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1. Introduction.

Let G be a L.C.A. group and G be its dual group. Let M(G) be the
measure algebra on G and L*(G) be the group algebra on G. In [7], Taylor
showed that: There are a compact topological abelian semigroup S and an
isometric isomorphism € of M(G) into M(S) such that;

(a) 6(M(G)) is a weak-*dense subalgebra of M (S);

(b) S, the set of all continuous semicharacters on S, separates the points
of S;

(¢) for fe8S, p—»Sfdﬁ,u (ueM(G)) is a non-zero complex homomor-
phism of M(G);

(d) for a non-zero complex homomorphism F of M(G), there is an 78

such that F(u)= fdf for peM(G).

We can consider that S is the maximal ideal space of M(G), G S, and the
Gelfand transform of peM(G) is given by ﬁ(f):g fdop (f€8). A closed

subspace (ideal, subalgebra) N C M(G) is called an L-subspace (L-ideal, L-sub-
algebra) if L'(y¢) C N for every p& N, where L'(u)={2=M(G); 2 is absolutely
continuous with respect to ¢ (A< p)}. We denote by Rad L!(G) the radical of
L*(G) in M(G), that is, Rad L*(G)={uxeM(G); 2(f)=0, for all feS\G}. We
put Q(G):; Rad L*(G.), where 7 runs through over L.C. A. group topologies
on G which are stronger than the original one. Then £(G)C M(G) and L(G)
is an L-subalgebra ([2]). For peM(G), we put p*(E)=p(—E) for every Borel
subset E of G. We denote by M the set of all symmetric measures of M (G), that
is, M={pueM(G); p*(f)=4(f) for every f=8}. Then it is easy to show that
LG)T M. A measure peM is called singular-symmetric if g is singular with
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L(G) (#LL(G)). In [4], the author shows that if R is the Bohr compactifica-
tion of the real line R, then there exists a singular-symmetric measure g on R.
Moreover it is easy to show that g (constructed in [4]) has the property
p*ﬂeﬁ(ﬁ). By the same method as in [4], we can construct g on an infinite
compact abelian group G whose dual group has an infinite independent subset,
such that p is singular-symmetric with pxpc®(G). In this paper, we show

THEOREM. Let G be an infinite compact abelian group. If G has an infinite
independent subset, then there exists a singular-symmetric measure g on G such
that p™ is singular-symmetric for every positive integer n, where p=p" ‘xu
(n=2) and p'=p.

2. Proof of theorem.

Let G be an infinite compact abelian group such that G has an infinite
independent subset E which we may suppose to generate G without loss of
generality. Then there is a family of infinite subsets of E, {E, ;;n=1, 2, -,
i=1, 2, ---, 2"}, which satisfies the following properties :

1) For n=1, U{E, ;; 1<5i<2" =E;
2) for 1=5i<j=2* E, ;S E,.; and E, ;\E,.; is an infinite set;
3) En+1,k C En,i fOI' k<2i and En+1,2i:En,i (1_—<_—1§2n).
Let H,; be the subgroup of G generated by E,;, then {H,i . has the
following properties by 1), 2) and 3):
4) For n=l and 1=i<j=2" H, ;S H,.;, H,. ;j/H,; is an infinite group,
and H, ;=G ;
5) H, ;2 H,.: and H, ;/H.,x is an infinite group for k<2i, and
Hn.i:Hn+l,2i fOI' 1§i§2".
By the above facts 4) and 5), we have:
6) For n=s and 1=:=2*"j, H, ;D H,; and H, ;j/H,; is an infinite
group if 1#2°""j, and H,, ;=H; s-nj.
Let G,.; be the annihilator of H, ; in G (G, =H;;CG), then G, ; is a
compact subgroup of G and {G, }.: satisfies the following by 4), 5) and 6):
7) For n=1 and 1=i<j=2" G, 2 Gpn.j, Gn.i/Gn.; is an infinite compact
group, and G, .n={0}, where 0 is the unit element of G;

8) GniS% Gutrr and Guyy,:/Gq,i is an infinite compact group for £<2i,
and G,,;=Gnp41,9 for 11527,

9) for n=s and 1=i=2°""j, G, ;C G, and G, ;/G,.; is an infinite com-
pact group if i#2:"%j, and G, ;=G s5-n;.
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For a compact subgroup G,C G, we denote by m(G,) the normalized Haar
measure on G,. We put

pa=2{1/2)" m (Gn.1); 121227 (n21),

then ¢, =0, |u.ll=1, p¥=p,. For a fixed y=G, there is a non-negative integer
P2 (0=p,<2") such that y&H, ,, and 7€H, , ., Where H, ,=0. Then we
have f#,7)=1/2)"(2*—p,)>0. Also there is p,s; (0= p,+;<2"*!) such that
Prar (N=1/2)" 2" —pryy). Since pry1=2p, O pan=2p,+1 by 4) and 5),
we have

Onar (1)=(1/2)" 1 (2 =2p,)=(1/2)" (2" = pn)=[n (T)
or

P (N=/2)" (2" =2, —1)={, (1) —(1/2)*".

So that f,(7)=fin+:(7) for every n=1. This implies that {u,}»-, has only one
weak-*cluster point g in M(G) and g has the following properties :

10) p=0, |pl=1, p*=p and {2(7); r=G} is dense in {x=R;0=<x=<1};
11) aA@)=lim 2, () for every reG.

We will show that u satisfies the conditions of our theorem. At first, we
show that peM. For 1=n, 1=i=<2" and n=Fk, we put

Un e i =2 {(1/2) m(Gy.j); 2 ((—1)<j=2F "),
Then
tn. ki 20, [l ftn, ool =(1/2)% 2% 2 =(1/2)"
and
12) ﬂkZZ{ﬂn,k,i;1§i§—2n}-

By the same way as in the previous part, {¢ i} s=» has only one weak-*cluster
point A,.; in M(G) and which satisfies

13)  2,.:=0, | 2,.:1=1/2)", jn.i(?’):}eim B v, (7) for TEGA, and 2,,:€M(Gn.1)

by 8) and 9).
Since f2n,:,:(7)=0 for ye&H,, , by the definition of g, . :, we have
14) 2,.:(N=0if r&H,, ;.
By 11), 12) and 13), we have
ﬁ(T)—"—lkig ﬁk(r):}:{lki_r}; P e (1) 150527

=3 {n:(); 151527 for red.
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This implies
15) p=2{2n; 1=i1=2"} for n=1, 2, ---.

Let f€S(f=0) and n=1. Since M(Gp,)¥m(Gn, )=m(Gy,.;) for 1=i=j=2" by
7), there exists j,(1=;7,=2") such that

16) m(G, o(f)=1 if j,<k=<2" and
m(Gn ) (f)=0 if 1Z2k<],.
Then we have the following :
17) For 1=k<j., 4. :(f)=0;
18) for j,<k=2", 2, 5 (/)=2n ll.

Because, let 1=k<j,, then we have 2, ¥m (Gn,;,-1)=4s: by 4) and 14). By

16), we have 2n,k(f):2n,k(f)m(G,,,,-n_f)(f)-——O. This implies 17). Let j,<k=2".
Since pn, g, r €M (Gn, ;,) for n=q by 9) and the definition of p,,4,:, We have

19) Zn s €M(Grjp,)-

Since m(Gn.;)(f)=1 by 16), we have that 1. ,(f)=1ns(1)=[2.,l. This
shows 18).

Let M be a prime L-subalgebra generated by {m(G,, ;,)}n=1, Wwhere
M C M(G) is called a prime L-subalgebra if M is an L-subalgebra and M*=
{AeM(G); 2L M} is an L-ideal. Then there is a 7,=S such that z?=r, and
M={2=M(G); 82 is concentrated on O(x,)}, where O(zx;)={xS; rm;(x)=1}
(see [7]). By Dunkl and Ramirez [1], we have =,€cl(G)\G, where cl/(G) is
the closure of G in S. Since m(G,.;)(x,)=1, we have

20)  An k()= 20kl (Ja<k=2") by 19).
Since f=zxn,, we have
21) An k(=0 for 1=k<j, by 17).

Then we have that for n=1,

12N —2@ =] 2 AZn i (F); 1Si=220 = 3 {dai(my); 151527 |
=12, iy ()= g (7 )= 20, 1, =1/2)",
by 13), 15), 17), 18), 20) and 21). This implies
22) A(f)=p(x,) for every fe8 (f=0).
Here we note that

23) 2(N)=lim 3 {1, (f); jn<k=2"} for fES (f20).
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We put J(f)={x&S;f(x)#0} and p=1n,+7,, where @», is concentrated on
S\J(f) and @7, is concentrated on J(f). Then 6@y, is concentrated on O(x,)
by 22). This implies that g2(g)=g(g -7 ,) for every geg. Since 0=a(n=1
for 7€G and g-m,<cl(G\G (this fact is proved easily by [T]), we have
0=f(g-m)=1. This shows

24) p(g)=0 for every geS.
Since p*=pg and =0 by 10), we have pe.

In the rest of this paper, we will show that p"1%(G) for every positive
integer n.

Suppose that p"°4L'(G.) for a positive integer n, and a L.C.A. group
topology z on G which is stronger than the original one. Since M(G,) is a
prime L-subalgebra of M(G), there exists f(r)eS such that f(¢)*=f(¢) and
M(G.)={AeM(G); 62 is concentrated on O(f(z))}. We put pg=y,+v, and
a,=|v.ll, where v;eM(G;) and v,1 M(G.), then A(f(z))=a,. Since M(G,) is
a prime L-subalgebra and L*'(G;) C M(G.), we have |v,|=a,>0. Since ||p||=1,
we have 0<a,=1. Let vj°=4,+21,, where 4,€L*(G,) and 4,1 L*(G,). Then 1,
is the part of g™ which is contained in L*(G.), and put a,=|/4,||. Then we
have a;=a,>0. By 16), there is 1=j,=2" (depending on f(z) and n) such
that

25) M(Gn.;,) C M(G:) and M(Gn ) & M(Gy) for k<j,.

Since £(f(z))*0, we have that j,<2" for sufficient large positive integers n
by 23). Since 2, ,=M(Gr.,) and M(,, ) & M(G,,,) for 1=g<p=2" by 7) and
13), we have that by 25)

26) An €M (Ga.jper), M(Gr,jps) LLY (G jy)y M(Gajyid) LL(Go) and
Ak LLY(Go) for jp+1<k=2"

Since 1n. jpu1 (f (©))=|2n. j 42| =(1/2)" = 0 (n — o0) by 13) and 18), we have
27) lim > A (f(@)); Jut1<k=2"}=4(f(c))=a, by 23).
Since An, ; (f(2))=An. 2l (>7,) and a; =3 {2, el ; jo+1<k=2"} by 7), 25) and
the definition of a,, there is a positive integer n, such that
28) 0=at*—(Z Al Zny. el 5 Juy H1<Rk=271)"0<a, by 27).
Since Z{Zn,k;jn1+1<k§2"1}EM(Gnl,jnlﬂ) by 26) and M(Gnl,jnlﬂ) is an L-
subalgebra, we have that
(A== (ZA{Any k5 Jo, H1<k=2mM} )"0
=aP'— (Z {l[Anp el 5 Joy, H1<k=2M})"0<a,,
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because v;—X{An,. % ; Jn,+1<E=2"1} is a positive measure, and by 25) and 28).
This contradicts |4;)|=a,. Thus we have that "1 L'(G;) for every
positive integer n and L.C.A. group topology z on . Moreover we have
p"LRad L'(G,) by [8]. This shows that p*12(G) for every positive
integer n. This completes the proof.

REMARK 1. We denote by o (2) the spectrum of A€M (G), that is, ¢ ()=
{A(f); feS}. By 10) and 24), we have

c()={xeR;0=x=1}.

ReMARK 2. In [5], it is proved that for a positive integer =, there exists
pEM(G) such that p* L &(G) for k<n and p?eL(G) for g=n, under the same
assumptions of G.
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