_{0}$ . On the other hand, by (2.6.3) we have
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$\frac{\partial F}{\partial z_{j}}(z(s), t(s))\frac{dz_{j}(s)}{ds}=\lambda_{0}|\alpha_{j}|^{2}a_{j}s^{2a}!^{+b-1}+higher$ .

Thus $\lambda_{0}\neq 0$ and $2a_{j}+b-1\geqq d-1.$ Moreover $\lim_{s\rightarrow 0}$ argument $(\frac{\partial F}{\partial z_{j}}(z(s), t(s))\frac{dz_{j}(s)}{ds})$

$=argument\lambda_{0}$ for $1\leqq j\leqq k$ .
Therefore

$\lim_{s\rightarrow 0_{j}}\sum_{=1}^{n}\frac{\partial F}{\partial z_{j}}(z(s), t(s))\frac{dz_{j}(s)}{ds}/s^{d-1}$

is a non-zero complex number, while

$\lim_{s\rightarrow 0}\frac{\partial F}{\partial t}(z(s), t(s))/s^{d-1}=0$

because of the assumption on the Newton boundary. However this trivially
contradicts the equation (2.6.4), completing the proof of Lemma 2.6.

REMARK. 2.7. In the above proof it is proved that $f(z)$ has an isolated
critical point at the origin if $f(z)$ is convenient and its Newton principal part
is non-degenerate.

3. Bifurcation of multiplicity.

Consider an analytic mapping

$\varphi=(\varphi_{1}, \varphi_{2}, \cdots \varphi_{n})$ : $U\rightarrow C^{n}$

where $U$ is an open neighbourhood of the origin in $C^{n}$ . Assume that $0$ is
isolated in $\varphi^{-1}(0)$ and let $D$ be a small disk $\{z\in C^{n} ; \Vert z\Vert\leqq\epsilon\}$ such that $D\cap\varphi^{-1}(0)$

$=\{0\}$ . Then the multiPlicity of $\varphi_{1}(z)=\ldots=\varphi_{n}(z)=0$ at the origin is defined by
the mapping degree of the normalized map

$\tilde{\varphi}=\varphi/\Vert\varphi\Vert$ : $\partial D\rightarrow S^{2n-1}$ .
We denote this number by $\mu(\varphi, 0)$ . More generally if $\partial D\cap\varphi^{-1}(0)=\emptyset$ and $D$

contains several points of $\varphi^{-1}(0)$ , we denote the above mapping degree by
$\mu(\varphi, D)$ . This is equal to $\sum_{P}\mu(\varphi, P)$ where $P\in\varphi^{-1}(0)\cap D$ .

$\partial f$

In the case that $\varphi_{i}(z)=_{\partial\overline{z_{i}}}-$
($i=1,$ $\cdots$ , n) for an analytic function $f(z)$ ,

$\mu(\varphi, 0)$ coincides with $\mu(f, 0)$ . ([5]).
Now consider an analytic family $\{\varphi_{t}\}(0\leqq t\leqq 1)$ of analytic mapping, $\varphi_{t}$ :

$U\rightarrow C^{n}$ such that $\varphi_{0}=\varphi$ and $\varphi^{-1}(0)\cap D=\{0\}$ and $\varphi_{t}(z)\neq 0$ for $z\in\partial D$ and $0\leqq t\leqq 1$

and that $\varphi_{t}^{-1}(0)$ are isolated in $D$ for $0\leqq t\leqq 1$ . Let $\varphi_{t^{-1}}(0)\cap D=\{\alpha_{1}(t), \cdots , \alpha_{k}(t)\}$ .
By taking a suitable positive integer $m_{j}$ and putting $t=s^{m_{j}},$ $\alpha_{j}(t)$ ($j=1,$ $\cdots$ , k)

become analytic functions in $s$ , for $t$ small enough (Curve Selection Lemma).
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DEFINITION. We call
$\lim_{t\rightarrow 0}\sum_{\alpha_{J^{(t)\neq 0}}}$

$\mu(\varphi_{t}, \alpha_{j}(t))$ the bifurcated multiplicity of

$\{\varphi_{t}=0\}$ at the origin and we denote this number by $Bf.\mu(\{\varphi_{t}\}, 0)$ . Note that
$Bf.\mu(\{\varphi_{t}\}, 0)$ is equal to $\mu(\varphi_{0},0)$ –

$\lim_{t\rightarrow 0}\mu(\varphi_{t}, 0)$ (Milnor [5]). In the case that

$\varphi_{t}=(\frac{\partial f_{t}}{\partial z_{1}},$ $\cdots$ , $\frac{\partial f_{t}}{\partial z_{n}}$) where $\{f_{t}\}_{0\leqq t\leqq 1}$ is an analytic family of analytic func-

tions having isolated critical points in $D,$ $Bf.\mu(\{\varphi_{t}\}, 0)$ is the number of the
bifurcated vanishing cycles. Vanishing cycles at non-zero $\alpha_{j}(t)$ for $f_{t}$ , toge-
ther with the vanishing cycles of $f_{t}$ at $0$ , form the basis of the vanishing
cycles for $f_{0}$ at the origin.

4. A nice bifurcation.

Let $f(z)$ be an analytic function of $n$ variables whose Newton principal
part is non-degenerate and convenient. We want to calculate geometrically
the multiplicity of the next equation at the origin:

$A$ : $z_{1}\frac{\partial f}{\partial z_{1}}=\ldots=z_{n}\frac{\partial f}{\partial_{Z_{n}}}=0$ .

A vector $\gamma=(\gamma_{1}, \cdots , \gamma_{n})\in C^{n}$ is called regular for $A$ if for any finite vertices
$\nu^{1},$ $\nu^{2},$ $\cdots$ , $\nu^{k}$ of $\Gamma(f)$ such that rank $(\nu^{1}, \cdots , \nu^{k})<n,$ $\gamma$ is not a linear combina-
tion of $\nu^{j}$ with complex coefficients. In particular, $\gamma_{j}\neq 0$ ($j=1,$ $\cdots$ , n) by the
convenience assumption of $f$. Hereafter we fix a regular $\gamma$ .

Instead of $A$ , we consider the equation

$\partial f$

$A(\gamma, t)$ : $z_{j}-t\gamma_{j}=0\overline{\partial z_{j}}$ $(j=1, \cdots , n)$ .

Let $S$ be the set of faces of dimension $n-1$ of $\Gamma(f)$ and let $\Delta(0)$ be the
cone over $\Delta$ with the origin. Then $\Gamma_{-}(f)=U\Delta(0)$ and they make a natural

$\Delta\in S$

polyhedral decomposition of $\Gamma_{-}(f)$ . Let $L(\Delta)$ be the hyperplane in $R^{n}$ contain-
ing $\Delta\in S$ and let

(4.1) $m(\Delta)_{1}x_{1}+m(\Delta)_{2}x_{2}+\cdots+m(\Delta)_{n}x_{n}=d(\Delta)$

be the defining equation of $L(\Delta)$ such that $m(\Delta)_{j}$ ($j=1,$ $\cdots$ , n) are positive in-
tegers and have 1 as their greatest common divisor. Let $\{C_{\nu}\}$ be the coeffi-
cients of $z^{\nu}$ for $\nu\in\Gamma(f)$ in the Taylor expansion of $f(z)$ .

Now we can interpret Kouchnirenko’s formula ([3]) as follows:
THEOREM 4.2. If the coeJficients $\{c_{\nu}\}$ are generic and if $\gamma$ is regular,

$\mu$ ( $z_{1}-\frac{f}{z_{1}}\partial\partial=\ldots=z_{n}\frac{\partial f}{\partial z_{n}}$ , $0)=Bf.\mu(A(\gamma, t),$ $O$) $=n$ ! volume $\Gamma_{-}(f)$ . More precisely

for each $\Delta\in S$ , there exist $n$ ! volume $\Delta(0)$ simple solutions of $A(\gamma, t)$ ( $t$ : small)

which can be parametrized real analytically as:



442 M. OKA

$z(s)=(\alpha_{1}s^{a(\Delta)_{1}}+higher, \cdots , \alpha_{n}s^{a(\Delta)}n+higher)$

and
$t(s)=s^{b(\Delta)}$

where the integral vector $a(\Delta)=(a(\Delta)_{1}, \cdots , a(\Delta)_{n})$ is equal to $q(\Delta)m(\Delta)=(q(\Delta)m(\Delta)_{1}$ ,
. , $q(\Delta)m(\Delta)_{n})$ for a positive integer $q(\Delta)$ and $b(\Delta)=q(\Delta)d(\Delta)$ .

For a subset $I\subset\{1,2, \cdots , n\}$ , let $C^{I}$ be the subspace {$z=(z_{1}, \cdots , z_{n})\in C^{n}$ ;
$z_{j}=0$ for $j\not\in I$ } and let $f_{I}$ be the restriction of $f$ to $C^{I}$ . Then the additivity
of the intersection multiplicity and Theorem 4.2 implies:

COROLLARY 4.2.1 (Kouchnirenko [3]). Various Milnor numbers are related
by $\sum_{I\subset\{1,2.n\}}\ldots,\mu(f_{I}, O)=n$ ! $\Gamma_{-}(f)$ where $\mu(f_{1l}, 0)=1$ by definition.

Thus $by:the$ induction on $n$ , we get
COROLLARY 4.2.2 (Kouchnirenko [3]). $\mu(f, O)=\nu(\Gamma_{-}(f))$ . (For the definition

of the Newton number $\nu(\Gamma_{-}(f))$ , see \S 2.)
REMARK 4.2.3. For a non-regular $\gamma$, the bifurcating solutions of $A(\gamma, t)$ are

not simple in general and the statement about the parametrization of Theorem
4.2 is not true.

The proof is based on several lemmas which are of independent interest.
Take a solution $z^{0}$ of $A(\gamma, t^{0})$ for $t^{0}$ sufficiently small. Using the Curve Selec-
tion lemma ([2], [5]), we can find a real analytic curve $(z(s), t(s)),$ $ 0\leqq s\leqq\epsilon$

( $\epsilon$ : small), such that $(z(s_{0}), t(s_{0}))=(z^{0}, t^{0})$ for some $s_{0}>0,$ $(z(O), t(O))=(O, 0)$ and

(4.2.4) $z_{j}(s)\frac{\partial f}{\partial z_{j}}(z(s))=t(s)\gamma_{j}$ $(j=1,2, \cdots n)$ .

Changing the parametrization if necessary, we may assume that $t(s)=s^{b}(b$ :
positive integer) and consider the Taylor expansion of $z(s)$ :

(4.2.5) $z_{j}(s)=\alpha_{j}s^{a_{j}}+higher$ terms, $j=1,2,$ $\cdots$ , $n$ .

In this expression, $\alpha_{j}\neq 0$ if $z_{j}(s)\not\equiv 0$ . Let $I=\{1\leqq i\leqq n;z_{i}(s)\not\equiv 0\}$ . Consider the
linear function $l_{a}(x)=\sum_{i\in I}a_{i}x_{i}$ on $\Gamma(fi)=\Gamma(f)\cap R^{I}$ and let $\Delta$ be the face of
$\Gamma(fi)$ where $l_{a}(x)$ takes the minimal value, say $d$ .

ASSERTION. $I=\{1,2, \cdots , n\}$ and dim $\Delta=n-1(i. e. \Delta\in s)$ .
PROOF. We consider the equation of the lowest terms in (4.2.4). The case

$d>b$ is trivially impossible. If $d<b$ , we get $\alpha_{j}\frac{\partial f_{\Delta}}{\partial z_{j}}(\alpha)=0$ for $j\in I$ . This has

no solution in $(C^{*})^{I}$ by the non-degeneracy assumption of $f$. Assume $d=b$ .
Let $\nu^{1},$ $\nu^{2},$ $\cdots$ , $\nu^{m}$ be the integral points of $\Delta$ and let $c_{j}=c_{j}$ $(j=1,2, \cdots , m)$ .
Then we get

$\gamma=\sum_{j=1}^{m}c_{j}\alpha^{\nu^{j}}\cdot\nu^{j}$ .
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By the regularity for $\gamma$, this implies dim $\Delta=n-1$ , completing the proof of the
assertion.

Thus the equation of the lowest terms is:

$($4.2.6; $\Delta)$ : $\alpha_{j}\frac{\partial f_{\Delta}}{\partial z_{j}}(\alpha)=\gamma_{j}$ $(j=1,2, \cdots n)$

for $\Delta\in S$ .
LEMMA 4.3. We assume that the coefficients of $f_{\Delta}(z)$ are generic. For a

regular $\gamma$ and $\Delta\in S,$ $(4.2.6;\Delta)$ has $n$ ! volume $\Delta(0)$ solutions. They are all simPle
and are contained in $(C^{*})^{n}$ .

This lemma is one of the main steps and the proof is done in the next
section.

Assuming this for a while, we want to show the bijective correspondence
between the “formal” solutions of $($4.2.6; $\Delta)(\Delta\in S)$ and the bifurcating solu-
tions of $A(\gamma, t)$ “along” $\Delta$ . Let $\alpha^{1}(\Delta),$ $\alpha^{2}(\Delta),$ $\cdots$ , $\alpha^{k(\Delta)}(\Delta)$ be the solutions of
$($4.2.6; $\Delta)$ ( $k(\Delta)=n$ ! volume $\Delta(0)$) and for a sufficiently small $\epsilon>0$ (fixed) let
$D_{j}(\Delta)=\{\alpha\in C^{n} ; \Vert\alpha-\alpha^{j}(\Delta)\Vert\leqq\epsilon\}$ . Then $D_{j}(\Delta)\subset(C^{*})^{n}$ and $ D_{j}(\Delta)\cap D_{k}(\Delta)=\emptyset$ if $j\neq k$ .
Let $D_{j}(\Delta, t)=\{z=(\alpha_{1}s^{m(\Delta)_{1}}, \cdots , \alpha_{n}s^{m(\Delta)}n);\alpha\in D_{j}(\Delta)\}$ and $t=s^{cJ(\Delta)}$ . $D_{j}(\Delta, t)(j=1$ ,

, $n$ ! volume $\Delta(0);\Delta\in s)$ are naturally diffeomorphic to the standard 2n-
dimensional disk $(t\neq 0)$ and are considered to be contained in $C^{n}\times t$ . Note
that $ D_{j}(\Delta, t)\cap D_{k}(\Delta^{\prime}, t)=\emptyset$ for $\Delta\neq\Delta^{\prime}$ and $t$ sufficiently small.

LEMMA 4.4. (i) For a sufficiently small $t^{0}>0$, any solution $z^{0}$ for $A(\gamma, t^{0})$ is
contained in the interior of some (and unique) $D_{j}(\Delta, t)$ . (ii) Each $D_{j}(\Delta, t)$ for $t$

small contains exactly one solution $z^{j}(\Delta, t)$ of $A(\gamma, t)$ and it is simple. $z^{j}(\Delta, t)$

can be parametrized as

$z_{k}^{j}(\Delta, t)=\alpha_{k}^{j}(\Delta)s^{q(\Delta)m(\Delta)_{k}}+higher$ $(k=1,2, \cdots n)$

and
$t=s^{q(\Delta)d(\Delta)}$

for some positive integer $q(\Delta)$ . $(\alpha^{j}(\Delta)=(\alpha^{J_{1}}(\Delta), \cdots , \alpha_{n}^{j}(\Delta)))$ .
PROOF. (i) is already proved in the above argument. Therefore we need

only prove that each $D_{j}(\Delta, t)$ contains a simple root. Let

$\varphi(z, t)=(z_{1}\frac{\partial f}{\partial z_{1}}-t\gamma_{1},$ $\cdots$ $z_{n}\frac{\partial f}{\partial z_{n}}-t\gamma_{n})$

and

$\varphi_{\Delta}(z, t)=(z_{1}\frac{\partial f_{\Delta}}{\partial z_{1}}-t\gamma_{1},$ $\cdots$ $z_{n}\frac{\partial f_{\Delta}}{\partial z_{n}}-t\gamma_{n})$ .

Then $\Vert\varphi(\alpha_{1}s^{m(\Delta)_{1}}, \cdots \alpha_{n}s^{m(\Delta)_{n}}, s^{d(\Delta)})-\varphi_{\Delta}(\alpha_{1}s^{m(\Delta)_{1}}, \cdots, \alpha_{n}s^{m(\Delta)_{n}}, s^{d(\Delta)})\Vert\leqq Ms^{d(\Delta)+1}$

for some $M>0$ and $z=(\alpha_{1}s^{m(\Delta)_{1}}, \cdots , \alpha_{n}s^{m(\Delta)}n)\in D_{j}(\Delta, t)$ . Thus $\Vert\rho\varphi(z, t)+(1-\rho)$

$\varphi_{\Delta}(z, t)\Vert\neq 0$ for $0\leqq\rho\leqq 1$ on $\partial D_{j}(\Delta, t)$ and using the “Rouch\’e’s Principle” ([5])
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we get
$\mu(\varphi=0, D_{j}(\Delta, t))=\mu(\varphi_{\Delta}=0, D_{j}(\Delta, t))$

$=1$ by Lemma 4.3.

PROOF OF THEOREM 4.2. (modulo Lemma 4.3). By Lemma 4.3 and Lemma
4.4, we get

$\mu(z_{1}\frac{\partial f}{\partial z_{1}}=\ldots=z_{n}\frac{\partial f}{\partial z_{n}}=0,0)$

$=Bf$ . $\mu(\varphi(z, t)=0,0)$

$=n$ ! volume $\Gamma_{-}(f)$ .

The other statement is already proved.

5. Proof of Lemma 4.3.

Let $\nu^{1},$ $\nu^{2},$ $\cdots$ , $\nu^{m}$ be the integral points of $\Delta$ and let $c_{J}(=c_{\nu J})$ be the coeffi-
cient of $z^{\nu^{j}}$ . $($4.2.6; $\Delta)$ can be written as:

(5.1) $\left(\begin{array}{lll}\nu_{1}^{1} & \cdots & \nu_{1}^{m}\\\nu_{2}^{1} & \cdots & \nu_{2}^{m}\\\vdots & & \vdots\\\nu_{n}^{1} & \cdots & \nu_{n}^{m}\end{array}\right)\left(\begin{array}{l}c_{1}\alpha^{\nu^{1}}\\c_{2}\alpha^{\nu^{2}}\\\vdots\\ c_{m}\alpha^{\nu^{m}}\end{array}\right)=\left(\begin{array}{l}\gamma_{1}\\\gamma_{2}\\\vdots\\\gamma_{n}\end{array}\right)$ .

We prove Lemma 4.3 by the induction on $m$ . The beginning step is:
LEMMA 5.1. SuPpose $m=n$ . Then (5.1) has $n$ ! volume $\Delta(0)$ simPle solutions.
PROOF. By the regularity of $\gamma$ and the convenience assumption for $f$,

$\gamma_{f}\neq 0$ $(j=1,2, \cdots , n)$ . Therefore (5.1) has no solution in $C^{n}-(C^{*})^{n}$ . (5.1) can be
rewritten as

(5.1) $\left(\begin{array}{l}c_{1}\alpha^{\nu^{1}}\\c_{2}\alpha^{\nu^{2}}\\\vdots\\ c_{n}\alpha^{\nu^{n}}\end{array}\right)=\left(\begin{array}{l}\delta_{1}\\\delta_{2}\\\vdots\\\delta_{n}\end{array}\right)$

where

$\left(\begin{array}{l}\delta_{1}\\\vdots\\\delta_{n}\end{array}\right)=\left(\begin{array}{lll}\nu_{1}^{1} & \cdots & \nu_{1}^{\eta}\\\vdots & & \vdots\\\nu_{n}^{1} & \cdots & \nu_{n}^{n}\end{array}\right)\left(\begin{array}{l}\gamma_{1}\\\vdots\\\gamma_{n}\end{array}\right)$

and by the regularity of $\gamma,$ $\delta_{j}\neq 0$ $(j=1, \cdots , n)$ . Let $M$ be the matrix:

$(\nu^{1}$ , $\cdot$ .. , $\nu^{n})=\left(\begin{array}{lll}\nu_{1}^{1} & \cdots & \nu_{1}^{n}\\\nu_{2}^{1} & \cdots & \nu_{2}^{n}\\\vdots & & \vdots\\\nu_{n}^{1} & \cdots & \nu_{n}^{n}\end{array}\right)$ .
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Let $ d=\det$ M. $d$ is a non-zero integer. Let $N=d\cdot M^{-1}$ . Then $N=(b_{j}^{i})$ is an
integral matrix and det $N=d^{n-1}$ . Consider the transformation

$h$ : $\beta=(\beta_{1}, \cdots \beta_{n})\rightarrow\alpha=\beta^{N}$

$=(\beta_{1}^{b_{1}^{1}}\beta_{2}^{b_{2}^{1}}\cdots\beta_{n}^{b_{n}^{1}}, \cdots \beta_{1}^{b_{1}^{n}}\beta_{2}^{b_{2}^{\eta}} \beta_{n}^{b_{n}^{n}})$ .
Then $h$ defines a $|d|^{n-1}$-fold covering map from $(C^{*})^{n}$ to itself. The lifted
equation of (5.1) is:

(5.1) $\left(\begin{array}{l}c_{1}\beta_{1}^{d}\\c_{2}\beta_{2}^{d}\\\vdots\\ c_{n}\beta_{n}^{d}\end{array}\right)=\left(\begin{array}{l}\delta_{1}\\\delta_{2}\\\vdots\\\delta_{n}\end{array}\right)$ .

Thus (5.1) has obviously $|d|^{n}$ simple solutions in $(C^{*})^{n}$ which implies im-
mediately that (5.1) has $|d|^{n}/|d|^{n-1}=|d|$ simple solutions. Now that $|d|=$

$n$ ! volume $\Delta(0)$ completes the proof.
PROOF FOR THE GENERAL CASE. Suppose $m>n$ . We can assume that

rank $(\nu^{1}, \cdots , \nu^{m-1})=n$ . Instead of (5.1), we consider the following equation:

$($5.2; $t)$ : $\left(\begin{array}{lll}\nu_{1}^{1} & \cdots & \nu_{1}^{m}\\\vdots & & \vdots\\\nu_{n}^{1} & \cdots & \nu_{n}^{m}\end{array}\right)\left(\begin{array}{l}c_{1}\alpha^{\nu^{1}}\\\vdots\\ c_{m- 1}\alpha^{\nu^{m- 1}}\\tc_{m}\alpha^{\nu^{m}}\end{array}\right)=\left(\begin{array}{l}\gamma_{1}\\\gamma_{2}\\\vdots\\\gamma_{n}\end{array}\right)$ .

We count the number of solutions $z(t)$ of (5.2; t) for which either $\Vert z(t)\Vert\rightarrow\infty$

or $z_{j}(t)\rightarrow 0$ for some $j$ when $t\rightarrow 0$ . Considering the homogenized equation of
(5.2; t) and using Curve Selection lemma, such a solution lies on a solution
curve parametrized as:

$\alpha(s)=$ ( $\tilde{\alpha}_{1}s^{a_{1}}+higher,$ $\cdots$ , a $nS^{a_{n}}+higher$)

and
$t(s)=s^{b}$ .

In this case, $b$ is a positive integer but $a_{j}$ ($j=1,$ $\cdots$ , n) are possibly negative.
Thus $\alpha(s)$ is a Laurent series. Let $L(=L(\Delta))$ be the $(n-1)$-dimensional hyper-
plane containing $\Delta$ and let $S(\Delta, \nu^{m})$ be the set of the subset $J\subset\{1,2, \cdots , m-1\}$

such that rank $\{\nu_{j} ; j\in J\}=n-1$ and the hyperplane $H(\Delta_{J})$ of $L$ containing
$\{\nu_{j} ; j\in J\}$ enjoys the following property: $\nu^{m}$ is contained in an open half plane

$L_{1}$ of $L-H(\Delta_{J})$ and $L_{1}$ contains no other vertex of $\Delta$ . By the regularity of $\gamma$,
we can assume that $\tilde{\alpha}=(\tilde{\alpha}_{1}, \cdots , \tilde{\alpha}_{n})\in(C^{*})^{n}$ . Let $e=minimum\{(\nu^{1}, a),$ $\cdots$ , $(\nu^{m-1}, a)$ ,

$(\nu^{m}, a)+b\}$ where $(\nu^{j}, a)=\sum_{k=1}^{n}\nu_{k^{j}}a_{k}$ . We consider the equation of the lowest
terms of:
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(5.3) $\left(\begin{array}{lll}\nu_{J}^{1} & \cdots & \nu_{1}^{m}\\\vdots & & \vdots\\\nu_{n}^{1} & \cdots & \nu_{n}^{m}\end{array}\right)\left(\begin{array}{l}c_{1}\alpha(s)^{\nu^{1}}\\\vdots\\ c_{m-1}\alpha(s)^{\nu^{m-1}}\\t(s)c_{m}\alpha(s)^{m}\end{array}\right)=\left(\begin{array}{l}\gamma_{1}\\\vdots\\\gamma_{n}\end{array}\right)$ .

The case $e>0$ is trivially impossible. The case $e<0$ is also impossible: Let
$J=$ { $1\leqq j\leqq m;(\nu^{j},$ $a)=e(1\leqq j\leqq m-1)$ or $(\nu^{m},$ $a)+b=e$} and let $\Delta_{1}$ be the convex
polyhedron spanned by $\nu^{j},$ $j\in J$. Then the leading term equation is nothing

but $\tilde{\alpha}_{j}\frac{\partial f_{\Delta_{1}}}{\partial z_{j}}(\tilde{\alpha})=0(j=1, \cdots n)$ which has no solution in $(C^{*})^{n}$ if the coeffi-

cients are generically chosen (Kouchnirenko [3]). Thus $e=0$ is the only pos-
sible case. Let $J$ and $\Delta_{1}$ as above.

(i) Assume $a=(a_{1}, \cdots , a_{n})\neq 0$ and $e=0$ . If rank $\{\nu^{j} ; j\in J\}\leqq n-1$ and the

leading term equation is $\tilde{\alpha}_{j}\frac{f_{\Delta_{1}}}{z_{j}}(\tilde{\alpha})=\gamma_{j}\underline{\partial}\partial(j=1, \cdots , n)$ . This has no solution by

the regularity of $\gamma$ . Thus dim $\Delta_{1}=n-1$ . Suppose $m\not\in J$. Then $J=\{1,2,$ $\cdots$

$m-1\}$ by the assumption dim $\Delta_{1}=n-1$ . However this is a contradiction to
the assumption $e=0$ because the hyperplane $L$ does not pass through the
origin. Thus $m\in J$. Then clearly $J^{\prime}=J-\{m\}\in S(\Delta, \nu^{m})$ . The leading equation
reduces to:

(5.4) $\alpha_{j}\frac{\partial f_{\Delta_{1}}}{\partial z_{j}}(\alpha)=\gamma_{j}$ $(j=1, \cdots n)$

and $b=-(a, \nu^{m})=-\sum_{j=1}^{n}a_{j}\nu_{j}^{m}$ where $a$ is determined up to a scalar multiplication

by the hypersurface of $R^{n}$ passing through $\{\nu^{j} ; j\in J^{\prime}\}$ and the origin. By
the induction’s assumption, (5.4) has $n!$ volume $\Delta_{1}(0)$ simple solutions. By
exactly the same argument as Lemma 4.4 these solutions correspond bijectively
to the bifurcating solutions $z(t)$ of (5.3) such that $\Vert z(t)\Vert\rightarrow\infty$ .

(ii) Assume $a=0$ . Then the leading terms give the following equation:

(5.5) $\left(\begin{array}{lll}\nu_{1}^{1} & \cdots & \nu_{1}^{m-1}\\\vdots & & \vdots\\\nu_{n}^{1} & \cdots & \nu_{n}^{m-1}\end{array}\right)\left(\begin{array}{ll}c_{1}\alpha^{\nu^{1}} & \\\vdots & \\c_{m- 1}\alpha^{\nu^{m}} & -1\end{array}\right)=\left(\begin{array}{l}\gamma_{1}\\\vdots\\\gamma_{n}\end{array}\right)$ .

Thus by the induction we find $n$ ! volume $\Delta_{2}(0)$ simple solutions where $\Delta_{2}$ is
the convex polyhedron spanned by $\nu^{1},$ $\nu^{2},$ $\cdots$ , $\nu^{m-1}$ . The correspondence to the
bifurcating solutions of (5.3) is similar. These are solutions which remain to
be solutions at $t=0$ . For $t$ sufficiently small, the solutions of types (i) and (ii)

are mutually distinct. This completes the proof of Lemma 4.3, because it is
easy to see that $\Delta_{2}$ and various $\Delta_{1}$ , which is derived from $S(\Delta, \nu^{m})$ as in (i),

is a convex polyhedral decomposition of $\Delta$ .
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6. Bifurcation of the vanishing cycles.

In this section, we consider the following family: Let $f(z)$ be as before
and let $\mu$ be a fixed vertex on $\Gamma(f)$ . Let $f(z)=\sum c_{\nu}z^{\nu}$ and let $g(z)=\sum_{\nu\neq\mu}c_{\nu}z^{\nu}$ .
We assume that $f$ and $g$ are convenient and have non-degenerate Newton
principal parts respectively. Let $f_{t}(z)=g(z)+tc_{\mu}z^{\mu}(0\leqq t\leqq 1)$ . Let $S(\mu)$ be the
set of the faces of dimension $ n-1\Delta$ of $\Gamma(g)$ which is not contained in $\Gamma(f)$

and let $\Delta(\mu)$ be the cone over $\Delta$ with the vertex $\mu$ and let $|S(\mu)|=_{\Delta\in S(\mu)}U\Delta(\mu)$ .
Then we have:

THEOREM 6.1. (i) $Bf.\mu(z_{1}\frac{\partial f_{t}}{\partial_{Z_{1}}}=\cdots=z_{n}\frac{\partial f_{t}}{\partial z_{n}}=0,0)=n$ ! volume $|S(\mu)|$ .

(ii) $Bf.\mu(\frac{\partial f_{t}}{\partial z_{1}}=\ldots=\frac{\partial f_{t}}{\partial z_{n}}=0,0)=\nu(|S(\mu)|)$ .
PROOF. This is an immediate corollary of Theorem 4.2, Corollary 4.2.2 and

Theorem 2.1.
REMARK 6.2. Suppose that one of the following conditions is satisfied.
(a) $\mu$ is regular with respect to $\Gamma(g, \mu)=\bigcup_{\Delta\in S(\mu)}\Delta$

or
(b) $S(\mu)$ consists of only one face $\Delta$ .
Then Theorem 6.1 can be proved directly. The case (a) can be treated in

the exactly same way as in the proof of Theorem 4.2. For the case (b), we
only need to prove:

$(\mu)$ : $z_{j}\frac{\partial g_{\Delta}}{\partial z_{j}}+\mu_{j}c_{\mu^{\hat{z}^{\mu}}}=0$ $(j=1,2, \cdots n)$

and

$(\delta)$ : $z_{j}\frac{\partial g_{\Delta}}{\partial z_{j}}+\delta_{j}c_{\mu}z^{\mu}=0$ $(j=1,2, \cdots n)$

have the same number of solutions such that $z_{j}\neq 0$ if $\mu_{j}\neq 0$ for a generic $\delta=$

$(\delta_{1}, \cdots , \delta_{n})$ . After proving this, we come to the similar situation as in Lemma
4.3. Theorem 4.2 can be also proved by iterated uses of Theorem 6.1 (in the
case of (a) or $(b))$ and the “lifting” technique reducing to a Brieskorn polyno-
mial case for which Theorem 4.2 is clear.

Appendix to Lemma 4.3.

Let $\Delta$ be a maximal face of $\Gamma(f)$ and let $\nu^{1},$ $\cdots$ , $\nu^{m}$ be the integral points of

$\Delta i$ . $e$ . $\{\nu^{1}, -- , \nu^{m}\}=\Delta\cap Z^{n}$ . For a vector $c=(c_{1}, \cdots , c_{m})\in C^{m}$ , let $f_{c}(z)=\sum_{j=1}^{m}c_{j}z^{\nu^{j}}$

and let $U=\{c\in C^{m}$ ; $\Gamma(f_{c}(z))=\Delta$ and $f_{c}$ is non-degenerate in the sense of the
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Newton boundary}. By the appendix below and Theorem 6.1 of [3], $U$ is a
Zariski open set. Let $\gamma=(\gamma_{1}, \cdots , \gamma_{n})$ be a regular vector for $\Delta$ . Then Lemma
4.3 can be sharpened as follows.

LEMMA 4.3’. The following equation

(A.1) : $(\nu_{n}^{1}\nu_{1}^{1}$

...
$\nu_{n}^{m}\nu_{1}^{m}:)\left(\begin{array}{l}c_{1}z\\\vdots\\ z^{\nu^{m}}c\end{array}\right)=\left(\begin{array}{l}\gamma_{1}\\\vdots\\\gamma\end{array}\right)$ $(c\in U)$

has only isolated solutions in $C^{n}$ and the sum of the multiplicity of the solutions
of (A.1) is independent of $c\in U$ . (Thus it is equal to $n$ ! volume $(\Delta(0))$ by Lemma
4.3.)

PROOF. Assume that (A.1) has non isolated solutions. As the set of solu-
tions is an algebraic set, we can use the Curve Selection lemma to find a
Laurent series $z(s)=(\alpha_{1}s^{a_{1}}+\cdots, \cdots, \alpha_{n}s^{a_{n}}+ )(0\leqq s\leqq 1)$ such that $\alpha=(\alpha_{1}, \cdots, \alpha_{n})$

$\neq 0$ and (i) $z_{1}(s)\frac{\partial f_{c}}{\partial z_{i}}(z(s))=\gamma_{i}$ ($i=1,$ $\cdots$ , n) and (ii) $a_{0}=minimum\{a_{1}, \cdots , a_{n}\}<0$

$i$ . $e$ . $\lim_{s=0}\Vert z(s)\Vert=\infty$ . Let $\Delta_{a}$ be the face of $\Delta$ on which the function $l_{a}(x)$

$=\sum_{i=1}^{n}a_{i}x_{i}$ defined on $\Delta$ takes its minimal value, say $d(a)$ . We assume $\alpha\in(C^{*})^{n}$ .
(If $\alpha_{i}=0$ for some $i$, the following argument is available for the corresponding
subspace of $C^{n}.$) Comparing the leading terms of (i), we see that $d(a)>0$ is
obviously impossible. Assume that $d(a)<0$ . Then the leading terms give the
equation

$\alpha_{i}\frac{\partial f_{c,\Delta_{a}}}{\partial z_{i}}(\alpha)=0$ $(i=1, \cdots n)$

which is absurd by the non-degeneracy assumption. Thus $d(a)=0$ and by the
regularity of $\gamma$ dim $\Delta_{a}$ must be $n-1$ . This implies $\Delta_{a}=\Delta$ and the hyperplane

$\sum_{i=1}^{n}a_{i}x_{i}=0$ contains $\Delta$ . This is again impossible from the geometric assumption

of $\Delta$ . Now we prove the latter assertion. By virtue of Rouch\’e’s principle
([5]), the local sum of the multiplicity is constant when $c$ moves in a neigh-
borhood of $c_{0}\in U$. Thus the only possibility is that some solution of (A.1)
might disappear in the infinity when $c$ approaches $c_{0}$ . In such a case we can
use again the Curve Selection lemma to obtain Laurent series $ z(s)=(\alpha_{1}s^{a_{1}}+\cdots$ ,
.. , $\alpha_{n}s^{a_{n}}+\cdots$ ) and analytic curve $c(s)(0\leqq s\leqq 1)$ such that $\alpha\neq 0,$ $c(O)=c_{0}\in U$

and (i) $z_{i}(s)\frac{\partial f_{c(s)}}{\partial z_{i}}(z(s))=\gamma_{i}$ ($i=1,$ $\cdots$ , n) and (ii) $a_{0}=minimum\{a_{1}, \cdots , a_{n}\}<0$ .

Let $\Delta_{a}$ and $d(a)$ be as above. By the exact same argument as above, we get
a contradiction. This completes the proof.
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Appendix about the non-degeneracy condition.

Let $\Delta,$

$F(z, c)=f_{c}(z)=\sum_{j=1}^{m}c_{j}z^{\nu^{j}}$ and $U$ be as in the above appendix to Lemma

4.3. In this appendix, we shall show that $U$ is a non-empty Zariski open set.
As $f_{c}(z)$ is a weighted homogeneous polynomial, we can take positive integers
$q_{1},$

$\cdots$ , $q_{n}$ so that $g_{c}(z):=f_{C}(z_{1}^{q_{1}}, \cdots , z_{n}^{q_{n}})$ is a homogeneous polynomial. How-
ever it is an easy to see that $f_{c}$ is non-degenerate if and only if $g_{c}$ is non-
degenerate. Thus we may assume that $f_{c}$ is homogeneous. For any closed
face $\Xi$ of $\Delta$ (of any dimension), we define sets $V(\Xi),$ $V(\Xi)^{*}$ and $V(\Xi)^{\prime}$ by

$V(\Xi)=\{(z, c)\in P^{n-1}\times P^{m-1}$ ; $\frac{\partial F_{\Xi}}{\partial z_{1}}(z, c)=\ldots=\frac{\partial F--}{\partial z_{n}}(z, c)=0\}$

$V(\Xi)^{*}=V(\Xi)\cap\{z_{1}z_{2}\cdots z_{n}\neq 0\}$ and

$V(\Xi)^{\prime}=the$ closure of $V(\Xi)^{*}$ in $P^{n-1}\times P^{m-1}$ .

It is well known that $V(\Xi)^{\prime}$ is an algebraic set of dimension dim $V(\Xi)^{*}$ .
(Lemma 3.9, [10]). Let $\pi$ : $P^{n-1}\times P^{m-1}\rightarrow P^{m-1}$ be the projection and let $V^{*}$

$=UV(\Xi)^{*}\Xi V^{\prime}=\bigcup_{\Xi}V(\Xi)^{\prime}$ and $W^{*}=\pi(V^{*}),$ $W^{\prime}=\pi(V^{\prime})$ . By the definition, $U$ is

the complement of the affine cone of $W^{*}$ . By the proper mapping theorem
(p. 162, [9]), $W^{\prime}$ is an algebraic set which contains $W^{*}$ . Now we claim that
$W^{*}=W^{\prime}$ and thus $U$ is a Zariski open set: Assume that $W^{\prime}$ properly contains
$W^{*}$ . We can take a point $(\overline{z}, d)$ of $V^{\prime}$ such that $d\in W^{\prime}-W^{*}$ . We aPply the
Curve Selection lemma to the pair (V‘, $V^{*}$ ) at $(\overline{z}, d)$ to find an analytic curve
$p(s)=(z(s), c(s))$ for $0\leqq s\leqq 1$ such that for some face $\Xi$ of $\Delta p(s)\in V(\Xi)^{*}$ for
$s>0$ and $p(O)=(\overline{z}, d)$ . Write $p(s)$ explicitly as

$z(s)=(\alpha_{1}s^{a_{1}}+\cdots \ldots , \alpha_{n}s^{a_{n}}+ )$ and

$ c(s)=d+d_{1}s+\cdots$ .
By the assumption, we have that each $\alpha_{i}$ is non-zero complex number for $i$

$=1,2,$ $\cdots$ , $n$ and $\{a_{i}\}_{i=1}^{m}$ are non-negative integers such that maximum $\{a_{1},$ $a_{2}$ ,

, $a_{n}$ } $>0$ . Consider the linear function $l_{a}(x)=\sum_{i=1}^{n}a_{i}x_{i}$ on $\Xi$ and let $\Xi(a)$ be

the face of $\Xi$ where $l_{a}$ takes its minimal value, say $q$ . We consider the
identity

$\frac{\partial F_{\Xi}}{\partial_{Z_{i}}}(z(s), c(s))\equiv 0$ $i=1,2,$ $\cdots$ $n$ .

$\frac{The1ea\partial F_{\Xi(a)}}{\partial z_{i}}(\alpha,d)=0fori=l.\cdot,n.Thisim\alpha,d)\in V(\Xi(a))^{*}dingtermsofthe..1efthandare\frac{\partial F_{\Xi(a)}}{p1ies(\partial_{Z_{i}}}(\alpha,d)s^{q-a}{}^{t}andthusandwegetd\in W^{*}$

which is a contradiction to the assumption $d\in W^{\prime}-W^{*}$ .
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REMARK. $U$ is non-empty by Kouchnirenko, [3]. However it is easy to
prove directly that dim $W^{\prime}\leqq m-2$ using the equality:

rank $\{\frac{\partial^{2}F--}{\partial z_{i}\partial c_{j}}\}_{\nu J\in\Xi}1\leqq j\leqq m1\leqq i\leqq n=rank\nu\subset-\{\nu_{\iota}^{k}\}=\dim\Xi+1$ on $\{z_{1}z_{2}\cdots z_{n}\neq 0\}$ .
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