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Tight spherical designs, I
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\S 1. Introduction.

Let $R^{d}$ be Euclidean space of dimension $d$ and $\Omega_{d}$ the set of unit vectors
in $R^{d}$ . A non-empty finite set $X\subseteqq\Omega_{d}$ is called a sPherical t-design in $\Omega_{d}$ if

$\sum_{a\in X}W(\alpha)=0$

for all homogeneous harmonic polynomials $W$ on $R^{d}$ of degree 1, 2, $\cdots,$
$t$.

This is equivalent to the condition that the k-th moments of $X$ are invariant
under orthogonal transformations of $R^{d}$ for $k=0,1,2,$ $\cdots,$

$t$ . These designs
were studied by Delsarte, Goethals and Seidel [4]. They proved that the
cardinality of a design is bounded below;

$|X|\geqq\left(\begin{array}{l}d+n-1\\d-1\end{array}\right)+\left(\begin{array}{l}d+n-2\\d-1\end{array}\right)$ if $t=2n$ ,

$|X|\geqq 2\left(\begin{array}{l}d+n-1\\d-1\end{array}\right)$ $t=2n+1$ .

They called a design tight if it attains this bound. They constructed examples
of tight spherical t-designs for $t=2,3,4,5,7,11$ , and proved ([4], Theorem 7. 7)

that no such designs exist for $t=6$, except the regular heptagon in $\Omega_{2}$ .
Bannai [1] proved that for given $t\geqq 8$, there exist tight spherical designs in
$\Omega_{d}$ for only finitely many values of $d$ .

In this paper we will prove

THEOREM 1. Let $t=2n$ and $n\geqq 3$ and $d\geqq 3$ . Then there exists no tight
spherical t-design in $\Omega_{d}$ .

In a subsequent paper we hope to prove a similar result when $t$ is odd.
Note that if $d=2$ the only tight spherical design is the regular $(t+1)$-gon.

The proof is similar to that of Theorem 7. 7 in [4], which is the special
case $t=6$ . We first prove that if a design exists, then a certain polynomial
(written $R_{n}(x)$ , defined in \S 2 below) has all its roots rational. By reducing
$R_{n}(x)$ modulo various primes, we show that if its roots are all rational, then
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their reciprocals are all integers, and all of the same parity as $d$ . We define
$S_{n}(x)$ as the polynomial having these integers as its roots.

We now consider the two cases where $n$ is even or odd. If $n$ is even,
say $n=2m$ , the sum of the roots of $S_{n}(x)$ is $-2m$ . Now $R_{n}(x)$ is the sum of
two Gegenbauer polynomials whose roots interlace; using the interlacing we
can divide the roots of $S_{n}(x)$ into pairs, say $a$ and $b$ such that $a>0,$ $b<0$,
$a>|b|$ . Since these are integers of the same parity, we find $b=-a+2$ .
Therefore $S_{n}(x)$ is an even function of $(x-1)$ . By expressing $S_{n}(x)$ as a
polynomial in $(x-1)$ and Pnding a nonzero coefficient we obtain a contradiction.
This proves the Theorem for even $n$ .

If $n$ is odd, say $n=2m+1$ , then we pair off all but one of the roots in a
similar way. As before, $a+b\geqq 2$ ; since the sum of the roots of $S_{n}(x)$ is
$-(d+2m)$ the unpaired root is $\leqq-(d+4m)$ . But we can show $S_{n}(x)\neq 0$ in
this interval; this contradiction proves the Theorem for $n$ odd.

\S 2. Notation.

Let $\lambda$ be a real number and $m$ a positive integer. Define

$(\lambda)_{m}=\Gamma(\lambda+m)/\Gamma(\lambda)=\lambda(\lambda+1)\cdots(\lambda+m-1)$ (2. 1)

and

$(2m-1)$ ! $!=1\cdot 3\cdot 5\cdot$ $(2m-1)=2m!/2^{m}\cdot m!=2^{m}\cdot(\frac{1}{2})_{m}$ (2. 2)

The Gegenbauer polynomials $C_{n}^{(\lambda)}(x)$ are defined by the equations ([5], \S 10. 9,
(21) and (22)):

$\frac{m!(-1)^{m}}{(\lambda)_{m}}C_{2m}^{(\lambda)}(x)=F(-m,$ $m+\lambda,$ $\frac{1}{2}x^{2})$ (2. 3)

$=1+\sum_{r=1}^{m}mC_{r}(-1)^{\gamma}\frac{(m+\lambda)_{r}}{(1/2)_{r}}x^{2r}$ (2. 4)

and

$\frac{rn!(-1)^{m}}{(\lambda)_{m+1}}C_{2m+1}^{(\lambda)}(x)=2xF(-m,$ $m+\lambda+1,$ $\frac{3}{2}x^{2})$ (2. 5)

$=2\sum_{r=0}^{m}mC_{r}(-1)^{r}\frac{(m+\lambda+1)_{r}}{(3/2)_{r}}x^{2r+1}$ (2. 6)

where $F$ is Gauss’ hypergeometric function. From now on, $\lambda$ will always have
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the value $\lambda=(1/2)d$ and will be omitted where possible. We define the poly-
nomial $R_{n}(x)$ by

$R_{n}(x)=C_{n}(x)+C_{n-1}(x)$ . (2. 7)

Apart from constant factors, $R_{n}$ and $C_{n}$ have the same meaning as in \S 2 of [4].

From these definitions we note that the leading coefficients of $R_{n},$ $C_{n}$ and $C_{n-1}$

are all positive, also that $C_{n}$ is even if $n$ is even and odd if $n$ is odd.
Define $S_{n}(x)$ as the monic polynomial whose roots are the reciprocals of

those of $R_{n}(x)$ .

If $S_{n}(x)=x^{n}+\sum_{k=1}^{n}u_{k}x^{n-k}$

(2. 8)

then $c\cdot R_{n}(x)=1+\sum_{k=1}^{n}u_{k}x^{k}$

for a suitable constant $c$ . We now derive some information about the $u_{k}$ .
First suppose $n=2m$ is even. Replace $m$ by $m-1$ in (2. 6), multiply by

$-m$ and add (2. 4). This gives

$R_{2m}(x)(-1)^{m}m!/(\lambda)_{m}$

$=1+\sum_{r=1}^{m}mC_{r}(-1)^{r}(m+\lambda)_{r}x^{2r}/(\frac{1}{2})_{r}$

(2. 9)

$-2m\sum_{r=0}^{m-1}m-1C_{r}(-1)^{r}(m+\lambda)_{\tau}x^{2r+1}/(\frac{3}{2})_{r}$ .

Now suppose $n=2m+1$ is odd. Then $(\lambda+m)\cdot(2.6)+(2.4)$ gives

$R_{2m+1}(x)(-1)^{m}m!/(\lambda)_{m}$

$=1+\sum_{r=1}^{m}mC_{r}(-1)^{r}(m+\lambda)_{r}x^{2r}/(\frac{1}{2})_{r}$

(2. 10)

+2 $(\lambda+m)\sum_{r=0}^{m}mC_{r}(-1)^{r}(m+\lambda+1)_{r}x^{2r+1}/(\frac{3}{2})_{r}$ .

Now define

$h=(2m+2\lambda)=2m+d$ . (2. 11)

Then we have

$\frac{(m+\lambda)_{r}}{(1/2)_{r}}=\frac{+2)\cdots(h+2r-2)}{(2r-1)!!}\underline{h(h}$ (2. 12)
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and similar formulae for $(m+\lambda)_{r}/(3/2)_{r}$ and $(m+\lambda+1)_{r}/(3/2)_{r}$ . By inspection
we have the following results:

LEMMA 2. 1. Let $u_{r}$ be defined for $1\leqq r\leqq n$ by (2. 8) above. Then

(1) the denominator of $u_{2r}$ divides $(2r-1)$ ! ! ,

(2) the denominator of $u_{2r+1}$ divides $(2r+1)$ ! !,

(3) if $d$ is even all the $u_{r}$ are even (because $2|h$),

(4) if $d$ is odd, the constant term of $S_{n}(x)$ is odd (because it equals

$u_{n}=\pm h(h+2)\cdots(h+2m-2)/(2m-1)$ ! !),

(5) the sum of the roots of $S_{n}(x)$ is

$+2m$ if $n=2m$

$-h$ if $n=2m+1$ ,
$\}$ (2. 13)

(because this $sum=-u_{1}=-1\times coefficient$ of $x$ in (2. 9) or (2. 10). )

\S 3. Lloyd type theorem.

The following result is implicit in Theorem 7. 7 of [4].

THEOREM 2. Suppose there exists a tight spherical t-design in $\Omega_{d}$ with
$d\geqq 3$ . If $t=2n$ then all $n$ zeros of the polynomial $R_{n}(x)$ are rational. If $t=2n+1$ ,
then all $n$ zeros of the p0lyn0mial $C_{n}(x)$ are rational.

PROOF. By [4] Theorem 7. 5 the design induces an s-class association

scheme (in the sense of [2]) with $s=[\frac{t+1}{2}]$ . The Bose-Mesner algebra $A$ of

this scheme is as described in [3] Chapter 2. The notation agrees except that $i=0$

in [3] corresponds to the relation $R_{0}=identity$ , which corresponds to $\alpha=1$ in
[4]. By comparing Theorem 3. 6 of [4] with (2. 16) in [3] we see that $Q_{k}(\alpha)$

and $Q_{k}(i)$ have the same meaning.
By [4] Theorem 2. 4 the $Q_{k}(1)$ are all distinct for $d\geqq 3$ and $k\geqq 1$ , because

$Q_{k+1}(1)>Q_{k}(1)$ . (If $d=2$ the proof breaks down here because then $Q_{k}(1)=2$

for all $k$). So by [3] (2. 18) the matrices $/k$ have distinct ranks.
Let $\sigma$ be any field automorphism of the complex numbers. Since the

algebra $A$ has only the unique set

$\{J_{0}, J_{1} , J_{s}\}$ ([4], 7. 6) (3. 1)

of orthogonal idempotents, $\sigma$ permutes them. Since the $J_{i}’ s$ have distinct ranks,
$\sigma$ fixes all of them, so each $J_{i}$ is rational. By Theorem 3. 6 of [4], the
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number $Q_{k}(\alpha)$ is rational for all $\alpha$ in $A(X)$ and $1\leqq k\leqq s$ . So all elements of
$A(X)$ are rational.

If $i=2n$ then by [4] Theorem 5. 11, $A(X)$ consists of the zeros of $R_{n}(x)$ so
$R_{n}(x)$ has all its roots rational. Similarly if $t=2n+1$ , by Theorem 5. 12 of [4],
$C_{n}(x)$ has all its roots rational. This proves Theorem 2.

LEMMA 3. 1. Suppose there exists a tight $(2n)$-design in $\Omega_{d}$ with $d\geqq 3$ .
Then $S_{n}(x)$ has all its roots integers and these integers all have the same
parity as $d$ .

PROOF. We have to show that the $u_{k}$ in (2. 8) are all integral. Let $a$ be
the least integer $>0$ such that $acR_{n}(x)$ has all coefficients integral. By (2. 8)

a $cR_{n}(x)=a+\sum_{k=1}^{n}$ a $u_{k}x^{k}$ . (3. 2)

If $a\neq 1$ , let $P$ be a prime factor. By the minimality of $a$ there exits a $k$ such
that $P$ does not divide $au_{k}$ : let $k=r$ be the least. Then

$acR_{n}(x)\equiv\sum_{k=r}^{n}au_{k}x^{k}$ mod p. (3. 3)

Therefore $r$ of the roots of $R_{n}(x)$ are multiples of $p$ , so $P^{r}$ divides $a$ . Since $p$

does not divide $au_{r},$ $p^{r}$ divides the denominator of $u_{r}$ . By Lemma 2. 1 this is
a factor of either $r!$ ! (if $r$ is odd) or $(r-1)$ ! ! (if $r$ is even). This is impossible
because the largest power of $p$ dividing $r!$ ! is $<p^{r}$ . So all the $u_{k}$ are integers.
By Lemma 2. 1, if $d$ is odd, the constant term of $S_{n}(x)$ and hence all the roots
is odd. If $d$ is even all the $u_{k}$ are even, so that $S_{n}(x)\equiv x^{n}$ mod2. Therefore
all roots are even. Q. E. D.

For future use, we give the corresponding result when $t$ is odd.

LEMMA 3. 2. SuPpose there exists a tight $(2n+1)$ -design in $\Omega_{d}$ with $d\geqq 3$ .
Then the reciprocals of the nonzero roots of $C_{n}(x)$ are all integers, of the same
parity as $d$ .

This is proved by the same method; details are left to the reader.

\S 4. Interlacing roots.

We now apply the theory of orthogonal polynomials to prove an inequality
for the roots of $S_{n}(x)$ . Put $m=[(1/2)n]$ , recall $R_{n}(x)=C_{n}(x)+C_{n-1}(x)$ .

LEMMA 4. 1. The roots of $R_{n}(x)$ are real and distinct and nonzero. Exactly
$m$ of them are positive.

PROOF. For fixed $\lambda$ and varying $n$ the $C_{n}^{\lambda}(x)$ form a system of orthogonal
polynomials ([5], \S 10. 9). By standard theory ([5], \S 10. 3) the zeros of $C_{n}$ are
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real and distinct; between any two there lies a zero of $C_{n-1}$ . Accordingly
we write

$z_{1}>y_{1}>z_{2}>y_{2}>\ldots>z_{n-1}>y_{n-1}>z_{n}$ (4. 1)

where $\{z_{1}, \cdots, z_{n}\}$ are the zeros of $C_{n}$ and $\{y_{1}, -, y_{n-1}\}$ those of $C_{n-1}$ .
From (2. 4) and (2. 6), the leading coefficients of $C_{7\iota}$ and $C_{n-1}$ are both positive.
Therefore

sign $(R_{n}(z_{i}))=sign(C_{n-1}(z_{i}))=(-1)^{t+1}$ , (4. 2)

sign $(R_{n}(y_{i}))=sign(C_{n}(y_{i}))=(-1)^{t}$ (4. 3)

Therefore $R_{n}(x)$ has a zero in each of the intervals

$z_{i}>x>y_{i}$ , $i=1,2,$ $\cdots,$ $(n-1)$ . (4. 4)

Also

sign $(R_{n}(z_{n}))=(-1)^{n-1}$ (4. 5)

and if $X$ is very large, then

sign $(R_{n}(-X))=sign(-X)^{n}=(-1)^{n}$ . (4. 6)

So the last root of $R_{n}(x)$ lies in the interval

$ z_{n}>x>-\infty$ . (4. 7)

Now if $n=2m$ , the middle root of $C_{n-1}(x)$ is $y_{m}=0$ (because $C_{n-1}(x)$ is odd).

Hence $R_{n}(x)$ has $m$ positive roots (in the intervals (4. 4) for $i=1,2,$ $\cdots,$ $m$ ).
If $n=2m+1$ then the middle root of $C_{n}(x)$ is $z_{m+1}=0$ ; so $R_{n}(x)$ again has $m$

positive roots. Thus the Lemma is proved.
Accordingly we label the roots of $R_{n}(x)$ as follows:

$p_{1}>p_{2}>\ldots>p_{m}(>0>)q_{n-m}>q_{n-m-1}>\ldots>q_{1}$ . (4. 8)

Define $a_{i}=1/p_{i}$ and $b_{i}=1/q_{i}$ ; then the numbers

$\{a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n-m}\}$ (4. 9)

are the roots of $S_{n}(x)$ .
LEMMA 4. 2. With this notation, $a_{r}+b_{r}>0$ for $1\leqq r\leqq m$ .
PROOF. In the scheme (4. 8) $q_{\gamma}$ is the $(n+1-r)$-th root of $R_{n}(x)$ (in de-

creasing order). Therefore $q_{r}$ lies in the $(n+1-r)$-th interval (4. 4), so

$q_{r}<z_{n+1-r}$ . (4. 10)
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Similarly
$p_{r}<z_{r}$ (4. 11)

Thus,
$P_{r}+q_{r}<z_{r}+z_{n+1-r}=0$ (4. 12)

because $C_{n}(x)$ is either even or odd, so its roots are symmetrical about $x=0$ .
Since $p_{r}>0$ and $q_{r}<0$ we have

$a_{r}+b_{r}=(p_{r}+q_{r})/p_{r}q_{r}>0$ . (4. 13)

Q. E. D.

\S 5. Proof of Theorem 1.

We suppose that a tight spherical $2n$ -design exists, with $n\geqq 3$ and $d\geqq 3$ ,
and deduce a contradiction. First suppose $n$ is even. Then by Lemma 4. 2 we
can pair off all the roots of $S_{n}(x)$ so that the sum of any pair is positive.
But by Lemma 3. 1 these roots are integers of the same parity, so

$a_{r}+b_{r}\geqq 2$ for $1\leqq r\leqq\frac{1}{2}n$ . (5. 1)

But by Lemma 2. 1 the sum of all the roots is $n$ , so we must have

$a_{r}+b_{r}=2$ . (5. 2)

Therefore $S_{n}(x)$ is an even polynomial in $x-1=w$ , say.
Take the formula (2. 9) for $R_{n}(x)$ , apply the transformation (2. 8); this

gives

$S_{n}(x)=x^{2m}-\frac{m(m+\lambda)}{(1/2)}\chi^{2m-2}-2mx^{2m-1}+\frac{2m(m-1)(m+\lambda)}{(3/2)}\chi^{2m- 3}$

(5. 3)

$+terms$ of degree $<(2m-3)$ .

In this we put $x=w+1$ and extract the coefficient of $w^{2m-3}$ . This equals

$ 2mC_{3}-mh\cdot$ 2m-2$C_{1}-2m\cdot 2m-1C_{2}+\frac{2}{3}m(m-1)h$

(5. 4)

$=-\frac{4}{3}m(m-1)(2m-1+h)<0$.

Since this coefficient is nonzero (for $m>1$ ), $S_{2m}(w)$ is not an even function
of $w$ . This proves the Theorem for even $n$ .
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Now suppose $n$ is odd. As before, we can divide all but one of the roots
of $S_{n}(x)$ into pairs satisfying (5. 1). Since the sum of all the roots is $-h$ , the
only unpaired root (called $b_{m+1}$ in \S 4) satisfies

$-h=b_{m+1}+(otherroots)\geqq b_{m+1}+2m$ . (5. 5)

Therefore
$b_{m+1}\leqq-h-2m$ . (5. 6)

Now consider $S_{n}(x)$ . Applying (2. 8) to (2. 10) we have

$S_{2m+1}(x)=\sum_{r=0}^{m}(-1)^{rm}C_{r}\frac{h\cdot(h+2)\cdots(h+2r-2)}{(2r-1)!!}x^{2m+1-2r}$

$+\sum_{r=0}^{m}(-1)^{rm}C_{r}\frac{h\cdot(h+2)\cdots(h+2r)}{(2r+1)!t}x^{2m-2r}$ (5. 7)

$=T_{0}(x)+T_{1}(x)+\cdots+T_{m}(x)$ (5. 8)

where $T_{r}(x)$ is the sum of the terms in $x^{2m+1-2r}$ and $X^{2m-2\gamma}$, so that

$T_{r}(x)=(-1)^{rm}C_{r}\frac{h\cdot(h+2)\cdots(h+2r-2)}{(2r-1)11}x^{2m-2r}\{x+\frac{h+2r}{1+2r}\}$ . (5. 9)

LEMMA 5. 1. Let $x\leqq-h-2m$ . Then (for $m\geqq 1,$ $h>2m$ ), $S_{n}(x)<0$ .
PROOF. Put

$T=T_{0}(x)=x^{2m}(x+h)<0$ . (5. 10)

For all $r\geqq 0$, it follows from the given inequalities that

$\frac{h+2r}{1+2r}\leqq h\leqq|x|-2m$ . (5. 11)

Therefore

$|\frac{T_{r+1}}{T_{r}}|=\frac{m-r}{r+1}\times\frac{h+2r}{2r+1}\times|x|^{-2}\times\{|x|-\frac{h+2r+2}{2r+3}\}/\{|x|-\frac{h+2r}{2r+1}\}$

$\leqq m(|x|-2n\iota)|x|^{-2}\cdot|x|/2m<\frac{1}{2}$ . (5. 12)

Thus,

$\sum_{r=1}^{m}|T_{r}|<|T|\sum_{r=1}^{m}2^{-r}<|T|$ , (5. 13)

so that

$S_{n}=T+\sum_{r=1}^{m}T_{r}<0$ . (5. 14)
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This inequality proves the Lemma, and the contradiction with (5. 6) completes
the proof of the Theorem.
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