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Introduction.

The Purpose of this paper is to prove the following theorem.
THEOREM. Let $d$ be a Prime number such that $d=2$ or $d\equiv-1$ mod 12, and

$k$ be an imaginary quadratic field with the discriminant $-d$ . SuPpose that the
class number of $k$ is prime to 3. Let $E$ be an elliptic curve defined over $k$ . Then,
there exists a prime ideal of $k$ at which $E$ does not have good reduction.

Note that the assumptions of the Theorem imply that the class number of
$k$ is prime to 6 and $(\frac{-d}{3})=1$ where $(-)$ denotes the Legendre symbol.

To prove the Theorem, we shall study the k-rational points of order 3 on
elliptic curves with everywhere good reduction defined over $k$ . To state our
method more explicitly, let $k$ be an arbitrary algebraic number field, $\mathfrak{o}_{k}$ the
maximal order of $k$ . Let $E$ be an elliptic curve with everywhere good reduc-
tion defined over $k,$ $\mathcal{E}$ the Neron model of $E$ over $X=Speco_{k}$ , and $p\mathcal{E}$ the
kernel of the $P$-multiplication on $\mathcal{E}$ . In \S 1-2, following Mazur [6], we obtain
an estimate of the free rank of the Mordell-Weil group of $E$ in terms of the
rank of $0_{k}^{\times}$ under an assumption on the divisibility of $p\mathcal{E}$ by $\mu_{p}$ or $Z/pz$, where
$p\mathcal{E}$ is considered as a finite flat group scheme over X. (See Proposition 4). As
an application of this proposition, we shall show that $E$ has no k-rational point
of order 3 under the assumptions of the Theorem (see Lemma 3). On the other
hand, we can show that such an elliptic curve has a k-rational point of order
3 in the last section, by studying the ramification of the extensions over $k$

generated by the coordinates of the points of order 3 (see Proposition 6,
Lemma 4, 5).

The author wishes to express his hearty thanks to Dr. H. Yoshida for his
valuable suggestions.

\S 1. Let $k$ be an algebraic number field of finite degree, and $h_{k}$ the class
number of $k$ in the narrow sense. Let $X=Spec0_{k}$ , and $H^{i}(X, )$ denote the i-th
cohomology group for the $f$ . $p.p$ . $f$ . topology over $X$ (cf. [2] Expose IV).
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LEMMA 1. Let $p$ be a Prime number and assume that $p$ does not divide $h_{k}$ .
Then;

i) $H^{1}(X, Z/pZ)=0$,
ii) $H^{2}(X, Z/pZ)\cong 0_{k}^{x}/(0_{k}^{x})^{p}$ if $p\neq 2$ or $k$ is totally imaginary,
iii) $H^{1}(X, \mu_{p})\cong \mathfrak{o}_{k}^{x}/(\mathfrak{o}_{k}^{\times})^{p}$ ,
iv) $H^{2}(X, \mu_{p})=0$, if $p\neq 2$ or $s\leqq 1$ , where $s$ is the number of the real archi-

medean places of $k$ .
PROOF. By virtue of the exact sequence of sheaves on the $f$ . $p$ . $p$ . $f$ . topology

over $X$,

$0\rightarrow\mu_{p}\rightarrow G_{m}\rightarrow^{p}G_{m}\rightarrow 0$ ,

we get the exact sequence

$H^{1}(X, G_{m})\rightarrow^{p}H^{1}(X, G_{m})\rightarrow H^{2}(X, \mu_{p})\rightarrow H^{2}(X, G_{m})\rightarrow^{p}H^{2}(X, G_{m})$ .

Using the facts $H^{1}(X, G_{m})\cong PicX$ and $H^{2}(X, G_{m})\cong(Z/2Z)^{t}$ (Grothendieck [3]

III Proposition 2.4, II Corollary 2.2), where $t={\rm Max}(0, s-1)$ we get the asssertion
iv). Similarly, by the exact sequence

$0_{k}^{x}\rightarrow^{p}0_{k}^{x}\rightarrow H^{1}(X, \mu_{p})\rightarrow PicX\rightarrow^{p}$ Pic $X$ ,

we get the assertion iii). Next by the duality theorem announced in Mazur
[6] \S 7 (see Remark 1), we get the assertion i) in the case $p\neq 2$ , and ii).

Finally, we shall show i) in the case $p=2$ . Let $P$ be a $Z/2Z$-torsor over
X. Then $P$ is finite and etale over $X$ (cf. Grothendieck [4] Chap. IV). If
Spec $R$ is an irreducible component of $P$, the quotient field of $R$ is an extension
over $k$ of degree at most two. Hence it is an abelian extension over $k$ . Since
$R$ is finite and etale over $0_{k}$ , we have $R=\mathfrak{o}_{k}$ because $2\nmid h_{k}$ . Therefore, $H^{1}(X$,
$Z/2Z)=0$ .

REMARK 1. We shall use only i) and iii) of Lemma 1 in the following
sections. M. Ohta has told the author the assertion i) is an immediate conse-
quence of the fact $H^{1}(X, Z/nZ)=Hom(\pi_{1}(X), Z/nZ)$ , where $\pi_{1}(X)$ denotes the
fundamental group of $X$ (cf. [1] Chap. II. (2.1)).

Let $\mathcal{E}$ be an abelian scheme of dimension 1 over $X$. The $p\mathcal{E}$ is a finite
flat group scheme over $X$.

The symbols $\eta,$
$\delta$ and $r$ are defined as follows; $\eta=\dim_{F_{p}}H^{1}(X, p\mathcal{E}),$

$\delta$

$=\dim_{F_{p}p}\mathcal{E}(k)$ and $r$ is the free rank of $\mathfrak{o}_{k}^{x}$ .
PROPOSITION 1. Let $P$ be a Prime number not dividing $h_{k}$ . If $p\mathcal{E}$ is divisible

by $\mu_{p}$ , then $\eta-\delta=r-1$ .
PROOF. By the assumption, we get an exact sequence (in the sense of

Tate [12]),
$ff$

$(^{*})$ $0\rightarrow\mu_{p}\rightarrow p\mathcal{E}\rightarrow G\rightarrow 0$ ,
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where $G$ is a finite flat group scheme and $\pi$ is a faithfully flat morphism.
Since $p\mathcal{E}$ is self-dual with respect to the Cartier duality, we can conclude $G$

$\cong Z/pz$. Moreover, we can consider $(^{*})$ as an exact sequence of sheaves on
$f$ . $p$ . $p$ . $f$ . topology because $\pi$ is faithfully flat (cf. Oort [7] Chap. III). Let us
abbreviate $H^{i}(X, \mathcal{F})$ to $H^{i}(\mathcal{F})$ for a sheaf $\mathcal{F}$ . Then we get the following exact
sequence by Lemma 1 i).

$0\rightarrow H^{0}(\mu_{p})\rightarrow H^{0}(p\mathcal{E})\rightarrow H^{0}(Z/pz)\rightarrow H^{1}(\mu_{p})\rightarrow H^{1}(p\mathcal{E})\rightarrow 0$ .

By Lemma 1 iii), dim $p_{p}H^{1}(\mu_{p})=r+\dim_{F_{p}}H^{0}(\mu_{p})$ .
Therefore, $\eta-\delta=\dim_{F_{p}}H^{1}(\mu_{p})-$ dim $p_{p}H^{0}(\mu_{p})-1=r-1$ .
PROPOSITION 2. Let $P$ be a prime number not dividing $h_{k}$ . If $p\mathcal{E}$ is divisible

by $Z/pZ$, then $\delta=\dim_{F_{p}}H^{0}(\mu_{p})+1,$ $\eta-\delta\leqq r-1$ .
PROOF. Similarly in the proof of Proposition 1, we get the exact sequence

$0\rightarrow Z/pz\rightarrow p\mathcal{E}\rightarrow\mu_{p}\rightarrow 0$ .
Hence we get the exact sequences

$0\rightarrow H^{0}(Z/pz)\rightarrow H^{0}(p\mathcal{E})\rightarrow H^{0}(\mu_{p})\rightarrow 0$

and $0\rightarrow H^{1}(p\mathcal{E})\rightarrow H^{1}(\mu_{p})$ .
Therefore we have $\delta=\dim_{p_{p}}H^{0}(\mu_{p})+1$ and $\eta\leqq\dim_{F_{p}}H^{1}(\mu_{p})$ . Hence it follows
$\eta-\delta\leqq r-1$ .

Let $E$ be the generic fibre of $\mathcal{E}$ and $pLLI(E, k)$ the $P$-torsion part of the
Shafarevich-Tate group of $E$ over $k$ . Let $\tau$ denote dim $F_{p}(_{p}III(E, k))$ and $\rho$

denote the free rank of the Mordell-Weil group $E(k)$ .
PROPOSITION 3. $\tau+\rho+\delta\leqq\eta$ .
PROOF. We have the exact sequence

$0\rightarrow p\mathcal{E}\rightarrow \mathcal{E}\rightarrow^{p}\mathcal{E}\rightarrow 0$

of sheaves on $f$ . $p$ . $p$ . $f$ . topology. Therefore we get the exact sequence

$0\rightarrow Coker(H^{0}(\mathcal{E})\rightarrow^{p}H^{0}(\mathcal{E}))\rightarrow H^{1}(p\mathcal{E})\rightarrow Ker(H^{1}(\mathcal{E})\rightarrow^{p}H^{1}(\mathcal{E}))\rightarrow 0$ ,

and we conclude $\eta=\rho+\delta+\tau^{\prime}$ , where $\tau^{\prime}=\dim_{p_{p}}(Ker(H^{1}(\mathcal{E})\rightarrow pH^{1}(\mathcal{E}))$ . Using the
fact $\tau\leqq\tau^{\prime}$ (cf. Mazur [6] Appendix), we have $\eta\geqq\rho+\delta+\tau$ .

PROPOSITION 4. The assumption on $P$ being as in Lemma 1, suPpose that $p\mathcal{E}$

is divisible by $Z/pZ$ or $\mu_{p}$ . Then $\rho+\tau\leqq r-1$ .
PROOF. The assertion is an immediate consequence of the previous three

propositions.
The following two corollaries are immediate from Proposition 4.
COROLLARY 1. Let $k$ be an imaginary quadratic field, and assume that $p$ is

Prime to $h_{k}$ . Then $p\mathcal{E}$ is divisible by neither $Z/pz$ nor $\mu_{p}$ .
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COROLLARY 2. Let $k$ be a real quadratic field and assume that $p$ is Prime
to $h_{k}$ . If $p\mathcal{E}$ is divisible by $Z/pz$ or $\mu_{p}$ , then the $Mo$ rdell-Weil group $E(k)$ is
finite and the $P$-primary part of the Shafarevich-Tate group equals zero.

\S 2. Let $k$ be an algebraic number field of finite degree, $E$ an elliptic curve
with everywhere good reduction defined over $k$ and $\mathcal{E}$ the Neron model of $E$

over $0_{k}$ . Suppose that $E$ has a k-rational point of order $p$, namely that there
exists a closed immersion $f$ from $Z/pZ$ to $E$ over $k$ . Then by the universal
property of the Neron model, there exists a morphism $\varphi$ from $Z/pZ$ to $\mathcal{E}$ over
$X=Speco_{k}$ such that the generic fibre of $\varphi$ is $f$. We denote the image of $\varphi$

by $G$ . Then $G$ is a group scheme of order $p$ over $X$ in the sense of [8].

LEMMA 2. Put $d=[k:Q]$ and suPpose that $p>d+1$ . Then $G\cong Z/pZ$.
PROOF. For each finite place $v$ of $k$ , we denote the completion of $k$ with

respect to $v$ by $k_{v}$ and the maximal order of $k_{v}$ by $\mathfrak{o}_{v}$ . Put $G_{v}=G\otimes_{0_{k}}0_{v}$, then

$\varphi_{v}$ : $Z/pZ\rightarrow G_{v}$

is a morphism which is isomorphic on the generic fibres. Therefore it is an
isomorphism by Raynaud’s Corollary 3.3.6 in [9]. Finally, we conclude that $\varphi$

is an isomorphism by Lemma 4 of Oort-Tate [8].

PROPOSITION 5. Let $k$ be an imaginary quadratic field and $p>3$ a Prime
number not dividing $h_{k}$ . Then any elliptjc curve defined over $k$ that has every-
where good reduction has no k-rational Point of order $p$ .

PROOF. This follows from Corollary 1 of Proposition 4.
REMARK 2. Let 1 be a prime ideal of $k$ dividing 2. Then the number of

$F_{N(1)}$ -rational points of $N$ mod 1 is at most $1+N(I)+2N(I)^{1/2}$ . Therefore, the
assertion of Proposition 5 is clear for $p>1+N(I)+2N(I)^{1/2}$, where $N(I)$ denotes
the absolute norm of the ideal I.

In the following lemma we shall extend the previous proposition to the
case $p=3$ .

LEMMA 3. Let $k$ be an imaginary quadratic field and assume that its class
number $h_{k}$ is Prime to 6. If an elliptic curve $E$ defined over $k$ has everywhere
good reduction, then $E$ has no k-rational point of order 3.

PROOF. Assume that $E$ has a k-rational point of order 3. Then we shall
show that $G$ is isomorphic to $Z/3Z$ or $\mu_{3}$ under the notation in the first part
of this section. Since the class number of $k$ is odd, there exists only one prime
number ramified in $k/Q$ . In the case $k\neq Q(\sqrt{-3}),$ $p=3$ is unramified in $k/Q$ ,
hence $G\cong Z/3Z$ by Corollary 3.3.6 of Raynaud [9] and Theorem 3 of Oort-
Tate [8]. In the case $k=Q(\sqrt{-}3)$ , we can also conclude that $G\cong Z/3Z$ or $\mu_{3}$

by Theorem 3 of Oort-Tate [8]. This completes the proof of Lemma 3 by
Corollary 1 of Proposition 4.
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\S 3. We will denote the group of the $P$-torsion points of an elliptic curve
$E$ by $pE$ . Let $k$ be an algebraic number field of finite degree satisfying the
following two conditions.

i) The class number of $k(\sqrt{-3})$ is odd,
ii) any prime ideal $\mathfrak{p}$ of $k$ dividing 3 is unramified over $Q$ and the norm

$N_{k/Q}(\mathfrak{p})$ is an odd power of 3.
PROPOSITION 6. Let the notation and the assumptiOns be as above. Moreover,

let $E$ be a semi-stable elliptic curve defined over $k$ with good reduction at any
prime ideal not dividing 3. If the discriminant $\Delta$ of a Weierstrass model of $E$

is a cube in $k$ , then $E$ has a k-rational Point of order 3, moreover $k(3E)=k(\sqrt{-3})$ ,
where $k(3E)$ is the field generated by the coordinates of the Points in $3E$ .

PROOF. Define $S_{1}$ and $S_{2}$ as follows;

$S_{1}=$ { $\mathfrak{p}\in Speco_{k}$ ; $\mathfrak{p}|3$ and $E$ mod $\mathfrak{p}$ is not supersingular}.

$S_{2}=$ {$\mathfrak{p}\in Spec\mathfrak{o}_{k}$ ; $\mathfrak{p}|3$ and $E$ mod $\mathfrak{p}$ is supersingular}.

Since $\Delta$ is a cube in $k$ , the degree of $k(3E)/k$ is a power of 2. Hence any
prime ideal in $S_{1}\cup S_{2}$ is tamely ramified in $k(3E)/k$ . Put $L=k(\sqrt{-3})$ . Then
any prime ideal $\mathfrak{p}$ in $S_{1}\cup S_{2}$ is necessarily ramified in this quadratic extension
$L/k$ . In the case $\mathfrak{p}$ is in $S_{1}$ , the inertia group $I(\mathfrak{p})$ (which is determined up to
conjugations) in $k(3E)/k$ is of order 2 (cf. Serre [10] \S 1). Therefore, the prime
ideal of $L$ lying over $\mathfrak{p}$ is unramified in $k(3E)/L$ . In the case $\mathfrak{p}$ is in $S_{2}$ , the
inertia group $I(\mathfrak{p})$ is a cyclic group of order 8 and the decomposition group is
the normalizer of $I(\mathfrak{p})$ in $GL_{2}(F_{3})$ (cf. [10] \S 1). Hence it is of order 16. On
the other hand, the degree of $k(3E)/k$ is at most 16, therefore Gal $(k(3E)/k)$ is a
subgroup $P$ of order 16, which is a 2-Sylow subgroup of $GL_{2}(F_{3})$ . Since $P$ has
a unique cyclic subgroup $C$ of order 8, $I(\mathfrak{p})=C$ and it does not depend on the
choice of $\mathfrak{p}$ in $S_{2}$ . This cyclic subgroup $C$ is a non-split Cartan subgroup of
$GL_{2}(F_{3})$ . Hence it is not contained in $SL_{2}(F_{3})$ and we can conclude that $I(\mathfrak{p})$

$\neq G_{L}$ , where $G_{L}=Ga1(k(3E)/L)$ . Let $F$ be the subfield of $k(3E)$ corresponing to
$I(\mathfrak{p})\cap G_{L}$ . Then $F$ is an unramified quadratic extension of $L$ in $k(3E)$ by the
fact described above and [11] (Proposition 18, Chap. IV). It contradicts the
assumption on the class number of $L$ . Hence $ S_{2}=\emptyset$ and $k(3E)/L$ is an unrami-
fied extension whose degree is a power of 2. Thus we obtain $k(3E)=L$ . There-
fore, Gal $(k(3E)/k)$ is of order 2. Using the fact that it is not contained in
$SL_{2}(F_{3})$ , we can conclude that it is conjugate to the subgroup generated by the

element $\left(\begin{array}{ll}1 & 0\\0 & -1\end{array}\right)\in GL_{2}(F_{3})$ . Therefore, $3E\cong Z/3Z\oplus\mu_{3}$ as Galois modules. This

completes the proof of Proposition 6.
We shall continue a discussion on the assumption of Proposition 6 in the

case where $k$ is an imaginary quadratic field.
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LEMMA 4. Let $k$ be an imaginary quadratic field different from $Q(\sqrt{-3})$

and assume that the class number of $k$ is prime to 6. If $E$ is an ellipfic curve
with everywhere good reduction defined over $k$ , then the discriminant $\Delta$ of a
Weierstrass model of $E$ is a cube in $k$ .

PROOF. Since $E$ has everywhere good reduction, there exists an ideal $\mathfrak{a}$

such that $\mathfrak{a}^{12}=(\Delta)$ . The assumption on the class number implies that $\mathfrak{a}$ is prin-
cipal, namely $\mathfrak{a}=(a)$ for some $a\in k^{\times}$ . Hence $\Delta=ua^{12}$ with some unit $u$ of $k$ .
Since $u$ is a cube in $k$ , we get our conclusion.

LEMMA 5. Let $k$ be an imaginary quadratic field with the discriminant $-d$,

and assume that the class number of $k$ is odd and $(\frac{-d}{3})=1$ , where $(-)$ is the

Legendre symbol. Then the class number of $k(\sqrt{-3})$ is odd.
PROOF. The assumption on the class number of $k$ implies that there exists

only one prime number ramified in $k$ . By the reciprocity law for the quadratic
residues, this prime number remains prime in $Q(\sqrt{-3})$ . Since $k$ and $Q(\sqrt{-3})$

are linearly disjoint over $Q$ and their discriminants are prime to each other,
we can conclude that there exists only one prime ideal of $Q(\sqrt{-3})$ ramified
in $k(\sqrt{-3})$ . Then the assertion is a special case of the result of Iwasawa [5].

Finally, we can prove the Theorem stated in the Introduction.
PROOF OF THEOREM. If $E$ is an elliptic curve with everywhere good reduc-

tion defined over $k$ , then $E$ has a k-rational point of order 3 by Lemma 4,
Lemma 5 and Proposition 6. This contradicts the conclusion of Lemma 3 in \S 2.
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