Convolution powers of singular-symmetric measures

By Keiji IZUCHI

(Received Jan. 17, 1976) (Revised May 24, 1977)

1. Introduction.

Let G be a L.C.A. group and \hat{G} be its dual group. Let M(G) be the measure algebra on G and $L^1(G)$ be the group algebra on G. In [7], Taylor showed that: There are a compact topological abelian semigroup S and an isometric isomorphism θ of M(G) into M(S) such that;

- (a) $\theta(M(G))$ is a weak-*dense subalgebra of M(S);
- (b) \hat{S} , the set of all continuous semicharacters on S, separates the points of S;
- (c) for $f \in \hat{S}$, $\mu \to \int_s f d\theta \mu$ ($\mu \in M(G)$) is a non-zero complex homomorphism of M(G);
- (d) for a non-zero complex homomorphism F of M(G), there is an $f \in \hat{S}$ such that $F(\mu) = \int_s f d\theta \mu$ for $\mu \in M(G)$.

We can consider that \hat{S} is the maximal ideal space of M(G), $\hat{G} \subset \hat{S}$, and the Gelfand transform of $\mu \in M(G)$ is given by $\hat{\mu}(f) = \int_s f d\theta \mu$ $(f \in \hat{S})$. A closed subspace (ideal, subalgebra) $N \subset M(G)$ is called an L-subspace (L-ideal, L-subalgebra) if $L^1(\mu) \subset N$ for every $\mu \in N$, where $L^1(\mu) = \{\lambda \in M(G); \lambda \text{ is absolutely continuous with respect to } \mu$ $(\lambda \ll \mu)\}$. We denote by Rad $L^1(G)$ the radical of $L^1(G)$ in M(G), that is, Rad $L^1(G) = \{\mu \in M(G); \hat{\mu}(f) = 0, \text{ for all } f \in \hat{S} \setminus \hat{G}\}$. We put $\mathfrak{L}(G) = \sum_{\tau} \operatorname{Rad} L^1(G_{\tau})$, where τ runs through over L. C. A. group topologies on G which are stronger than the original one. Then $\mathfrak{L}(G) \subset M(G)$ and $\mathfrak{L}(G)$ is an L-subalgebra ([2]). For $\mu \in M(G)$, we put $\mu^*(E) = \overline{\mu(-E)}$ for every Borel subset E of G. We denote by \mathfrak{M} the set of all symmetric measures of M(G), that is, $\mathfrak{M} = \{\mu \in M(G); \hat{\mu}^*(f) = \overline{\hat{\mu}(f)}\}$ for every $f \in \hat{S}$. Then it is easy to show that $\mathfrak{L}(G) \subset \mathfrak{M}$. A measure $\mu \in \mathfrak{M}$ is called singular-symmetric if μ is singular with

2 K. Izuchi

 $\mathfrak{L}(G)$ ($\mu \perp \mathfrak{L}(G)$). In [4], the author shows that if \overline{R} is the Bohr compactification of the real line R, then there exists a singular-symmetric measure μ on \overline{R} . Moreover it is easy to show that μ (constructed in [4]) has the property $\mu * \mu \in \mathfrak{L}(\overline{R})$. By the same method as in [4], we can construct μ on an infinite compact abelian group G whose dual group has an infinite independent subset, such that μ is singular-symmetric with $\mu * \mu \in \mathfrak{L}(G)$. In this paper, we show

THEOREM. Let G be an infinite compact abelian group. If \hat{G} has an infinite independent subset, then there exists a singular-symmetric measure μ on G such that μ^n is singular-symmetric for every positive integer n, where $\mu^n = \mu^{n-1} * \mu$ $(n \ge 2)$ and $\mu^1 = \mu$.

2. Proof of theorem.

Let G be an infinite compact abelian group such that \hat{G} has an infinite independent subset E which we may suppose to generate \hat{G} without loss of generality. Then there is a family of infinite subsets of E, $\{E_{n,i}; n=1, 2, \dots, i=1, 2, \dots, i=1, 2, \dots, 2^n\}$, which satisfies the following properties:

- 1) For $n \ge 1$, $\bigcup \{E_{n,i}; 1 \le i \le 2^n\} = E$;
- 2) for $1 \le i < j \le 2^n$, $E_{n,i} \subseteq E_{n,j}$ and $E_{n,j} \setminus E_{n,i}$ is an infinite set;
- 3) $E_{n+1,k} \subset E_{n,i}$ for k < 2i and $E_{n+1,2i} = E_{n,i}$ $(1 \le i \le 2^n)$.

Let $H_{n,i}$ be the subgroup of \hat{G} generated by $E_{n,i}$, then $\{H_{n,i}\}_{n,i}$ has the following properties by 1), 2) and 3):

- 4) For $n \ge 1$ and $1 \le i < j \le 2^n$, $H_{n,i} \subseteq H_{n,j}$, $H_{n,j}/H_{n,i}$ is an infinite group, and $H_{n,2n} = \hat{G}$;
- 5) $H_{n,i} \supseteq H_{n+1,k}$ and $H_{n,i}/H_{n+1,k}$ is an infinite group for k < 2i, and $H_{n,i} = H_{n+1,2i}$ for $1 \le i \le 2^n$.

By the above facts 4) and 5), we have:

6) For $n \le s$ and $1 \le i \le 2^{s-n}j$, $H_{n,j} \supset H_{s,i}$ and $H_{n,j}/H_{s,i}$ is an infinite group if $i \ne 2^{s-n}j$, and $H_{n,j}=H_{s,2^{s-n}j}$.

Let $G_{n,i}$ be the annihilator of $H_{n,i}$ in G $(G_{n,i}=H_{n,i}^{\perp}\subset G)$, then $G_{n,i}$ is a compact subgroup of G and $\{G_{n,i}\}_{n,i}$ satisfies the following by 4), 5) and 6):

- 7) For $n \ge 1$ and $1 \le i < j \le 2^n$, $G_{n,i} \supseteq G_{n,j}$, $G_{n,i}/G_{n,j}$ is an infinite compact group, and $G_{n,2n} = \{0\}$, where 0 is the unit element of G;
- 8) $G_{n,i} \subseteq G_{n+1,k}$ and $G_{n+1,k}/G_{n,i}$ is an infinite compact group for k < 2i, and $G_{n,i} = G_{n+1,2i}$ for $1 \le i \le 2^n$;
- 9) for $n \le s$ and $1 \le i \le 2^{s-n}j$, $G_{n,j} \subset G_{s,i}$ and $G_{s,i}/G_{n,i}$ is an infinite compact group if $i \ne 2^{s-n}j$, and $G_{n,j} = G_{s,2^{s-n}j}$.

For a compact subgroup $G_0 \subset G$, we denote by $m(G_0)$ the normalized Haar measure on G_0 . We put

$$\mu_n = \sum \{(1/2)^n \ m \ (G_{n,i}); 1 \le i \le 2^n \} \quad (n \ge 1),$$

then $\mu_n \ge 0$, $\|\mu_n\| = 1$, $\mu_n^* = \mu_n$. For a fixed $\gamma \in \hat{G}$, there is a non-negative integer $p_n(0 \le p_n < 2^n)$ such that $\gamma \in H_{n,p_n}$ and $\gamma \in H_{n,p_{n+1}}$, where $H_{n,0} = \emptyset$. Then we have $\hat{\mu}_n(\gamma) = (1/2)^n (2^n - p_n) > 0$. Also there is $p_{n+1}(0 \le p_{n+1} < 2^{n+1})$ such that $\hat{\mu}_{n+1}(\gamma) = (1/2)^{n+1} (2^{n+1} - p_{n+1})$. Since $p_{n+1} = 2p_n$ or $p_{n+1} = 2p_n + 1$ by 4) and 5), we have

$$\hat{\mu}_{n+1}(\gamma) = (1/2)^{n+1} (2^{n+1} - 2p_n) = (1/2)^n (2^n - p_n) = \hat{\mu}_n(\gamma)$$

or

$$\hat{\mu}_{n+1}(\gamma) = (1/2)^{n+1} (2^{n+1} - 2p_n - 1) = \hat{\mu}_n(\gamma) - (1/2)^{n+1}.$$

So that $\hat{\mu}_n(\gamma) \ge \hat{\mu}_{n+1}(\gamma)$ for every $n \ge 1$. This implies that $\{\mu_n\}_{n=1}^{\infty}$ has only one weak-*cluster point μ in M(G) and μ has the following properties:

- 10) $\mu \ge 0$, $\|\mu\| = 1$, $\mu^* = \mu$ and $\{\hat{\mu}(\gamma); \gamma \in \hat{G}\}$ is dense in $\{x \in R; 0 \le x \le 1\}$;
- 11) $\hat{\mu}(\gamma) = \lim_{n \to \infty} \hat{\mu}_n(\gamma)$ for every $\gamma \in \hat{G}$.

We will show that μ satisfies the conditions of our theorem. At first, we show that $\mu \in \mathfrak{M}$. For $1 \leq n$, $1 \leq i \leq 2^n$ and $n \leq k$, we put

$$\mu_{n,k,i} = \sum \{(1/2)^k m(G_{k,j}); 2^{k-n}(i-1) < j \le 2^{k-n}i \}.$$

Then

$$\mu_{n,k,i} \ge 0$$
, $\|\mu_{n,k,i}\| = (1/2)^k 2^{k-n} = (1/2)^n$

and

12)
$$\mu_k = \sum \{\mu_{n,k,i}; 1 \leq i \leq 2^n\}.$$

By the same way as in the previous part, $\{\mu_{n,k,i}\}_{k=n}^{\infty}$ has only one weak-*cluster point $\lambda_{n,i}$ in M(G) and which satisfies

13) $\lambda_{n,i} \ge 0$, $\|\lambda_{n,i}\| = (1/2)^n$, $\hat{\lambda}_{n,i}(\gamma) = \lim_{k \to \infty} \hat{\mu}_{n,k,i}(\gamma)$ for $\gamma \in \hat{G}$, and $\lambda_{n,i} \in M(G_{n,i})$ by 8) and 9).

Since $\hat{\mu}_{n,k,i}(\gamma)=0$ for $\gamma \in H_{n,i}$ by the definition of $\mu_{n,k,i}$, we have

14)
$$\hat{\lambda}_{n,i}(\gamma)=0 \text{ if } \gamma \in H_{n,i}$$
.

By 11), 12) and 13), we have

$$\begin{split} \hat{\mu}(\gamma) &= \lim_{k \to \infty} \hat{\mu}_k(\gamma) = \sum \{ \lim_{k \to \infty} \hat{\mu}_{n, k, i}(\gamma) ; 1 \leq i \leq 2^n \} \\ &= \sum \{ \hat{\lambda}_{n, i}(\gamma) ; 1 \leq i \leq 2^n \} \quad \text{for} \quad \gamma \in \hat{G}. \end{split}$$

4 K. Izuchi

This implies

15) $\mu = \sum \{\lambda_{n,i}; 1 \le i \le 2^n\} \text{ for } n = 1, 2, \dots$

Let $f \in \hat{S}(f \ge 0)$ and $n \ge 1$. Since $m(G_{n,i}) * m(G_{n,j}) = m(G_{n,i})$ for $1 \le i \le j \le 2^n$ by 7), there exists $j_n (1 \le j_n \le 2^n)$ such that

16)
$$m(G_{n,k})(f)=1$$
 if $j_n \le k \le 2^n$ and $m(G_{n,k})(f)=0$ if $1 \le k < j_n$.

Then we have the following:

- 17) For $1 \le k < j_n$, $\hat{\lambda}_{n,k}(f) = 0$;
- 18) for $j_n < k \le 2^n$, $\hat{\lambda}_{n,k}(f) = ||\lambda_{n,k}||$.

Because, let $1 \le k < j_n$, then we have $\lambda_{n,k} * m(G_{n,j_{n-1}}) = \lambda_{n,k}$ by 4) and 14). By 16), we have $\hat{\lambda}_{n,k}(f) = \hat{\lambda}_{n,k}(f) m(G_{n,j_{n-1}})(f) = 0$. This implies 17). Let $j_n < k \le 2^n$. Since $\mu_{n,q,k} \in M(G_{n,j_n})$ for $n \le q$ by 9) and the definition of $\mu_{n,q,k}$, we have

19)
$$\lambda_{n,k} \in M(G_{n,j_n})$$
.

Since $m(G_{n,j_n})(f)=1$ by 16), we have that $\hat{\lambda}_{n,k}(f)=\hat{\lambda}_{n,k}(1)=\|\lambda_{n,k}\|$. This shows 18).

Let M be a prime L-subalgebra generated by $\{m(G_{n,j_n})\}_{n=1}^{\infty}$, where $M \subset M(G)$ is called a prime L-subalgebra if M is an L-subalgebra and $M^{\perp} = \{\lambda \in M(G); \lambda \perp M\}$ is an L-ideal. Then there is a $\pi_f \in \hat{S}$ such that $\pi_f^2 = \pi_f$ and $M = \{\lambda \in M(G); \theta \lambda \text{ is concentrated on } O(\pi_f)\}$, where $O(\pi_f) = \{x \in S; \pi_f(x) = 1\}$ (see [7]). By Dunkl and Ramirez [1], we have $\pi_f \in cl(\hat{G}) \setminus \hat{G}$, where $cl(\hat{G})$ is the closure of \hat{G} in \hat{S} . Since $m(G_{n,j_n})(\pi_f) = 1$, we have

20)
$$\hat{\lambda}_{n,k}(\pi_f) = ||\lambda_{n,k}|| \quad (j_n < k \le 2^n) \text{ by } 19).$$

Since $f \ge \pi_f$, we have

21)
$$\hat{\lambda}_{n,k}(\pi_f) = 0$$
 for $1 \le k < j_n$ by 17).

Then we have that for $n \ge 1$,

$$\begin{aligned} |\hat{\mu}(f) - \hat{\mu}(\pi_f)| &= |\sum \{\hat{\lambda}_{n,i}(f); 1 \leq i \leq 2^n\} - \sum \{\hat{\lambda}_{n,i}(\pi_f); 1 \leq i \leq 2^n\} |\\ &= |\hat{\lambda}_{n,j_n}(f) - \hat{\lambda}_{n,j_n}(\pi_f)| \leq ||\lambda_{n,j_n}|| = (1/2)^n, \end{aligned}$$

by 13), 15), 17), 18), 20) and 21). This implies

22)
$$\hat{\mu}(f) = \hat{\mu}(\pi_f)$$
 for every $f \in \hat{S}$ $(f \ge 0)$.

Here we note that

23)
$$\hat{\rho}(f) = \lim_{n \to \infty} \sum \{\hat{\lambda}_{n,k}(f); j_n < k \leq 2^n\} \text{ for } f \in \hat{S} \ (f \geq 0).$$

We put $J(f) = \{x \in S; f(x) \neq 0\}$ and $\mu = \eta_1 + \eta_2$, where $\theta \eta_1$ is concentrated on $S \setminus J(f)$ and $\theta \eta_2$ is concentrated on J(f). Then $\theta \eta_2$ is concentrated on $O(\pi_f)$ by 22). This implies that $\hat{\mu}(g) = \hat{\mu}(g \cdot \pi_{|g|})$ for every $g \in \hat{S}$. Since $0 \leq \hat{\mu}(\gamma) \leq 1$ for $\gamma \in \hat{G}$ and $g \cdot \pi_{|g|} \in cl(\hat{G}) \setminus \hat{G}$ (this fact is proved easily by [1]), we have $0 \leq \hat{\mu}(g \cdot \pi_{|g|}) \leq 1$. This shows

24) $\hat{\mu}(g) \ge 0$ for every $g \in \hat{S}$.

Since $\mu^* = \mu$ and $\mu \ge 0$ by 10), we have $\mu \in \mathfrak{M}$.

In the rest of this paper, we will show that $\mu^n \perp \mathfrak{L}(G)$ for every positive integer n.

Suppose that $\mu^{n_0} \not\perp L^1(G_\tau)$ for a positive integer n_0 and a L. C. A. group topology τ on G which is stronger than the original one. Since $M(G_\tau)$ is a prime L-subalgebra of M(G), there exists $f(\tau) \in \hat{S}$ such that $f(\tau)^2 = f(\tau)$ and $M(G_\tau) = \{\lambda \in M(G); \theta \lambda \text{ is concentrated on } O(f(\tau))\}$. We put $\mu = \nu_1 + \nu_2$ and $a_1 = \|\nu_1\|$, where $\nu_1 \in M(G_\tau)$ and $\nu_2 \perp M(G_\tau)$, then $\hat{\mu}(f(\tau)) = a_1$. Since $M(G_\tau)$ is a prime L-subalgebra and $L^1(G_\tau) \subset M(G_\tau)$, we have $\|\nu_1\| = a_1 > 0$. Since $\|\mu\| = 1$, we have $0 < a_1 \leq 1$. Let $\nu_1^{n_0} = \lambda_1 + \lambda_2$, where $\lambda_1 \in L^1(G_\tau)$ and $\lambda_2 \perp L^1(G_\tau)$. Then λ_1 is the part of μ^{n_0} which is contained in $L^1(G_\tau)$, and put $a_2 = \|\lambda_1\|$. Then we have $a_1 \geq a_2 > 0$. By 16), there is $1 \leq j_n \leq 2^n$ (depending on $f(\tau)$ and n) such that

25) $M(G_{n,j_n}) \subset M(G_{\tau})$ and $M(G_{n,k}) \subset M(G_{\tau})$ for $k < j_n$.

Since $\hat{\mu}(f(\tau))\neq 0$, we have that $j_n<2^n$ for sufficient large positive integers n by 23). Since $\lambda_{n,p}\in M(G_{n,q})$ and $M(n,p)\subseteq M(G_{n,q})$ for $1\leq q< p\leq 2^n$ by 7) and 13), we have that by 25)

26) $\lambda_{n,k} \in M(G_{n,j_{n+1}}), M(G_{n,j_{n+1}}) \perp L^{1}(G_{n,j_{n}}), M(G_{n,j_{n+1}}) \perp L^{1}(G_{\tau}) \text{ and } \lambda_{n,k} \perp L^{1}(G_{\tau}) \text{ for } j_{n}+1 < k \leq 2^{n}.$

Since $\hat{\lambda}_{n,j_n+1}(f(\tau)) = \|\lambda_{n,j_n+1}\| = (1/2)^n \to 0 \ (n \to \infty)$ by 13) and 18), we have

27) $\lim_{n \to \infty} \sum \{\hat{\lambda}_{n,k}(f(\tau)); j_n+1 < k \le 2^n\} = \hat{\mu}(f(\tau)) = a_1 \text{ by 23}.$

Since $\hat{\lambda}_{n,k}(f(\tau)) = \|\lambda_{n,k}\|$ $(k > j_n)$ and $a_1 \ge \sum \{\|\lambda_{n,k}\|$; $j_n + 1 < k \le 2^n\}$ by 7), 25) and the definition of a_1 , there is a positive integer n_1 such that

28) $0 \le a_1^{n_0} - (\sum \{ \|\lambda_{n_1, k}\| ; j_{n_1} + 1 < k \le 2^{n_1})^{n_0} < a_2 \text{ by } 27).$

Since $\sum \{\lambda_{n,k}; j_{n_1}+1 < k \le 2^{n_1}\} \in M(G_{n_1,j_{n_1}+1})$ by 26) and $M(G_{n_1,j_{n_1}+1})$ is an L-subalgebra, we have that

$$\begin{split} &\|\lambda_1\| \leq \|\nu_1^{n_0} - (\sum \{\lambda_{n_1, k} \; ; \; j_{n_1} + 1 < k \leq 2^{n_1}\})^{n_0}\| \\ &= a_1^{n_0} - (\sum \{\|\lambda_{n_1, k}\| \; ; \; j_{n_1} + 1 < k \leq 2^{n_1}\})^{n_0} < a_2, \end{split}$$

6 K. Izuchi

because $\nu_1 - \sum \{\lambda_{n_1,k}; j_{n_1} + 1 < k \le 2^{n_1}\}$ is a positive measure, and by 25) and 28). This contradicts $\|\lambda_1\| = a_2$. Thus we have that $\mu^n \perp L^1(G_\tau)$ for every positive integer n and L.C.A. group topology τ on G. Moreover we have $\mu^n \perp \operatorname{Rad} L^1(G_\tau)$ by [8]. This shows that $\mu^n \perp \mathfrak{L}(G)$ for every positive integer n. This completes the proof.

REMARK 1. We denote by $\sigma(\lambda)$ the spectrum of $\lambda \in M(G)$, that is, $\sigma(\lambda) = \{\hat{\lambda}(f); f \in \hat{S}\}$. By 10) and 24), we have

$$\sigma(\mu) = \{x \in R ; 0 \le x \le 1\}.$$

REMARK 2. In [5], it is proved that for a positive integer n, there exists $\mu \in M(G)$ such that $\mu^k \perp \mathfrak{L}(G)$ for k < n and $\mu^q \in \mathfrak{L}(G)$ for $q \ge n$, under the same assumptions of G.

References

- [1] C.F. Dunkl and D.E. Ramirez, Locally compact subgroups of the spectrum of the measure algebra, Semigroup Forum, 3 (1971), 95-107.
- [2] J. Inoue, Some closed subalgebras of measure algebras and a generalization of P.J. Cohen's theorem, J. Math. Soc. Japan, 23 (1971), 278-294.
- [3] J. Inoue, Some closed subalgebras of measure algebras and a generalization of P.J. Cohen's theorem II, J. Math. Soc. Japan, 25 (1973), 169-187.
- [4] K. Izuchi, On a problem of J.L. Taylor, Proc. Amer. Math. Soc., 53 (1975), 347-352.
- [5] K. Izuchi, Convolution powers of singular-symmetric measures II, Proc. Amer. Math. Soc., 65 (1977), 313-317.
- [6] W. Rudin, Fourier analysis on groups, Interscience, New York, 1962.
- [7] J.L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc., 119 (1965), 150-166.
- [8] J.L. Taylor, Convolution measure algebras with group maximal ideal spaces, Trans. Amer. Math. Soc., 128 (1967), 257-263.
- [9] J.L. Taylor, L-subalgebras of M(G), Trans. Amer. Math. Soc., 135 (1969), 105-113.
- [10] J.L. Taylor, Measure algebras, CBMS Regional Conf. Ser., 1972.

Keiji IZUCHI Kanagawa University Yokohama, Japan