Tight spherical designs, I

By E. Bannai and R. M. Damerell

(Received Sept. 21, 1977)

§ 1. Introduction.

Let \boldsymbol{R}^{d} be Euclidean space of dimension d and Ω_{d} the set of unit vectors in \boldsymbol{R}^{d}. A non-empty finite set $X \subseteq \Omega_{d}$ is called a spherical t-design in Ω_{d} if

$$
\sum_{\alpha \in X} W(\alpha)=0
$$

for all homogeneous harmonic polynomials W on \boldsymbol{R}^{d} of degree $1,2, \cdots, t$. This is equivalent to the condition that the k-th moments of X are invariant under orthogonal transformations of \boldsymbol{R}^{d} for $k=0,1,2, \cdots, t$. These designs were studied by Delsarte, Goethals and Seidel [4]. They proved that the cardinality of a design is bounded below;

$$
\begin{array}{ll}
|X| \geqq\binom{ d+n-1}{d-1}+\binom{d+n-2}{d-1} & \text { if } \quad t=2 n, \\
|X| \geqq 2\binom{d+n-1}{d-1} & \text { if } \quad t=2 n+1 .
\end{array}
$$

They called a design tight if it attains this bound. They constructed examples of tight spherical t-designs for $t=2,3,4,5,7,11$, and proved ([4], Theorem 7.7) that no such designs exist for $t=6$, except the regular heptagon in Ω_{2}. Bannai [1] proved that for given $t \geqq 8$, there exist tight spherical designs in Ω_{d} for only finitely many values of d.

In this paper we will prove
Theorem 1. Let $t=2 n$ and $n \geqq 3$ and $d \geqq 3$. Then there exists no tight spherical t-design in Ω_{d}.

In a subsequent paper we hope to prove a similar result when t is odd. Note that if $d=2$ the only tight spherical design is the regular $(t+1)$-gon.

The proof is similar to that of Theorem 7.7 in [4], which is the special case $t=6$. We first prove that if a design exists, then a certain polynomial (written $R_{n}(x)$, defined in $\S 2$ below) has all its roots rational. By reducing $R_{n}(x)$ modulo various primes, we show that if its roots are all rational, then
their reciprocals are all integers, and all of the same parity as d. We define $S_{n}(x)$ as the polynomial having these integers as its roots.

We now consider the two cases where n is even or odd. If n is even, say $n=2 m$, the sum of the roots of $S_{n}(x)$ is $-2 m$. Now $R_{n}(x)$ is the sum of two Gegenbauer polynomials whose roots interlace; using the interlacing we can divide the roots of $S_{n}(x)$ into pairs, say a and b such that $a>0, b<0$, $a>|b|$. Since these are integers of the same parity, we find $b=-a+2$. Therefore $S_{n}(x)$ is an even function of $(x-1)$. By expressing $S_{n}(x)$ as a polynomial in $(x-1)$ and finding a nonzero coefficient we obtain a contradiction. This proves the Theorem for even n.

If n is odd, say $n=2 m+1$, then we pair off all but one of the roots in a similar way. As before, $a+b \geqq 2$; since the sum of the roots of $S_{n}(x)$ is $-(d+2 m)$ the unpaired root is $\leqq-(d+4 m)$. But we can show $S_{n}(x) \neq 0$ in this interval; this contradiction proves the Theorem for n odd.

§ 2. Notation.

Let λ be a real number and m a positive integer. Define

$$
\begin{equation*}
(\lambda)_{m}=\Gamma(\lambda+m) / \Gamma(\lambda)=\lambda(\lambda+1) \cdots(\lambda+m-1) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(2 m-1)!!=1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 m-1)=2 m!/ 2^{m} \cdot m!=2^{m} \cdot\left(\frac{1}{2}\right)_{m} . \tag{2.2}
\end{equation*}
$$

The Gegenbauer polynomials $C_{n}^{(\lambda)}(x)$ are defined by the equations ([5], § 10.9, (21) and (22)):

$$
\begin{align*}
\frac{m!(-1)^{m}}{(\lambda)_{m}} C_{2 m}^{(\lambda)}(x) & =F\left(-m, m+\lambda, \frac{1}{2}, x^{2}\right) \tag{2.3}\\
& =1+\sum_{r=1}^{m}{ }^{m} C_{r}(-1)^{r} \frac{(m+\lambda)_{r}}{(1 / 2)_{r}} x^{2 r} \tag{2.4}
\end{align*}
$$

and

$$
\begin{align*}
\frac{m!(-1)^{m}}{(\lambda)_{m+1}} C_{2 m+1}^{(\lambda)}(x) & =2 x F\left(-m, m+\lambda+1, \frac{3}{2}, x^{2}\right) \tag{2.5}\\
& =2 \sum_{r=0}^{m}{ }^{m} C_{r}(-1)^{r} \frac{(m+\lambda+1)_{r}}{(3 / 2)_{r}} x^{2 r+1} \tag{2.6}
\end{align*}
$$

where F is Gauss' hypergeometric function. From now on, λ will always have
the value $\lambda=(1 / 2) d$ and will be omitted where possible. We define the polynomial $R_{n}(x)$ by

$$
\begin{equation*}
R_{n}(x)=C_{n}(x)+C_{n-1}(x) . \tag{2.7}
\end{equation*}
$$

Apart from constant factors, R_{n} and C_{n} have the same meaning as in $\S 2$ of [4]. From these definitions we note that the leading coefficients of R_{n}, C_{n} and C_{n-1} are all positive, also that C_{n} is even if n is even and odd if n is odd.

Define $S_{n}(x)$ as the monic polynomial whose roots are the reciprocals of those of $R_{n}(x)$.

If

$$
\left.\begin{array}{rl}
S_{n}(x) & =x^{n}+\sum_{k=1}^{n} u_{k} x^{n-k} \tag{2.8}\\
c \cdot R_{n}(x) & =1+\sum_{k=1}^{n} u_{k} x^{k}
\end{array}\right\}
$$

then
for a suitable constant c. We now derive some information about the u_{k}.
First suppose $n=2 m$ is even. Replace m by $m-1$ in (2.6), multiply by $-m$ and add (2.4). This gives

$$
\begin{align*}
& R_{2 m}(x)(-1)^{m} m!/(\lambda)_{m} \\
& =1+\sum_{r=1}^{m}{ }^{m} C_{r}(-1)^{r}(m+\lambda)_{r} x^{2 r} /\left(\frac{1}{2}\right)_{r} \tag{2.9}\\
& \quad-2 m \sum_{r=0}^{m-1}{ }^{m-1} C_{r}(-1)^{r}(m+\lambda)_{r} x^{2 r+1} /\left(\frac{3}{2}\right)_{r} .
\end{align*}
$$

Now suppose $n=2 m+1$ is odd. Then $(\lambda+m) \cdot(2.6)+(2.4)$ gives

$$
\begin{align*}
& R_{2 m+1}(x)(-1)^{m} m!/(\lambda)_{m} \\
& \quad=1+\sum_{r=1}^{m}{ }^{m} C_{r}(-1)^{r}(m+\lambda)_{r} x^{2 r} /\left(\frac{1}{2}\right)_{r} \tag{2.10}\\
& \quad+2(\lambda+m) \sum_{r=0}^{m}{ }^{m} C_{r}(-1)^{r}(m+\lambda+1)_{r} x^{2 r+1} /\left(\frac{3}{2}\right)_{r} .
\end{align*}
$$

Now define

$$
\begin{equation*}
h=(2 m+2 \lambda)=2 m+d . \tag{2.11}
\end{equation*}
$$

Then we have

$$
\frac{(m+\lambda)_{r}}{(1 / 2)_{r}}=\frac{h(h+2) \cdots(h+2 r-2)}{(2 r-1)!!}
$$

and similar formulae for $(m+\lambda)_{r} /(3 / 2)_{r}$ and $(m+\lambda+1)_{r} /(3 / 2)_{r}$. By inspection we have the following results:

Lemma 2.1. Let u_{r} be defined for $1 \leqq r \leqq n$ by (2.8) above. Then
(1) the denominator of $u_{2 r}$ divides $(2 r-1)!$!,
(2) the denominator of $u_{2 r+1}$ divides $(2 r+1)!$!,
(3) if d is even all the u_{r} are even (because $2 \mid h$),
(4) if d is odd, the constant term of $S_{n}(x)$ is odd (because it equais

$$
\left.u_{n}= \pm h(h+2) \cdots(h+2 m-2) /(2 m-1)!!\right)
$$

(5) the sum of the roots of $S_{n}(x)$ is

$$
\left.\begin{array}{ll}
+2 m & \text { if } n=2 m \tag{2.13}\\
-h & \text { if } n=2 m+1,
\end{array}\right\}
$$

(because this sum $=-u_{1}=-1 \times$ coefficient of x in (2.9) or (2.10).)

§ 3. Lloyd type theorem.

The following result is implicit in Theorem 7.7 of [4].
THEOREM 2. Suppose there exists a tight spherical t-design in Ω_{d} with $d \geqq 3$. If $t=2 n$ then all n zeros of the polynomial $R_{n}(x)$ are rational. If $t=2 n+1$, then all n zeros of the polynomial $C_{n}(x)$ are rational.

Proof. By [4] Theorem 7.5 the design induces an s-class association scheme (in the sense of [2]) with $s=\left[\frac{t+1}{2}\right]$. The Bose-Mesner algebra \boldsymbol{A} of this scheme is as described in [3] Chapter 2. The notation agrees except that $i=0$ in [3] corresponds to the relation $R_{0}=$ identity, which corresponds to $\alpha=1$ in [4]. By comparing Theorem 3.6 of [4] with (2.16) in [3] we see that $Q_{k}(\alpha)$ and $Q_{k}(i)$ have the same meaning.

By [4] Theorem 2.4 the $Q_{k}(1)$ are all distinct for $d \geqq 3$ and $k \geqq 1$, because $Q_{k+1}(1)>Q_{k}(1)$. (If $d=2$ the proof breaks down here because then $Q_{k}(1)=2$ for all k). So by [3] (2.18) the matrices J_{k} have distinct ranks.

Let σ be any field automorphism of the complex numbers. Since the algebra \boldsymbol{A} has only the unique set

$$
\begin{equation*}
\left\{J_{0}, J_{1}, \cdots, J_{s}\right\} \tag{4}
\end{equation*}
$$

of orthogonal idempotents, σ permutes them. Since the J_{i} 's have distinct ranks, σ fixes all of them, so each J_{i} is rational. By Theorem 3.6 of [4], the
number $Q_{k}(\alpha)$ is rational for all α in $A(X)$ and $1 \leqq k \leqq s$. So all elements of $A(X)$ are rational.

If $t=2 n$ then by [4] Theorem 5.11, $A(X)$ consists of the zeros of $R_{n}(x)$ so $R_{n}(x)$ has all its roots rational. Similarly if $t=2 n+1$, by Theorem 5.12 of [4], $C_{n}(x)$ has all its roots rational. This proves Theorem 2.

Lemma 3.1. Suppose there exists a tight $(2 n)$-design in Ω_{d} with $d \geqq 3$. Then $S_{n}(x)$ has all its roots integers and these integers all have the same parity as d.

Proof. We have to show that the u_{k} in (2.8) are all integral. Let a be the least integer >0 such that $a c R_{n}(x)$ has all coefficients integral. By (2.8)

$$
\begin{equation*}
a c R_{n}(x)=a+\sum_{k=1}^{n} a u_{k} x^{k} . \tag{3.2}
\end{equation*}
$$

If $a \neq 1$, let p be a prime factor. By the minimality of a there exits a k such that p does not divide $a u_{k}$: let $k=r$ be the least. Then

$$
\begin{equation*}
a c R_{n}(x) \equiv \sum_{k=r}^{n} a u_{k} x^{k} \quad \bmod p \tag{3.3}
\end{equation*}
$$

Therefore r of the roots of $R_{n}(x)$ are multiples of p, so p^{r} divides a. Since p does not divide $a u_{r}, p^{r}$ divides the denominator of u_{r}. By Lemma 2.1 this is a factor of either r !! (if r is odd) or ($r-1$)!! (if r is even). This is impossible because the largest power of p dividing $r!!$ is $<p^{r}$. So all the u_{k} are integers. By Lemma 2.1, if d is odd, the constant term of $S_{n}(x)$ and hence all the roots is odd. If d is even all the u_{k} are even, so that $S_{n}(x) \equiv x^{n} \bmod 2$. Therefore all roots are even. Q.E.D.

For future use, we give the corresponding result when t is odd.
Lemma 3.2. Suppose there exists a tight $(2 n+1)$-design in Ω_{d} with $d \geqq 3$. Then the reciprocals of the nonzero roots of $C_{n}(x)$ are all integers, of the same parity as d.

This is proved by the same method; details are left to the reader.

§ 4. Interlacing roots.

We now apply the theory of orthogonal polynomials to prove an inequality for the roots of $S_{n}(x)$. Put $m=[(1 / 2) n]$, recall $R_{n}(x)=C_{n}(x)+C_{n-1}(x)$.

Lemma 4.1. The roots of $R_{n}(x)$ are real and distinct and nonzero. Exactly m of them are positive.

Proof. For fixed λ and varying n the $C_{n}^{\lambda}(x)$ form a system of orthogonal polynomials ([5], §10.9). By standard theory ([5], §10.3) the zeros of C_{n} are
real and distinct; between any two there lies a zero of C_{n-1}. Accordingly we write

$$
\begin{equation*}
z_{1}>y_{1}>z_{2}>y_{2}>\cdots>z_{n-1}>y_{n-1}>z_{n} \tag{4.1}
\end{equation*}
$$

where $\left\{z_{1}, \cdots, z_{n}\right\}$ are the zeros of C_{n} and $\left\{y_{1}, \cdots, y_{n-1}\right\}$ those of C_{n-1}. From (2.4) and (2.6), the leading coefficients of C_{n} and C_{n-1} are both positive. Therefore

$$
\begin{align*}
& \operatorname{sign}\left(R_{n}\left(z_{i}\right)\right)=\operatorname{sign}\left(C_{n-1}\left(z_{i}\right)\right)=(-1)^{i+1} \tag{4.2}\\
& \quad \operatorname{sign}\left(R_{n}\left(y_{i}\right)\right)=\operatorname{sign}\left(C_{n}\left(y_{i}\right)\right)=(-1)^{i} \tag{4.3}
\end{align*}
$$

Therefore $R_{n}(x)$ has a zero in each of the intervals

$$
\begin{equation*}
z_{i}>x>y_{i}, \quad i=1,2, \cdots,(n-1) \tag{4.4}
\end{equation*}
$$

Also

$$
\begin{equation*}
\operatorname{sign}\left(R_{n}\left(z_{n}\right)\right)=(-1)^{n-1} \tag{4.5}
\end{equation*}
$$

and if X is very large, then

$$
\begin{equation*}
\operatorname{sign}\left(R_{n}(-X)\right)=\operatorname{sign}(-X)^{n}=(-1)^{n} \tag{4.6}
\end{equation*}
$$

So the last root of $R_{n}(x)$ lies in the interval

$$
\begin{equation*}
z_{n}>x>-\infty \tag{4.7}
\end{equation*}
$$

Now if $n=2 m$, the middle root of $C_{n-1}(x)$ is $y_{m}=0$ (because $C_{n-1}(x)$ is odd). Hence $R_{n}(x)$ has m positive roots (in the intervals (4.4) for $i=1,2, \cdots, m$). If $n=2 m+1$ then the middle root of $C_{n}(x)$ is $z_{m+1}=0$; so $R_{n}(x)$ again has m positive roots. Thus the Lemma is proved.

Accordingly we label the roots of $R_{n}(x)$ as follows:

$$
\begin{equation*}
p_{1}>p_{2}>\cdots>p_{m}(>0>) q_{n-m}>q_{n-m-1}>\cdots>q_{1} \tag{4.8}
\end{equation*}
$$

Define $a_{i}=1 / p_{i}$ and $b_{i}=1 / q_{i}$; then the numbers

$$
\begin{equation*}
\left\{a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n-m}\right\} \tag{4.9}
\end{equation*}
$$

are the roots of $S_{n}(x)$.
Lemma 4.2. With this notation, $a_{r}+b_{r}>0$ for $1 \leqq r \leqq m$.
PRoof. In the scheme (4.8) q_{r} is the $(n+1-r)$-th root of $R_{n}(x)$ (in decreasing order). Therefore q_{r} lies in the $(n+1-r)$-th interval (4.4), so

$$
\begin{equation*}
q_{r}<z_{n+1-r} \tag{4.10}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
p_{r}<z_{r} \tag{4.11}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
p_{r}+q_{r}<z_{r}+z_{n+1-r}=0 \tag{4.12}
\end{equation*}
$$

because $C_{n}(x)$ is either even or odd, so its roots are symmetrical about $x=0$. Since $p_{r}>0$ and $q_{r}<0$ we have

$$
\begin{equation*}
a_{r}+b_{r}=\left(p_{r}+q_{r}\right) / p_{r} q_{r}>0 . \tag{4.13}
\end{equation*}
$$

Q.E.D.

§ 5. Proof of Theorem 1.

We suppose that a tight spherical $2 n$-design exists, with $n \geqq 3$ and $d \geqq 3$, and deduce a contradiction. First suppose n is even. Then by Lemma 4.2 we can pair off all the roots of $S_{n}(x)$ so that the sum of any pair is positive. But by Lemma 3.1 these roots are integers of the same parity, so

$$
\begin{equation*}
a_{r}+b_{r} \geqq 2 \quad \text { for } \quad 1 \leqq r \leqq \frac{1}{2} n . \tag{5.1}
\end{equation*}
$$

But by Lemma 2, 1 the sum of all the roots is n, so we must have

$$
\begin{equation*}
a_{r}+b_{r}=2 \tag{5.2}
\end{equation*}
$$

Therefore $S_{n}(x)$ is an even polynomial in $x-1=w$, say.
Take the formula (2.9) for $R_{n}(x)$, apply the transformation (2.8); this gives

$$
\begin{gather*}
S_{n}(x)=x^{2 m}-\frac{m(m+\lambda)}{(1 / 2)} x^{2 m-2}-2 m x^{2 m-1}+\frac{2 m(m-1)(m+\lambda)}{(3 / 2)} x^{2 m-3} \tag{5.3}\\
\quad+\text { terms of degree }<(2 m-3) .
\end{gather*}
$$

In this we put $x=w+1$ and extract the coefficient of $w^{2 m-3}$. This equals

$$
\begin{gather*}
{ }^{2 m} C_{3}-m h \cdot{ }^{2 m-2} C_{1}-2 m \cdot{ }^{2 m-1} C_{2}+\frac{2}{3} m(m-1) h \\
=-\frac{4}{3} m(m-1)(2 m-1+h)<0 . \tag{5.4}
\end{gather*}
$$

Since this coefficient is nonzero (for $m>1$), $S_{2 m}(w)$ is not an even function of w. This proves the Theorem for even n.

Now suppose n is odd. As before, we can divide all but one of the roots of $S_{n}(x)$ into pairs satisfying (5.1). Since the sum of all the roots is $-h$, the only unpaired root (called b_{m+1} in §4) satisfies

$$
\begin{equation*}
-h=b_{m+1}+(\text { other roots }) \geqq b_{m+1}+2 m . \tag{5.5}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
b_{m+1} \leqq-h-2 m \tag{5.6}
\end{equation*}
$$

Now consider $S_{n}(x)$. Applying (2.8) to (2.10) we have

$$
\begin{align*}
S_{2 m+1}(x)= & \sum_{r=0}^{m}(-1)^{r m} C_{r} \frac{h \cdot(h+2) \cdots(h+2 r-2)}{(2 r-1)!!} x^{2 m+1-2 r} \\
& +\sum_{r=0}^{m}(-1)^{r m} C_{r} \frac{h \cdot(h+2) \cdots(h+2 r)}{(2 r+1)!!} x^{2 m-2 r} \tag{5.7}\\
= & T_{0}(x)+T_{1}(x)+\cdots+T_{m}(x) \tag{5.8}
\end{align*}
$$

where $T_{r}(x)$ is the sum of the terms in $x^{2 m+1-2 r}$ and $x^{2 m-2 r}$, so that

$$
\begin{equation*}
T_{r}(x)=(-1)^{r m} C_{r} \frac{h \cdot(h+2) \cdots(h+2 r-2)}{(2 r-1)!!} x^{2 m-2 r}\left\{x+\frac{h+2 r}{1+2 r}\right\} . \tag{5.9}
\end{equation*}
$$

Lemma 5.1. Let $x \leqq-h-2 m$. Then (for $m \geqq 1, h>2 m$), $S_{n}(x)<0$.
Proof. Put

$$
\begin{equation*}
T=T_{0}(x)=x^{2 m}(x+h)<0 . \tag{5.10}
\end{equation*}
$$

For all $r \geqq 0$, it follows from the given inequalities that

$$
\begin{equation*}
\frac{h+2 r}{1+2 r} \leqq h \leqq|x|-2 m . \tag{5.11}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left|\frac{T_{r+1}}{T_{r}}\right| & =\frac{m-r}{r+1} \times \frac{h+2 r}{2 r+1} \times|x|^{-2} \times\left\{|x|-\frac{h+2 r+2}{2 r+3}\right\} /\left\{|x|-\frac{h+2 r}{2 r+1}\right\} \\
& \leqq m(|x|-2 m)|x|^{-2} \cdot|x| / 2 m<\frac{1}{2} . \tag{5.12}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\sum_{r=1}^{m}\left|T_{r}\right|<|T| \sum_{r=1}^{m} 2^{-r}<|T| \tag{5.13}
\end{equation*}
$$

so that

$$
\begin{equation*}
S_{n}=T+\sum_{r=1}^{m} T_{r}<0 . \tag{5.14}
\end{equation*}
$$

This inequality proves the Lemma, and the contradiction with (5.6) completes the proof of the Theorem.

References

[1] E. Bannai, On tight spherical designs, J. Combinatorial Theory, Ser. A, (to appear).
[2] R.C. Bose and D. M. Mesner, On linear associative algebras corresponding to association schemes of partially balanced designs, Ann. Math. Statist., 30 (1959), 21-38.
[3] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl., 10, 1973.
[4] P. Delsarte, J. M. Goethals and J. J. Seidel, Spherical codes and designs, Geometriae Dedicata, 6 (1977), 363-388.
[5] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions (vol. 2), Bateman Manuscript Project, McGraw-Hill, 1953.

Eiichi Bannai
Department of Mathematics Gakushuin University
Toshima-ku, Tokyo
171 Japan
Robert Mark Damerell
Department of Mathematics Royal Holloway College
Egham, Surrey
England

Present address:
Department of Mathematics The Ohio State University Columbus, Ohio
43210 U. S. A.

