On a class of type I solvable Lie groups I

By Morikuni GOTO

(Received May 23, 1977)

1. Introduction.

Let G be a topological group, and U a unitary representation of G. If the von Neumann algebra generated by $\{U_x; x \in G\}$ is of type I, we say that the representation is of type I. The group G is said to be of type I if all the strongly continuous unitary representations of G are of type I.

In this paper, we shall restrict ourselves to connected, simply connected solvable Lie groups. Then such a G is known to be of type I either if G is an exponential group by 0. Takenouchi [10], or if G is the universal covering group of the identity component of a suitable algebraic group in $GL(m, \mathbf{R})$, by results of J. Dixmier [2] and L. Pukanszky [9].

Let G be a connected Lie subgroup of $GL(m, \mathbf{R})$. In a previous paper, the author defined G to be *semi-algebraic* if a maximal compact connected subgroup of the algebraic hull of G is contained in G. The purpose of this paper is to prove the following theorem:

THEOREM. Let G be a connected, simply connected solvable Lie group. If the adjoint group Ad(G) of G is semi-algebraic, then G is of type I.

Let G be a Lie group, and let g be the Lie algebra of G. Let g^* denote the vector space dual to g. We define a map $\mu : G \ni x \mapsto \mu(x) \in GL(g^*)$ by

 $\langle \mu(x)f, X \rangle = \langle f, Ad(x^{-1})X \rangle$ for $X \in g$ and $f \in g^*$.

Then μ is a representation (the *coadjoint representation*) of G, and the corresponding representation $d\mu$ of the Lie algebra g is given by

$$\langle d\mu(X), Y \rangle = \langle f, [Y, X] \rangle,$$

for X, $Y \in g$ and $f \in g^*$. For $f \in g^*$, we put

$$G(f) = \{x \in G; \mu(x)f = f\},\$$
$$g(f) = \{X \in g; d\mu(X)f = 0\}.$$

Then G(f) is the isotropy group at f, and g(f) is the Lie algebra of G(f).

By the definition of g(f), we have $\langle f, [g(f), g] \rangle = 0$, and in particular $\langle f, [g(f), g(f)] \rangle = 0$. Therefore

$$g(f) \ni X \mapsto i \langle f, X \rangle \in C \quad (i = \sqrt{-1})$$

is a Lie algebra homomorphism. Suppose that G is connected, simply connected and solvable. Then $G(f)_e$ is closed and simply connected, and there corresponds a one-dimensional unitary representation (character) χ_f of $G(f)_e$ such that

$$\chi_f(\exp X) = e^{i \langle f, X \rangle}$$
 for $X \in g(f)$.

Our proof of the theorem is based on the following, see [1].

THEOREM (Auslander-Kostant). Let G be a connected, simply connected, solvable Lie group. Then G is of type I if and only if the following two conditions are satisfied:

(O) Orbit condition. Any orbit $\mu(G)f$ of the coadjoint representation is a locally compact set.

(I) Integrability condition. The kernel $G(f)_0$ of the character χ_f contains the commutator subgroup of G(f).

REMARK. The above formulation of (I) is due to Pukanszky [9].

Let G be a connected, simply connected, solvable Lie group such that the adjoint group Ad(G) is semi-algebraic. The orbit condition for G was established in [6] in a more general setting. In §2 we summarize the results on semi-algebraic groups, which are useful for us. In §3, the integrability condition will be discussed, and be obtained for G.

NOTATION AND TERMINOLOGY. The identity element of a group in question will be denoted always by e. For a Lie group L, let L_e denote the identity component, i. e. the connected component containing e. When the factor group L/L_e is finite, L is said to be *finitely connected*.

Let L be a (not necessarily connected) Lie group and l its Lie algebra. For x in L, the automorphism $L_e \ni y \to xyx^{-1}$ of L_e induces an automorphism of l. We denote it by Ad(x). The group $Ad(L) = \{Ad(x); x \in L\}$ is called the *adjoint group* of L.

2. Semi-algebraic groups.

Let G be a subgroup of $GL(m, \mathbf{R})$. When G is an open subgroup of a suitable algebraic group, G is said to be *pre-algebraic*. For any subgroup H of $GL(m, \mathbf{R})$, there exists a smallest pre-algebraic group $\mathcal{A}(H)$ containing H. $\mathcal{A}(H)$ is called the pre-algebraic hull of H.

A closed subgroup S of $GL(m, \mathbf{R})$ is said to be *semi-algebraic* if the factor space $\mathcal{A}(S)/S$ is homeomorphic with a euclidean space \mathbf{R}^k , $k=0, 1, 2, \cdots$. A pre-algebraic group is semi-algebraic. We shall give results on semi-algebraic groups, for later use. The details can be found in [5] and [7].

(2.1) A semi-algebraic group is finitely connected.

(2.2) The intersection of any number of semi-algebraic groups in $GL(m, \mathbf{R})$ is semi-algebraic.

(2.3) Let S be a semi-algebraic group in $GL(m, \mathbf{R})$. Then for any $v \in \mathbf{R}^n$, the orbit Sv is a locally compact set.

(2.4) If S is a semi-algebraic group, then so is the adjoint group Ad(S).

Let G be connected Lie group, and g the Lie algebra of G. The group G is said to be *adjoint semi-algebraic* if the adjoint group Ad(G) is semi-algebraic in GL(g).

(2.5) If G is adjoint semi-algebraic, then there exists a semi-algebraic group G_1 in $GL(m, \mathbf{R})$ for a sufficiently large m, which is locally isomorphic with G.

PROPOSITION 1. Let G be an adjoint semi-algebraic group, and let μ be the coadjoint representation of G. Then retaining the notation in §1, for $f \in g^*$ the orbit $\mu(G)f$ is a locally compact set.

PROOF. For x in $GL(m, \mathbf{R})$, let x^* denote the transposed matrix of x^{-1} . Then $x \mapsto x^*$ is an automorphism of $GL(m, \mathbf{R})$. Furthermore, for any algebraic group H, $H^* = \{x^*; x \in H\}$ is also algebraic. Hence if H is semi-algebraic, so is H^* . But Ad(G) is semi-algebraic, and with respect to suitable bases in gand g^* , $\mu(G)$ can be identified with $\{x^*; x \in Ad(G)\}$. Therefore, the proposition follows from (2.3). Q. E. D.

REMARK. An exponential group with all roots real is adjoint semialgebraic.

3. Integrability condition.

A Lie group L is called faithfully representable if there is a continuous one-one homomorphism $\lambda: L \to GL(m, \mathbb{R})$ for a sufficiently large m. A connected solvable Lie group L is faithfully representable if and only if the commutator subgroup L' of L is closed and simply connected; and in this case, there exists a closed, connected, simply connected normal subgroup N such that L=TN, $T \cap N=\{e\}$, where T is any maximal compact subgroup of L. The converse is also true; see [3].

М. Сото

PROPOSITION 2. Let G be a connected, faithfully representable solvable Lie group, and let H be a finitely connected, closed subgroup of G. Then

1) $H=KN, K \cap N=\{e\},\$

where K is a compact abelian subgroup, and N is a closed, connected, simply connected normal subgroup, of H.

2) Let \tilde{G} be the universal covering group of G, and $\pi : \tilde{G} \to G$ the covering homomorphism. Then there exists a discrete subgroup $A \cong \mathbb{Z}^r$ for some $r=0, 1, 2, \cdots$ in \tilde{G} such that

$$\pi^{-1}H = A(\pi^{-1}H)_e, \quad A \cap (\pi^{-1}H)_e = \{e\}.$$

PROOF. Let h be the Lie algebra of H. Let $H_{e'}$ be the commutator subgroup, and T a maximal compact subgroup, of H_{e} . Then $H_{e'}$ is a closed characteristic subgroup of H_{e} , and the Lie algebra of $H_{e'}$ is [h, h]. Since Tis maximal compact in H_{e} , so is $TH_{e'}/H_{e'}$ in $H_{e}/H_{e'}$, by a theorem in Iwasawa [8]. However $H_{e}/H_{e'}$ is a connected abelian Lie group and $TH_{e'}/H_{e'}$ is the largest toral subgroup of $H_{e}/H_{e'}$. Hence $TH_{e'}$ is a closed characteristic subgroup of H_{e} . We have $T \cap H'_{e} = \{e\}$ because $H_{e'}$ is simply connected. Let t be the Lie algebra of T. Then $t \cap [h, h] = 0$, and

$$Ad(H)(t+[h, h])=t+[h, h].$$

For x in H, let $\sigma(x)$ denote the restriction of Ad(x) on h/[h, h]. We adopt the notation (ad X) Y=[X, Y] for X, Y in a Lie algebra. Then $Ad(\exp X) Y-Y=\exp(ad X) Y-Y=\sum_{k=1}^{\infty}(ad X)^k Y/k! \in [h, h]$ for X, $Y \in h$. Hence $\sigma(\exp X)$ is the identity. Since $\exp h$ generates H_e , the kernel of σ contains H_e , and σ gives rise to a representation of the finite group H/H_e . Therefore, σ is completely reducible, and we can find a subspace p of hsuch that

$$h = p \oplus t \oplus [h, h]$$
 and
 $Ad(H)(p+[h, h]) = p+[h, h].$

We put p+[h, h]=n. Then *n* is an ideal of *h*. Let *N* denote the connected Lie subgroup corresponding to *n*. Then *N* is closed, simply connected, and is a normal subgroup of *H* by Ad(H)n=n. Also $h=t\oplus n$ and

$$H_e = TN, \quad T \cap N = \{e\}.$$

Since H_e/N is compact and H/H_e is finite, the factor group H/N is compact. This fact, together with that N is a connected, simply connected solvable Lie group, implies that there exists a compact subgroup K of H such that

774

H=KN, $K \cap N=\{e\}$, by Iwasawa [8]. On the other hand, K is contained in some maximal compact subgroup C of G, which is a toral group. Hence K is abelian, and this proves 1).

Next, since C is a maximal compact subgroup of G, the underlying space of G is the direct product of C and a euclidean space. Hence $\pi^{-1}C = \tilde{C}$ is the universal covering group of C, and is a vector group, i. e. $\tilde{C} \cong \mathbb{R}^k$ for a suitable $k=0, 1, 2, \cdots$. Since $\pi^{-1}K$ is a closed subgroup of \tilde{C} ,

$$\pi^{-1}K = A(\pi^{-1}K)_e$$
 and $A \cap (\pi^{-1}K)_e = \{e\}$,
where $A \cong \mathbb{Z}^r$ and $(\pi^{-1}K)_e \cong \mathbb{R}^s$.

Next, let \tilde{N} be the connected Lie subgroup of \tilde{G} corresponding to the Lie algebra *n*. Then $\pi \tilde{N}=N$. In order to prove $\pi^{-1}K \cap \tilde{N}=\{e\}$, suppose that $x \in \pi^{-1}K \cap \tilde{N}$. Then $\pi(x) \in K \cap N=\{e\}$, and *x* is contained in the kernel of π . Recalling that *N* is simply connected, we have $\tilde{N} \cap \pi^{-1}\{e\} = \{e\}$. It follows that x=e, and hence we get $\pi^{-1}K \cap \tilde{N}=\{e\}$. Since $\pi^{-1}N=\pi^{-1}\{e\} \in \tilde{N}$,

$$\pi^{-1}H = \pi^{-1}K \cdot \pi^{-1}\{e\} \cdot \widetilde{N} = \pi^{-1}K \cdot \widetilde{N}.$$

Hence $\pi^{-1}H = A(\pi^{-1}H)_e$ and $A \cap (\pi^{-1}H)_e = \{e\}$. Q. E. D.

PROPOSITION 3. Let L be a Lie group, l the Lie algebra of L, and suppose that there exists an abelian subgroup A of L such that $L=AL_e$. Then the commutator subgroup L' of L is a connected Lie subgroup of L_e , and the Lie algebra l' of L' is given by

$$l' = \sum_{a \in A} (Ad(a) - 1) l + [l, l].$$

PROOF. Let a and b be in A, and x and y in L_e . We shall prove that the commutator

$$c = (a x)(b y)(a x)^{-1}(b y)^{-1}$$

can be joined with e by an arc in L'. Let $\alpha(t)$ and $\beta(t)$ be arcs in L_e with

$$\alpha(0) = \beta(0) = e, \quad \alpha(1) = x \text{ and } \beta(1) = y.$$

Then the arc

$$\gamma(t) = (a\alpha(t))(b\beta(t))(a\alpha(t))^{-1}(b\beta(t))^{-1}, 0 \le t \le 1,$$

is in L', $\gamma(0)=e$ and $\gamma(1)=c$. Since L' is generated by elements of the form c, we have that L' is arcwise connected. Hence L' is a connected Lie subgroup; see [4].

Let X be in l and a in A. Then the arc $a(\exp tX)a^{-1}(\exp(-tX))$ has the tangent vector (Ad(a)-1)X at t=0. Since L' contains the commutator subgroup $L_{e'}$ of L_{e} , and the Lie algebra of $L_{e'}$ is [l, l], we have

$$l' \supset l^* = \sum_{a \in A} (Ad(a) - 1) l + [l, l]$$

Let L^* be the connected Lie subgroup of L corresponding to the Lie algebra l^* . Since $L^* \supset L_{e'}$, the factor group $L_{e'}/L^*$ is abelian. Notice here that L^* may not be closed and we are considering only the group structure of $L_{e'}/L^*$. Next, for a, b in A

$$Ad(a)(Ad(b)-1) = (Ad(b)-1) Ad(a) = (Ad(b)-1) l$$

and $\{Ad(a); a \in A\}$ leaves l^* invariant. Hence L^* is a normal subgroup of L.

Let us prove that $a x a^{-1} x^{-1} \in L^*$ for $a \in A$ and $x \in L_e$. Obviously, it suffices to prove this for x in any neighborhood of e in L_e . By the Campbell-Hausdorff formula, we have

$$a(\exp X) a^{-1}(\exp(-X)) = \exp((Ad(a)-1)X - \frac{1}{2}[Ad(a)X, X] + \cdots)$$

$$\in \exp l^{*} \subset L^{*},$$

for $X \in l$ sufficiently close to 0. Thus we have proved that L/L^* is abelian, that is $L^* \supset L'$. Q. E. D.

PROPOSITION 4. Let G be a connected, simply connected solvable Lie group. Let μ be the coadjoint representation of G. If for each $f \in g^*$, there exists an abelian subgroup A(f) of G such that

$$G(f) = A(f) G(f)_e,$$

then (I) (the integrability condition) is satisfied for G.

PROOF. By Proposition 3, the commutator subgroup G(f)' is a connected Lie subgroup of G(f) with the Lie algebra

$$g(f)' = \sum_{a \in A(f)} (Ad(a) - 1)g(f) + [g(f), g(f)].$$

Let $g(f)_0$ denote the kernel of $f: g(f) \to \mathbb{R}$. Then $g(f)_0$ is the Lie algebra of the kernel $G(f)_0$ of the character $\chi_f: G(f)_e \to \mathbb{C}$. For $x \in G(f)$ and $X \in g$,

$$\langle f, X \rangle = \langle \mu(x^{-1})f, X \rangle = \langle f, Ad(x)X \rangle,$$

and so $\langle f, (Ad(x)-1)X \rangle = 0$, that is $(Ad(x)-1)g \subset g(f)_0$. Since $[g(f), g(f)] \subset g(f)_0$, we have that $g(f)' \subset g(f)_0$. Since G(f)' is connected, we have $G(f)' \subset G(f)_0$. Q. E. D.

Directly from Proposition 2 and Proposition 4, we have

COROLLARY 1. Let G be a connected, simply connected solvable Lie group. Let g be the Lie algebra of G, and g^* the dual vector space to g. Suppose there exists a locally faithful representation $\lambda: G \to GL(m, \mathbf{R})$, such that for any $f \in g^*$, the isotropy group $\lambda(G)(f)$ of the coadjoint representation of $\lambda(G)$ is finitely connected. Then (1) is satisfied for G.

Now, the next corollary is what we wanted.

COROLLARY 2. A connected, simply connected, solvable, adjoint semi-algebraic group G satisfies (I) (the integrability condition).

PROOF. By (2.5), G has a locally faithful representation λ such that $\lambda(G)$, $\subset GL(m, \mathbf{R})$, is semi-algebraic. Let g be the Lie algebra of $\lambda(G)$ composed of m by m matrices, and let g^* be the dual vector space to g. Let N denote the normalizer of $\lambda(G)$. Then $N = \{x \in GL(m, \mathbf{R}); xgx^{-1} = g\}$ is an algebraic group. For $x \in N$, we put

$$\langle \mu(x)f, X \rangle = \langle f, x^{-1}Xx \rangle$$
 $X \in g, f \in g^*.$

Then $\mu: N \to GL(g^*)$ is a rational homomorphism, and $\lambda(G) \ni x \mapsto \mu(x)$ coincides with the coadjoint representation of $\lambda(G)$. For $f \in g^*$, $N(f) = \{x \in N: \mu(x) f = f\}$ is an algebraic group, and $\lambda(G)(f) = \lambda(G) \cap N(f)$ is semi-algebraic by (2.2). Hence $\lambda(G)(f)$ is finitely connected, by (2.1), so Corollary 2 follows from Corollary 1. Q. E. D.

Bibliography

- [1] L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math., 14 (1971), 255-354.
- [2] J. Dixmier, Sur la représentation régulière d'un groupe localement compact connexe, Ann. Sci. École Norm. Sup., 2 (1969), 423-436.
- [3] M. Goto, Faithful representations of Lie groups II, Nagoya Math. J., 1 (1950), 91-107.
- [4] M. Goto, On an arcwise connected subgroup of a Lie group, Proc. Amer. Math. Soc., 30 (1969), 157-162.
- [5] M. Goto, Orbits of one-parameter groups III (Lie group case), J. Math. Soc. Japan, 23 (1971), 95-102.
- [6] M. Goto, Products of two semi-algebraic groups, J. Math. Soc. Japan, 25 (1973), 71-74.
- [7] M. Goto, Semi-algebraic groups and the local closure of an orbit in a homogeneous space, forthcoming in Trans. Amer. Math. Soc.
- [8] K. Iwasawa, On some types of topological groups, Ann. of Math., 50 (1949), 507-558.

М. Gото

- [9] L. Pukanszky, Characters of algebraic solvable groups, J. Functional Analysis, 3 (1969), 435-494.
- [10] O. Takenouchi, Sur les facteurs représentations d'un groupe de Lie resoluble de type E, Math. J. Okayama Univ., 7 (1957), 151-161.

,

Morikuni GOTO Department of Mathematics University of Pennsylvania U.S.A.

778