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1. Introduction.

Let $G$ be a topological group, and $U$ a unitary representation of $G$ . If the
von Neumann algebra generated by $\{U_{x} ; X\in G\}$ is of type I, we say that the
representation is of type I. The group $G$ is said to be of type I if all the
strongly continuous unitary representations of $G$ are of type I.

In this paper, we shall restrict ourselves to connected, simply connected
solvable Lie groups. Then such a $G$ is known to be of type I either if $G$ is
an exponential group by $0$ . Takenouchi [10], or if $G$ is the universal covering
group of the identity component of a suitable algebraic group in $GL(m, R)$ ,

by results of J. Dixmier [2] and L. Pukanszky [9].

Let $G$ be a connected Lie subgroup of $GL(m, R)$ . In a previous paper,
the author defined $G$ to be semi-algebraic if a maximal compact connected
subgroup of the algebraic hull of $G$ is contained in $G$ . The purpose of this
paper is to prove the following theorem:

THEOREM. Let $G$ be a connected, simply connected solvable Lie group.
If the adjoint group $Ad(G)$ of $G$ is semi-algebraic, then $G$ is of type $I$.

Let $G$ be a Lie group, and let $g$ be the Lie algebra of $G$ . Let $g^{*}$ denote
the vector space dual to $g$ . We define a map $\mu$ : $G\ni x\rightarrow\mu(x)\in GL(g^{*})$ by

$\langle\mu(x)f, X\rangle=\langle f, Ad(x^{-1})X\rangle$ for $X\in g$ and $f\in g^{*}$ .

Then $\mu$ is a representation (the coadjoint representation) of $G$ , and the cor-
responding representation $ d\mu$ of the Lie algebra $g$ is given by

$\langle d\mu(X), Y\rangle=\langle f, [Y, X]\rangle$ ,

for $X,$ $Y\in g$ and $f\in g^{*}$ . For $f\in g^{*}$ , we put

$G(f)=\{x\in G ; \mu(x)f=f\}$ ,

$g(f)=\{X\in g;d\mu(X)f=0\}$ .

Then $G(f)$ is the isotropy group at $f$, and $g(f)$ is the Lie algebra of $G(f)$ .
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By the definition of $g(f)$ , we have $\langle f, [g(f), g]\rangle=0$, and in particular
$\langle f, [g(f), g(f)]\rangle=0$ . Therefore

$g(f)\ni X-i\langle f, X\rangle\in C$ $(i=\sqrt{-1})$

is a Lie algebra homomorphism. Suppose that $G$ is connected, simply connected
and solvable. Then $G(f)_{e}$ is closed and simply connected, and there corre-
sponds a one-dimensional unitary representation (character) $\chi_{f}$ of $G(f)_{e}$ such
that

$\chi_{f}(\exp X)=e^{i\langle f,X\rangle}$ for $X\in g(f)$ .

Our proof of the theorem is based on the following, see [1].

THEOREM (Auslander-Kostant). Let $G$ be a connected, simply connected,
solvable Lie group. Then $G$ is of type I if and only if the following two
conditions are satisfied:

(O) Orbit condition. Any orbit $\mu(G)f$ of the coadjoint representati0n is a
locally compact set.

(I) Integrabilify condition. The kernel $G(.f)_{0}$ of the character $\chi_{f}$ contains
the commutator subgroup of $G(f)$ .

REMARK. The above formulation of (I) is due to Pukanszky [9].

Let $G$ be a connected, simply connected, solvable Lie group such that the
adjoint group $Ad(G)$ is semi-algebraic. The orbit condition for $G$ was estab-
lished in [6] in a more general setting. In \S 2 we summarize the results on
semi-algebraic groups, which are useful for us. In \S 3, the integrability condi-
tion will be discussed, and be obtained for $G$ .

NOTATION AND TERMINOLOGY. The identity element of a group in question
will be denoted always by $e$ . For a Lie group $L$ , let $L_{e}$ denote the identity
component, $i$ . $e$ . the connected component containing $e$ . When the factor group
$L/L_{e}$ is finite, $L$ is said to be finitely connected.

Let $L$ be a (not necessarily connected) Lie group and $l$ its Lie algebra.
For $x$ in $L$ , the automorphism $L_{e}\ni y\rightarrow xyx^{-1}$ of $L_{e}$ induces an automorphism
of 1. We denote it by $Ad(x)$ . The group $Ad(L)=\{Ad(x);x\in L\}$ is called the
adjoint group of $L$ .

2. Semi-algebraic groups.

Let $G$ be a subgroup of $GL(m, R)$ . When $G$ is an open subgroup of a
suitable algebraic group, $G$ is said to be Pre-algebraic. For any subgroup $H$ of
$GL(m, R)$ , there exists a smallest pre-algebraic group $d(H)$ containing $H$.
$d(H)$ is called the pre-algebraic hull of $H$.
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A closed subgroup $S$ of $GL(m, R)$ is said to be semi-algebraic if the factor
space $d(S)/S$ is homeomorphic with a euclidean space $R^{k},$ $k=0,1,2,$ $\cdots$

A pre-algebraic group is semi-algebraic. We shall give results on semi-algebraic
groups, for later use. The details can be found in [5] and [7].

(2. 1) A semi-algebraic group is finitely connected.

(2. 2) The intersection of any number of semi-algebraic groups in $GL(m, R)$

is semi-algebraic.

(2. 3) Let $S$ be a semi-algebraic group in $GL(m, R)$ . Then for any $v\in R^{n}$ ,
the orbit $Sv$ is a locally compact set.

(2. 4) If $S$ is a semi-algebraic group, then so is the adjoint group $Ad(S)$ .
Let $G$ be connected Lie group, and $g$ the Lie algebra of $G$ . The group $G$

is said to be adjoint semi-algebraic if the adjoint group $Ad(G)$ is semi-algebraic
in $GL(g)$ .

(2. 5) If $G$ is adjoint semi-algebraic, then there exists a semi-algebraic
group $G_{1}$ in $GL(m, R)$ for a sufficiently large $m$ , which is locally isomorphic
with $G$ .

PROPOSITION 1. Let $G$ be an adjoint semi-algebraic group, and let $\mu$ be the
coadjoint representati0n of G. Then retaining the notation in \S 1, for $f\in g^{*}$ the
orbit $\mu(G)f$ is a locally compact set.

PROOF. For $x$ in $GL(m, R)$ , let $x^{*}$ denote the transposed matrix of $x^{-1}$ .
Then $x-,$ $x^{*}$ is an automorphism of $GL(m, R)$ . Furthermore, for any algebraic
group $H,$ $H^{*}=\{x^{*} ; x\in H\}$ is also algebraic. Hence if $H$ is semi-algebraic, so
is $H^{*}$ . But $Ad(G)$ is semi-algebraic, and with respect to suitable bases in $g$

and $g^{*},$ $\mu(G)$ can be identified with $\{x^{*} ; x\in Ad(G)\}$ . Therefore, the proposi-
tion follows from (2. 3). Q. E. D.

REMARK. An exponential group with all roots real is adjoint semi-
algebraic.

3. Integrability condition.

A Lie group $L$ is called faithfully rePresentable if there is a continuous
one-one homomorphism $\lambda$ : $L\rightarrow GL(m, R)$ for a sufficiently large $m$ . A con-
nected solvable Lie group $L$ is faithfully representable if and only if the
commutator subgroup $L^{\prime}$ of $L$ is closed and simply connected; and in this case,
there exists a closed, connected, simply connected normal subgroup $N$ such
that $L=TN,$ $T\cap N=\{e\}$ , where $T$ is any maximal compact subgroup of $L$ .
The converse is also true; see [3].



774 M. $GoTO$

PROPOSITION 2. Let $G$ be a connected, faithfully representable solvable Lie
group, and let $H$ be a finitely connected, closed subgroup of G. Then

1) $H=KN$, $K\cap N=\{e\}$ ,

where $K$ is a comPact abelian subgroup, and $N$ is a closed, connected, simply
connected normal subgroup, of $H$.

2) Let $\tilde{G}$ be the universal covering group of $G$ , and $\pi$ : $\tilde{G}\rightarrow G$ the covering
homomorphism. Then there exists a discrete subgroup $A\cong Z^{r}$ for some $r=0,1$ ,

2, $\cdots$ in $\tilde{G}$ such that
$\pi^{-1}H=A(\pi^{-1}H)_{e}$ , $A\cap(\pi^{-1}H)_{e}=\{e\}$ .

PROOF. Let $h$ be the Lie algebra of $H$. Let $H_{e}^{\prime}$ be the commutator sub-
group, and $T$ a maximal compact subgroup, of $H_{e}$ . Then $H_{e}^{\prime}$ is a closed
characteristic subgroup of $H_{e}$ , and the Lie algebra of $H_{e}^{\prime}$ is $[h, h]$ . Since $T$

is maximal compact in $H_{e}$ , so is $TH_{e}^{\prime}/H_{e}^{\prime}$ in $H_{e}/H_{e}^{\prime}$ , by a theorem in Iwa-
sawa [8]. However $H_{e}/H_{e}^{\prime}$ is a connected abelian Lie group and $TH_{e}^{\prime}/H_{e}^{\prime}$ is
the largest toral subgroup of $H_{e}/H_{e}^{\prime}$ . Hence $TH_{e}^{\prime}$ is a closed characteristic
subgroup of $H_{e}$ . We have $T\cap H_{e}^{\prime}=\{e\}$ because $H_{e}^{\prime}$ is simply connected.
Let $t$ be the Lie algebra of $T$ . Then $t\cap[h, h]=0$ , and

$Ad(H)(t+[h, h])=t+[h, h]$ .

For $x$ in $H$, let $\sigma(x)$ denote the restriction of $Ad(x)$ on $h/[h, h]$ . We
adopt the notation $(adX)Y=[X, Y]$ for $X$, $Y$ in a Lie algebra. Then
$Ad(\exp X)Y-Y=\exp(adX)Y-Y=\Sigma_{k=1}^{\infty}(adX)^{k}Y/k!\in[h, h]$ for $X$, $Y\in h$ .
Hence $\sigma(\exp X)$ is the identity. Since exp $h$ generates $H_{e}$ , the kernel of a
contains $H_{e}$ , and $\sigma$ gives rise to a representation of the finite group $H/H_{e}$ .
Therefore, $\sigma$ is completely reducible, and we can find a subspace $p$ of $h$

such that
$h=p\oplus t\oplus[h, h]$ and

$Ad(H)(p+[h, h])=p+[h, h]$ .

We put $P+[h, /z]=n$ . Then $n$ is an ideal of $h$ . Let $N$ denote the con-
nected Lie subgroup corresponding to $n$ . Then $N$ is closed, simply connected,
and is a normal subgroup of $H$ by $Ad(H)n=n$ . Also $h=t\oplus n$ and

$H_{e}=TN$, $T\cap N=\{e\}$ .

Since $H_{e}/N$ is compact and $H/H_{e}$ is finite, the factor group $H/N$ is compact.
This fact, together with that $N$ is a connected, simply connected solvable
Lie group, implies that there exists a compact subgroup $K$ of $H$ such that
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$H=KN,$ $K\cap N=\{e\}$ , by Iwasawa [8]. On the other hand, $K$ is contained in
some maximal compact subgroup $C$ of $G$ , which is a toral group. Hence $K$ is
abelian, and this proves 1).

Next, since $C$ is a maximal compact subgroup of $G$ , the underlying space
of $G$ is the direct product of $C$ and a euclidean space. Hence $\pi^{-1}C=\tilde{C}$ is the
universal covering group of $C$, and is a vector group, $i$ . $e.\tilde{C}\cong R^{k}$ for a suitable
$k=0,1,2,$ $\cdots$ Since $\pi^{-1}K$ is a closed subgroup of $\tilde{C}$,

$\pi^{-1}K=A(\pi^{-1}K)_{e}$ and $A\cap(\pi^{-1}K)_{e}=\{e\}$ ,

where $A\cong Z^{r}$ and $(\pi^{-1}K)_{e}\cong R^{s}$ .

Next, let $\tilde{N}$ be the connected Lie subgroup of $\tilde{G}$ corresponding to the Lie
algebra $n$ . Then $\pi\tilde{N}=N$. In order to prove $\pi^{-1}K\cap\tilde{N}=\{e\}$ , suppose that
$x\in\pi^{-1}K\cap\tilde{N}$. Then $\pi(x)\in K\cap N=\{e\}$ , and $x$ is contained in the kernel of $\pi$ .
Recalling that $N$ is simply connected, we have $\tilde{N}\cap\pi^{-1}\{e\}=\{e\}$ . It follows
that $x=e$ , and hence we get $\pi^{-1}K\cap\tilde{N}=\{e\}$ . Since $\pi^{-1}N=\pi^{-1}\{e\}\cdot\tilde{N}$,

$\pi^{-1}H=\pi^{-1}K\cdot\pi^{-1}\{e\}\cdot\tilde{N}=\pi^{-1}K\cdot\tilde{N}$.

Hence $\pi^{-1}H=A(\pi^{-1}H)_{e}$ and $A\cap(\pi^{-1}H)_{e}=\{e\}$ . Q. E. D.

PROPOSITION 3. Let $L$ be a Lie group, 1 the Lie algebra of $L$, and suPpose
that there exists an abelian subgroupA of $L$ such that $L=AL_{e}$ . Then the
commutator subgroup $L^{\prime}$ of $L$ is a connected Lie subgroup of $L_{e}$ , and the Lie
algebra 1’ of $L^{\prime}$ is given by

$1^{\prime}=\sum_{a\in A}(Ad(a)-1)l+[l, 1]$ .

PROOF. Let $a$ and $b$ be in $A$ , and $x$ and $y$ in $L_{e}$ . We shall prove that
the commutator

$c=(ax)(by)$ $(a x)^{-1}(by)^{-1}$

can be joined with $e$ by an arc in $L^{\prime}$ . Let $\alpha(t)$ and $\beta(t)$ be arcs in $L_{e}$ with

$\alpha(0)=\beta(O)=e$, $\alpha(1)=x$ and $\beta(1)=y$ .

Then the arc

$\gamma(t)=(a\alpha(t))(b\beta(t))(a\alpha(t))^{-1}(b\beta(t))^{-1}$ , $0\leqq i\leqq 1$ ,

is in $L^{\prime},$ $\gamma(O)=e$ and $\gamma(1)=c$ . Since $L^{\prime}$ is generated by elements of the form $c$ ,
we have that $L^{\prime}$ is arcwise connected. Hence $L^{\prime}$ is a connected Lie subgroup;
see [4].
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Let $X$ be in 1 and $a$ in $A$ . Then the arc $a(\exp tX)a^{-1}(\exp(-tX))$ has
the tangent vector $(Ad(a)-1)X$ at $t=0$ . Since $L^{\prime}$ contains the commutator
subgroup $L_{e}^{\prime}$ of $L_{e}$ , and the Lie algebra of $L_{e}^{\prime}$ is $[1, 1]$ , we have

$1^{\prime}\supset l^{\#}=\Sigma_{a\in A}(Ad(a)-1)l+[l, 1]$ .

Let $L^{g}$ be the connected Lie subgroup of $L$ corresponding to the Lie algebra $l^{\#}$ .
Since $L^{\#}\supset L_{e}^{\prime}$ , the factor group $L_{e}/L^{\#}$ is abelian. Notice here that $L^{\#}$ may not
be closed and we are considering only the group structure of $L_{e}/L^{\#}$ . Next,
for $a,$

$b$ in $A$

$Ad(a)(Ad(b)-1)l=(Ad(b)-1)Ad(a)l=(Ad(b)-1)l$,

and $\{Ad(a);a\in A\}$ leaves $l^{\#}$ invariant. Hence $L$‘ is a normal subgroup of $L$ .
$\llcorner et$ us prove that $axa^{-1}x^{-1}\in L^{\#}$ for $a\in A$ and $x\in L_{e}$ . Obviously, it suffices

to prove this for $x$ in any neighborhood of $e$ in $L_{e}$ . By the Campbell-Hausdorff
formula, we have

$a(\exp X)a^{-1}(\exp(-X))=\exp((Ad(a)-1)X-\frac{1}{2}[Ad(a)X, X]+ )$

$\in\exp l^{\#}\subset L^{\#}$ ,

for $X\in l$ sufficiently close to $0$ . Thus we have proved that $L/L^{\#}$ is abelian,
that is $L^{\#}\supset L^{\prime}$ . Q. E. D.

PROPOSITION 4. Let $G$ be a connected, simply connected solvable Lie group.
Let $\mu$ be the coadjoint representation of G. If. for each $f\in g^{*}$ , there exists an
abelian subgroup $A(f)$ of $G$ such that

$G(f)=A(f)G(f)_{e}$ ,

then (I) (the integrability condition) is satisfied for $G$ .

PROOF. By Proposition 3, the commutator subgroup $G(f)^{\prime}$ is a connected
Lie subgroup of $G(f)$ with the Lie algebra

$g(f)^{\prime}=\Sigma_{a\in A(f)}(Ad(a)-1)g(f)\vdash[g(f), g(f)]$ .

Let $g(f)_{0}$ denote the kernel of $f$ : $g(f)\rightarrow R$ . Then $g(f)_{\cup}$ is the Lie
algebra of the kernel $G(f)_{0}$ of the character $\chi_{f}$ : $G(f)_{e}\rightarrow C$. For $x\in G(f)$

and $X\in g$ ,

$\langle f, X\rangle=\langle\mu(x^{-1})f, X\rangle=\langle f, Ad(x)X\rangle$ ,

and so $\langle f, (Ad(x)-1)X\rangle=0$, that is $(Ad(x)-1)g\subset g(f)_{0}$ . Since $[g(f), g(f)]$

$\subset g(f)_{0}$ , we have that $g(f)^{\prime}\subset g(f)_{0}$ . Since $G(f)^{\prime}$ is connected, we have
$G(f)^{\prime}\subset G(f)_{0}$ . Q. E. D.
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Directly from Proposition 2 and Proposition 4, we have

COROLLARY 1. Let $G$ be a connected, simply connected solvable Lie group.
Let $g$ be the Lie algebra of $G$ , and $g^{*}$ the dual vector space to $g$. Supp0se there
exists a locally faithful representati0n $\lambda$ : $G\rightarrow GL(m, R)$ , such that for any
$f\in g^{*}$, the isotropy group $\lambda(G)(f)$ of the coadjoint representati0n of $\lambda(G)$ is
finitely connected. Then (I) is satisfied for $G$ .

Now, the next corollary is what we wanted.

COROLLARY 2. A connected, simply connected, solvable, adjoint semi-algebraic
grouP $G$ satisfies (I) (the integrability condition).

PROOF. By (2. 5), $G$ has a locally faithful representation $\lambda$ such that $\lambda(G)$ ,
$\subset GL(m, R)$ , is semi-algebraic. Let $g$ be the Lie algebra of $\lambda(G)$ composed of
$m$ by $m$ matrices, and let $g^{*}$ be the dual vector space to $g$ . Let $N$ denote
the normalizer of $\lambda(G)$ . Then $N=$ { $x\in GL(m,$ $R);$ xgx $=g$ } is an algebraic
group. For $x\in N$, we put

$\langle\mu(x)f, X\rangle=\langle f, x^{-1}Xx\rangle$ $X\in g$ , $f\in g^{*}$ .

Then $\mu$ : $N\rightarrow GL(g^{*})$ is a rational homomorphism, and $\lambda(G)\ni x->\mu(x)$ coincides
with the coadjoint representation of $\lambda(G)$ . For $f\in g^{*},$ $N(f)=\{x\in N:\mu(x)f=f\}$

is an algebraic group, and $\lambda(G)(f)=\lambda(G)\cap N(f)$ is semi-algebraic by (2. 2).

Hence $\lambda(G)(f)$ is finitely connected, by (2. 1), so Corollary 2 follows from
Corollary 1. Q. E. D.
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