The subsequentiality of product spaces

By Tsugunori NOGURA

(Received Dec. 10, 1977) (Revised May 12, 1978)

§1. Introduction.

A space is said to be a subsequential space if it can be embedded as a subspace of a sequential space. The closed image of a metric space is shortly said to be a Lasnev space (cf. [4], [5]).

Professor K. Nagami posed the following two problems.

1. Can each Lašnev space be embedded in a countably compact sequential regular space ?

2. Is finite (or countable) product of Lašnev spaces subsequential?

This paper gives a negative answer to the first problem and a partial answer to the second as follows:

1. Any Lašnev space, which is not metrizable, cannot be embedded in any countably compact regular space with countable tightness.

2. Assuming the continuum hypothesis (CH), there exist regular Fréchet spaces X and Y such that $X \times Y$ is not subsequential.

Each Fréchet space is subsequential. Therefore the second result shows that even a finite product of subsequential spaces is not subsequential (cf. [8, p. 179]).

In this paper spaces are assumed to be T_1 and maps to be continuous onto.

The author thanks to Professor K. Nagami for his valuable suggestions.

§2. Theorems.

DEFINITION 1 ([1, p. 954]). A space X has countable tightness if it has the following property: If $A \subset X$ and $x \in Cl_X A$, then $x \in Cl_X B$ for some countable $B \subset A$.

Let $R = \{0\} \cup \{1/n; n \in \omega_0\}$ be a convergent sequence. Let S be the disjoint union of a sequence $\{R(n); n \in \omega_0\}$ of copies of R, let $A = \{0(n) \in R(n); 0(n) = 0, n \in \omega_0\}$, and let T = S/A, the quotient space obtained from S by identifying A to a point q. THEOREM 1. T cannot be embedded in any countably compact regular space with countable tightness.

PROOF. Suppose there exists a countably compact regular space X with countable tightness such that $X=Cl_{X}T$. Let U be an arbitrary open neighborhood of q in X. Let V be an open set in X such that

$$q \in V \subset Cl_X V \subset U$$
.

Pick $s(n) \in V \cap (R(n) - 0(n))$ for each n. Then, since X is countably compact,

$$Cl_{X} \{s(n); n \in \omega_{0}\} - \{s(n); n \in \omega_{0}\} \neq \emptyset,$$
$$Cl_{X} \{s(n); n \in \omega_{0}\} - \{s(n); n \in \omega_{0}\} \subset Cl_{X} V \cap (X-T) \subset U$$

This shows $q \in Cl_X(X-T)$. Since X has countable tightness, there exists a sequence $\{x(n); n \in \omega_0\} \subset X-T$ such that

$$q \in Cl_X \{x(n); n \in \omega_0\}$$
.

Let $\{U(n); n \in \omega_0\}$ be a sequence of open neighborhoods of q in X such that

$$Cl_X U(n+1) \subset U(n)$$
,
 $x(n) \notin Cl_X U(n)$.

Put

$$A(n) = U(n) \cap (R(n) - \{0(n)\}).$$

Then $\cup \{A(n); n \in \omega_0\} \cup \{q\}$ is an open neighborhood of q in T. Let W be an open neighborhood of q in X such that

$$W \cap T = \bigcup \{A(n); n \in \omega_{0}\} \cup \{q\}$$
.

We will show that $\{x(n); n \in \omega_0\} \cap W = \emptyset$, which will contradict the fact that $q \in Cl_X \{x(n); n \in \omega_0\}$. By construction of W,

$$W \cap T = \bigcup \{A(n); n \in \omega_0\} \cup \{q\}$$
$$= \bigcup_{i=1}^{n-1} \{A(i) - U(n)\} \cup (U(n) \cap T).$$

Here $A(i) \cup \{q\}$ is a convergent sequence and $q \in U(n)$. Therefore A(i)-U(n) is a finite set for each $i \leq n-1$. Since $x(n) \notin Cl_X U(n)$, $x(n) \notin Cl_X (W \cap T)$. This shows $\{x(n); n \in \omega_0\} \cap W = \emptyset$ since T is dense in X. Now our proof is completed.

THEOREM 2. Let X be a proper Lasnev space, i.e. a Lasnev space which is not metrizable. Then X contains a closed set which is a copy of T.

PROOF. Let $f: M \to X$ be a closed map where M is a metric space. By Morita-Hanai-Stone's theorem [7] there exists a point $p \in X$ such that $\partial f^{-1}(p)$

is not compact. Let $\{q(n); n \in \omega_0\}$ be a discrete set of points in $\partial f^{-1}(p)$ and $\{U(n); n \in \omega_0\}$ a discrete open collection of M with $q(n) \in U(n)$ for each $n \in \omega_0$. Let $Q(n) = \{q(n,m); m \in \omega_0\}$ be a convergent sequence of points in $U(n) - f^{-1}(p)$ whose limit point is q(n). The sequence $\{f(Q(n)); n \in \omega_0\}$ has the following property: For each $k \in \omega_0$ there exists n (>k) such that

$$f(Q(n)) - \bigcup_{i=1}^{k} f(Q(i))$$
 is infinite.

Assume contrary, i.e. there exists some $k \in \omega_0$ such that

$$f(Q(n)) - \bigcup_{i=1}^{k} f(Q(i))$$
 is finite for each $n > k$.

Then

$$f^{-1}(\bigcup_{i=1}^{k} f(Q(i))) \cap Q(n)$$
 is infinite for each $n > k$.

Therefore there exists $q(n, m(n)) \in f^{-1}(\bigcup_{i=1}^{k} f(Q(i))) \cap Q(n)$ such that $f(q(n, m(n))) \neq f(q(j, m(j)))$ for $n \neq j$. The set $\{q(n, m(n)); n \in \omega_0\}$ is closed in M but $p \in Cl_X \{f(q(n, m(n))); n \in \omega_0\}$, which is a contradiction.

Put

$$L(n) = f(Q(n)) - \bigcup_{i=1}^{n-1} f(Q(i)).$$

Put

$$n_1 = \min\{n > 1; f(Q(n)) - f(Q(1)) \text{ is infinite}\}.$$

Then

$$L(n_1) = \{f(Q(n_1)) - f(Q(1))\} - \bigcup_{k=2}^{n_1-1} \{f(Q(k)) - f(Q(1))\}.$$

Since $\bigcup_{k=2}^{n_1-1} \{f(Q(k)) - f(Q(1))\}$ is finite, $L(n_1)$ is infinite. Put

$$n_2 = \min\{n > n_1; f(Q(n)) - \bigcup_{i=1}^{n_1} f(Q(i)) \text{ is infinite}\}.$$

Continuing in this manner, we obtain a sequence $\{L(n_k); k \in \omega_0\}$ such that $L(n_k)$ is an infinite set for each $k \in \omega_0$ and such that

$$L(n_k) \cap L(n_j) = \emptyset \text{ for } k \neq j.$$

Put

$$L = \bigcup \{L(n_k); k \in \omega_0\} \cup \{p\}.$$

Note that every point of $L(n_k)$ is isolated in L for each $k \in \omega_0$. Now it is easy to show that the set L is closed and homeomorphic to T. The proof is completed.

COROLLARY 1. Let X be a proper Lasnev space. Then X cannot be embedded in a countably compact regular spaces with countable tightness.

PROOF. Suppose X can be embedded in a countably compact regular space Y with countable tightness. Let L be a copy of T contained in X. Then $Cl_{Y}L$ is a countably compact regular space with countable tightness which contradicts Theorem 1. The proof is completed.

Let N denote the natural numbers. A countable space with one nonisolated point will be denoted by $N \cup \{ \mathfrak{S} \}$. Here $\{ \mathfrak{S} \}$ is the non-isolated point, and its filter of neighborhoods restricted to N is the elements of \mathfrak{S} . We denote by βN the Stone-Čech compactification of N. For a filter $\mathfrak{S} = \{ G_{\alpha} ; \alpha \in A \}$, we denote $G = \bigcap \{ Cl_{\beta N} G_{\alpha} ; \alpha \in A \}$ and say G is the realization of \mathfrak{S} . For each $M \subset N$, we denote $M^* = Cl_{\beta N} M - M$.

We recall some information on βN .

LEMMA 1 ([9, p. 414]). A set U is open-closed in N^* if and only if there exists $M \subset N$ for which $U=M^*$.

LEMMA 2 ([9, p. 414]). $G^* \subset H^*$ if and only if G - H is a finite set, where G and H are subsets of N.

DEFINITION 2. Let X be a space. A point $x \in X$ is said to be a *P*-point of X, if the intersection of each sequence of neighborhoods of x contains a neighborhood of x.

LEMMA 3 ([9, p. 415], CH). There exist P-points in N^* .

DEFINITION 3 ([2, p. 376]). A space X is said to be an F-space if each disjoint two cozero sets of X are completely separated in X.

LEMMA 4 ([2, p. 376]). N^* is an F-space.

Lemmas 5, 6 and 7 below are well-known and easy to prove, so we omit the proofs.

LEMMA 5. Let G be a closed subset of N^* . Then there exists a filter \mathfrak{G} on N whose realization is G.

LEMMA 6. Let $\mathfrak{G} = \{G_{\alpha}; \alpha \in A\}$ be a free filter whose realization is G. Then $\{G_{\alpha}^*; \alpha \in A\}$ is a neighborhood base of G in N*.

Let \mathfrak{G} be a filter. Then we say that \mathfrak{G} determines an ultrafilter if the realization of \mathfrak{G} is a singleton in N^* .

LEMMA 7. Let \mathfrak{G} be a filter on N. Then the following are equivalent:

i) & determines an ultrafilter.

ii) There exists an ultrafilter \mathfrak{H} such that for each $H \in \mathfrak{H}$ there exists $G \in \mathfrak{G}$ such that G - H is finite.

DEFINITION 4 ([3]). A space X is said to be *Fréchet* if, whenever $x \in Cl_X A$ for some $A \subset X$, there exists a sequence $\{x(n); n \in \omega_0\} \subset A$ such that $\lim x(n) = x$.

LEMMA 8 ([6, Theorem 1]). Let \mathfrak{G} be a free filter on N and let \mathfrak{G} be the realization of \mathfrak{G} . Then $N \cup {\mathfrak{G}}$ is a Fréchet space if and only if $G = Cl_{\beta N}(\operatorname{Int}_N^* G)$.

LEMMA 9 (CH). Let p be a P-point of N*. Then there exists a filter $\{V_{\alpha}; \alpha \in \omega_1\}$ on N such that

i) $V_{\alpha}^* \cong V_{\beta}^*$ for $\alpha \geqq \beta$,

ii) $\{V_{\alpha}^*; \alpha \in \omega_1\}$ is a neighborhood base of p in N^* .

PROOF. Let $\mathfrak{U} = \{U_{\alpha}; \alpha \in \omega_1\}$ be the filter on N such that the realization of \mathfrak{U} is p.

Put

$$V_0 = U_0$$
.

Assume $\{V_{\beta}; \beta < \alpha\}$ is already constructed as follows:

$$V_{\gamma}^* \cong V_{\delta}^*$$
 for any $\delta < \gamma < \alpha$,

 $V_{\gamma}^* \subset U_{\gamma}^*$ for any $\gamma < \alpha$.

Since p is a P-point,

 $p \in \operatorname{Int}_N * (\cap \{V_\beta^*; \beta < \alpha\}) \cap U_\alpha^*.$

Take $V_{\alpha} \subset N$ such that

$$p \in V_{\alpha} * \subseteq U_{\alpha} * \cap \operatorname{Int}_{N} * (\cap \{V_{\beta}; \beta < \alpha\}).$$

It is easy to show that $\{V_{\alpha}; \alpha \in \omega_1\}$ satisfies the conditions i) and ii). The proof is completed.

LEMMA 10 (CH). There exist two filters & and & such that

i) $N \cup \{\mathfrak{F}\}$ and $N \cup \{\mathfrak{G}\}$ are Fréchet spaces.

ii) $\mathfrak{D} = \{F \cap G ; F \in \mathfrak{F}, G \in \mathfrak{G}\}$ determines the ultrafilter.

PROOF. Let p be a P-point of N^* and let $\{V_{\alpha}; \alpha \in \omega_1\}$ be the filter in Lemma 9.

For any $\alpha \in \omega_1$, we choose $W_{\alpha 1}$ and $W_{\alpha 2}$, subsets of N, such that

$$W_{\alpha 1}^{*} \neq \emptyset, \ W_{\alpha 2}^{*} \neq \emptyset,$$
$$W_{\alpha 1}^{*} \cap W_{\alpha 2}^{*} = \emptyset,$$
$$W_{\alpha 1}^{*} \cup W_{\alpha 2}^{*} \subset V_{\alpha}^{*} - V_{\alpha + 1}^{*}.$$

 $\{W_{\alpha_1}^*; \alpha \in \omega_1\}$ and $\{W_{\alpha_2}^*; \alpha \in \omega_1\}$ have the following properties:

(1)
$$Cl_{\beta N}(\cup \{W_{\beta 1}^*; \beta < \alpha\}) \cap V_{\alpha}^* = \emptyset, \alpha \in \omega_{1},$$

(2)
$$Cl_{\beta N}(\cup \{W_{\beta 2}^*; \beta < \alpha\}) \cap V_{\alpha}^* = \emptyset, \alpha \in \omega_1,$$

$$(3) \qquad p \in Cl_{\beta N}(\cup \{W_{\alpha_1}^*; \alpha \in \omega_1\}) \cap Cl_{\beta N}(\cup \{W_{\alpha_2}^*; \alpha \in \omega_1\}).$$

Put

(4)
$$F = Cl_{\beta N}(\cup \{W_{\alpha 1}^*; \alpha \in \omega_1\}),$$

$$(5) \qquad \qquad G = Cl_{\beta N}(\cup \{W_{\alpha 2}^*; \alpha \in \omega_1\}).$$

Let $\mathfrak{F} = \{F_{\xi}; \xi \in A\}$ and $\mathfrak{G} = \{G_{\eta}; \eta \in B\}$ be two filters whose realizations are F

and G, respectively. Then $N \cup \{\mathfrak{F}\}$ and $N \cup \{\mathfrak{G}\}$ are both Fréchet by Lemma 8. We will show that $\mathfrak{P} = \{F_{\xi} \cap G_{\eta}; \xi \in A, \eta \in B\}$ determines an ultrafilter. Let $D \in p$ be any element of the ultrafilter p. Then we will show that there exist $F_{\xi} \in \mathfrak{F}$ and $G_{\eta} \in \mathfrak{G}$ such that

$$F_{\xi} \cap G_{\eta} - D$$
 is finite,
 $p \in F_{\xi}^* \cap G_{\eta}^*.$

Since D^* is open in N^* containing p, then there exists $V_r \subset N$ such that

$$(6) \qquad p \in V_r^* \subset D^*.$$

 $\cup \{W_{\beta_1}^*; \beta < \gamma\}$ and $\cup \{W_{\beta_2}^*; \beta < \gamma\}$ are cozero sets in N^* . Therefore, by Lemma 4,

$$Cl_{\beta N}(\cup \{W_{\beta 1}^{*}; \beta < \gamma\}) \cap Cl_{\beta N}(\cup \{W_{\beta 2}^{*}; \beta < \gamma\}) = \emptyset.$$

By Lemmas 1 and 6, there exist K and L such that

(7)
$$Cl_{\beta N}(\cup \{W_{\beta 1}^*; \beta < \gamma\}) \subset K^* \subset N^* - V_{\gamma}^*,$$

(8)
$$Cl_{\beta N}(\cup \{W_{\beta 2}^*; \beta < \gamma\}) \subset L^* \subset N^* - V_{\gamma}^*,$$

By (1), (4) and (7),

$$F = Cl_{\beta N}(\cup \{W_{\beta 1}^*; \beta < \gamma\}) \cup Cl_{\beta N}(\cup \{W_{\beta 1}^*; \beta \ge \gamma\}) \subset K^* \cup V_7^*.$$

Similarly

$$G \subset L^* \cup V_r^*$$
.

By Lemma 6, there exist $F_{\xi} \in \mathfrak{F}$ and $G_{\eta} \in \mathfrak{G}$ such that

$$F \subset F_{\varepsilon}^* \subset K^* \cup V_r^*,$$
$$G \subset G_{\eta}^* \subset L^* \cup V_r^*.$$

Then, by (9),

$$p \in F \cap G \subset F_{\varepsilon}^* \cap G_{\eta}^* \subset V_{\tau}^* \subset D^*.$$

Therefore $F_{\xi} \cap G_{\eta} - D$ is finite by Lemma 2. The proof is completed.

DEFINITION 5 ([3, p. 109]). Let X be a space. A subset U of X is said to be sequentially open if each sequence in X converging to a point in U is eventually in U. X is said to be a sequential space if each sequentially open subset of X is open.

LEMMA 11. Let \mathfrak{G} be an ultrafilter on N. Then $N \cup \mathfrak{G}$ is not subsequential. PROOF. Let X be a sequential space such that

$$N \cup \{ \mathfrak{G} \} \subset X, N \cup \{ \mathfrak{G} \}$$
 is dense in X.

 $\{\mathfrak{G}\} \in Cl_X(X-(N\cup\{\mathfrak{G}\}))$ implies that there exists a sequence $\{x(n); n \in \omega_0\}$ such that $\lim_{n \to \infty} x(n) = \{\mathfrak{G}\}$. Let $\{U(n); n \in \omega_0\}$ be a sequence of open sets in X such that

$$U(n) \cap U(m) = \emptyset$$
 for $n \neq m$, $x(n) \in U(n)$ for each $n \in \omega_0$.

Put

$$A = \bigcup \{ U(2n) \cap N; n = 1, 2, \cdots \},\$$

$$B = \bigcup \{ U(2n+1) \cap N; n = 0, 1, \cdots \}.$$

Then $A \in \mathfrak{G}$ and $B \in \mathfrak{G}$, which is impossible since $A \cap B = \emptyset$. The proof is completed.

THEOREM 3 (CH). There exist Fréchet spaces X and Y such that $X \times Y$ is not subsequential.

PROOF. Let p be a P-point of N*. Let $X=N\cup\{\mathfrak{F}\}$ and $Y=N\cup\{\mathfrak{G}\}$ be Fréchet spaces in Lemma 10. We define $f: N\cup\{p\}\to X\times Y$ such that

$$f(n) = (n, n),$$
$$f(p) = \{\mathfrak{F}\} \times \{\mathfrak{G}\}$$

Then f is an embedding since

$$f^{-1}((F_{\xi} \times G_{\eta}) \cap \mathcal{A}) = F_{\xi} \cap G_{\eta}$$
 ,

where $\Delta = \{(n, n); n \in N\}$.

Each subspace of subsequential space is subsequential. Therefore Lemma 11 implies that $X \times Y$ is not subsequential. The proof is completed.

References

- [1] A.V. Arhangel'skii, On the cardinality of bicompacta satisfying the first axiom of countability, Dokl. Akad. Nauk SSSR, 187 (1964), 967-970 (Russian). English Transl.: Soviet Math. Dokl., 12 (1969), 951-955.
- [2] J. Fine and L. Gillman, Extension of continuous functions in N*, Bull. Amer. Math. Soc., 66 (1960), 376-381.
- [3] S.P. Franklin, Spaces in which sequences suffice, Fund. Math., 57 (1965), 107-115.
- [4] N. Lašnev, Continuous decompositions and closed mappings of metric spaces, Dokl. Akad. Nauk SSSR, 165 (1965), 756-758 (Russian). English Transl.: Soviet Math. Dokl., 6 (1965), 1504-1506.
- [5] N. Lašnev, Closed image of metric spaces, Dokl. Akad. Nauk SSSR, 170 (1966), 505-507 (Russian). English Transl.: Soviet Math. Dokl., 7 (1966), 1219-1221.
- V.I. Malyhin, On countable space having no bicompactifications of countable tightness, Dokl. Akad. Nauk SSSR, 206 (1972), 1293-1296 (Russian). English Transl.: Soviet Math. Dokl., 13 (1972), 1407-1411.
- [7] K. Morita and S. Hanai, Closed mappings and metric spaces, Proc. Japan Acad., 32 (1956), 10-14.
- [8] N. Noble, Products with closed projection II, Trans. Amer. Math. Soc., 160 (1971), 169-183.

T. Nogura

 [9] W. Rudin, Homogeneity problem in the theory of Čech compactifications, Duke Math. J., 23 (1956), 409-419.

> Tsugunori NOGURA Department of Mathematics Ehime University Bunkyo-cho, Matsuyama Japan