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Introduction.

Let H be a real Hilbert space and V, W be real Banch spaces with
VCWCH. We assume V is dense in W and H, and the natural injections
from V into W and from W into H are continuous. We identify H with its
dual H* (i.e.,, VCEWCHCW*CV*). Let us consider the nonlinear evolution
equations

w”(O)+ BOw' )+ Au)=11) (a)
and

B ()+ Au()=f(0) (b)

where A(t) is the Fréchet derivative of a functional F,,(u) on V and B is a
bounded operator from W to W*.

Recently in [6], the author has discussed the decay property of solutions
of the equations (a) and (b) in the case A(¥) and B(f) are independent of ¢.
There the problem is reduced to the difference inequality of the form

sup ()T =Clg(O)—pt+1)+60)  (r=0)

sert,t+1

where C is a positive constant, ¢(!) is a nonnegative function on R*=[0, oo)
and d(f) is a function tending to 0 as t— oco. The decay property of ¢(f) as
t — oo has been discussed in and with applications to the wave equation
with a nonlinear dissipative term.
In this paper we first treat a more general difference inequality
sup ()= CA+)*(d(t)—p(t-+1)+0()

SE[L,L+1]

where a, r are constant with 0=a=1, r=0. Next, the result for the above
inequality is applied to the investigation of the asymptotic behaviour of the
solutions of (a) and (b). As isin [6], the equation (a) will be treated in detail,
while we give a brief discussion of eq. (b), because the latter is simpler.

A typical example which our result is applicable to is the nonlinear genera-
lized Euler-Poisson-Darboux equation



748 M. NAKAO

0* 0
—atTu—Au+t‘”p(~a—ru)+‘B(x, w)=f on [t, OO)X.Q.

(t,>0, 0=0=1) with boundary condition u|;9=0, where £ is a bounded domain
in n-dimensional Euclidean space R”. This equation seems to be interesting
because the effect of the dissipation weakens on and on as { — co, which differs

from usual dissipative wave equations. For a special case =1, p(%—u)z—%—u,

the growth property of solutions have been investigated by Levine [1]. Further
examples are also given in the last section.

1. Difference inequality.

In this section we prove:
THEOREM 1. Let ¢(t) be a nonnegative function on [0, co) satisfying

sup  ¢(9)=Co(1+0)(@(O)—p(t+1))+g(®) (L.1)

SE[L,t+1]

where C, is a positive constant and g(t) is a nonnegative function. Then we have:

() If a>0, r=1 and lim (log D g(£)=0
then
$(t)=C(log(1+1)",
(i) if a>0, 0=r<1 and lim 4=+ g()=0

then
¢(l‘)§C2t'<1'”’“ ,

(ili) if a=0, r=1 and gt)=<const.t 7!
then
SO=C(LHD)" with ¢ =min(C7", )

1

m(t+ 1)1_7} with

(v) if a=0, 0=r<1 and g(f)=const. " exp[—»
6>1, then

1
¢(t)§C4 CXD{'— —(é‘o:ix—l__—r)~ t r}.
In the above, C; (i1=1, 2, --+) are constants depending on ¢0) and other known
constants.
PrRoOOF. The basic idea of the proof is the same as that of the lemma in
where the case r=0 is treated. We give the proofs of (i)-(iv) separately.
Proof of (i). We set
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PH)=g()+v(log(1+1) V=
where v is a positive to be determined later. Then by (1.1) we have

sup ¢(s)re=2"*{ max ¢(s)'**{vr*e(log(1+41)) - trar/a}

SE[L,t+1] SE[L, L+

=const. {(1+1)((6)—p(L+1)+ 1)} (1.2)
where
L=+ {v(log(t+2)) " *—v(log(t-+1)) "=} +g(t)

+u”“(log(t+ 1))—(1+a)/a .
We shall show I,(H)=0 if ¢ is sufficiently large.

I 1<f>=»(10g(t+1))‘1‘%[(1+t) log (t-+1){ igi% =

- (log (t+ L)% g()+v4 |

Since

1

a

—1

log(t+2) )'% _ 1_( log(t+2)—log(t+1)
log(t+1) - log(t+1)

= —(2a)™*(log(t+2)—log(t+1)(log(t+1)*,

+1)

for large f, we have

LO=x(log(t+1) ™« {—Ca)y™(1+1) log(t+2)/(t+1)

Lo Y log(t+ 1)+ g(f)+v?}  for large ¢.

Now, by the assumption on g(#), the second term in the bracket of the right
hand side tends to 0 as t — oo, and moreover we see easily

. 12N\
ltlglc (1+1) 10g( P )——1 .

Therefore, there exists 7,>0 such that if t=T, we have
1 1
1,0 = v(log (t+1)" " (—(4a) 1 +52) <0

where we choose v as
v<Qa) Ve,
Thus for ¢t>7T,; and small v we have

sup (s **=Col+0(@O—¢t+1). (1.3)

SE[L, t+1]

Setting ¢(s)"*=w(s), we have
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w4 D=~ 090+ (-0 + 1) <ds

= —aS: {0(t)4-(1—O)p(t+ 1)} ~1~2dO(P(#)— (1))

S—a Cyi(146)7t. (1.4)
Therefore, for the integer n with n+T,=t<n+14+T,,
n-1 1
. . < -1 X0
wit—n)—wit)= —aCy %;,0 =

1
t—x

. n-1
é—-a(,(fls dx
0

=—aC, Ylogt—log t+1—n))
and hence
w(t)= ir%)fl w(s)+aChitlogt—aCitlog (T,+2)
8E[0,1]

which yields immediately

§O<PO={_inf  w(+aCi logi—aCilog (Ts+2) . (L.5)

T1.T1+

For {=T, we see easily by
p()=max {g(t), (Cop(0)+ g(0)!/ *+*}. (1.6)
The estimates and imply readily (i).

Proof of (ii). At this time we set

PO=g(t) vt e
Then as in we have

sup ()¢ =27*{Co(14-0)"(p() — P(t+ 1))+ LD} (L.7)

SELL,E+1]

where
I,()=pt~1-7a {Co(l_l_t)r((%‘i)‘(l-r)/a_l)

+y—1t(1—r)/ag([)+pat—(l—r)}_
Using the assumption on g(f) and the inequality

<_£__—L)t—1

- 2a

( i1 )_(l_wa—l for large ¢

t
we have

IS vt 0= C L1 (L) 2+ w7}

<0 for large ¢,
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where we choose v sufficiently small.
Thus there exists T,>0 such that if t=T,

p Pt e=21"4Co(1+)"(h(H)— ¢+ 1)

sE[t, £+1]
and therefore as is in the proof of (i)
1
(t—x)r
=aCy'(1—r)H{—n+ D" =277}

w(t—n)—w(t)§-aC6“IS:—l dx (Ci=214C,)

for any positive integer n, which proves (ii) immediately.
Proofs of (iii) and (iv). The proofs of (iii) and (iv) are almost the same,
and we give only the one of (iv). By [1.I)] we have

C (1+t)
S+ —— CALi T o O+ g(®)
and hence, by induction,
AR SRS e s w1 By ox s e e LGl
=I,+1,.
Fix the integer n such that n<t<n-+1. Then, we have easily
1
log (I)=— N (e o + 323?1]108 B(s)
S—Sn——l—————dﬁ— sup log ¢(s)
= Jo G(t+1—x)+1 $E10,1)

(we may assume sup ¢(s)>0)
SE[0,11

1 -7
=— R (=5 A+D7"+

+log {Cogp(0)+ g(0)} /¥,

Gy Eri=m™

Thus we have

1 1-r
IL=C; eXD{—m(Hﬂ‘) }
In a similar way,
n-1 J 1 .
fz§,=oe"p{—go Cod+i—xy+1 d"}'g(t‘])
1 1-r
sCeewo =y CH

The proof is now complete.
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2. Nonlinear evolution equation.

In this section we apply the results in § 2 to nonlinear evolution equations.
We discuss the decay property of solutions of the equations:

w”(t)+ Bt ()+ ADu®)=1(t) (a)
and
Bt )+ AQu®) =), (b)

where A(t), B(t) are nonlinear operators mentioned in the introduction.

The pairing of V* and V is denoted by (,). We make the following
assumptions.
A,. A() and F4q, satisfy the conditions

k(10 *lulp=kFac,=(A®u, w)  for usV

where k,, ki, a, p are constants such that %, £, >0 a«=0, and p>1.
A,. For each usV, Fy.,(u) is differentiable in ¢ and

d
0=— dt FA(t)(u)§P<t)FA(z)(u)

with a function p(#) tending to 0 as t— co.
(For simplicity we write Fu () for %FA(n(u).)
A,. B(@) satisfies

ko(1+1) "% |ull 52 < (B(Ou, w)
and
I B(Oullw-= Rks((A+01Ju| 3+ A+ ullw)
where
ks, B3>0, 7, 0,20, 0,, 0, are all constants.

Ay, fOELFEY (R, W) (R*=[0, o))

with » in A,.

REMARK 1. Even for the case of A(f), B(f) being independent of ¢ our
assumptions here are somewhat simpler and weaker than those in [6].

Now we give the definition of the solutions of (a) and (b).

DEFINITION 1. A V-valued function u(f) on R* is said to be a solution of
(a) if

usCR*; V), weCRY;H)NLLAR; W),
we Ll (RY; V¥

and the equation (a) is valid in V* for almost all t=R™.
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DEFINITION 2. A V-valued function u(t) on R* is said to be a solution of
(b) if
usCR*; V), uweELXR"; W)

and (b) is valid in V* for a.e. t€ R*.
Let u(f) be a solution of (a). Then we have formally, for #, {,R*,

I+ P (wlt) = P @t *(BOw 0, w@)ds

2.1)
= I+ P (et 2700, /et
and
[, CAu, utpdr=*(—(BOw @), v+, u))at
2.2)
I Ot (), )~ (), u(e) .
Also, if u(?) is a solution of (b) we have formally
Facep(u(t)= | Facou@)att | "(BOw ), w @)t
@3)

=Facp(ult)+ (0, wDha

and
[ Auo, uwrar={" (—(BOw O, W)+, uds. @

In what follows we consider only the solutions which satisfy (2.1)-(2.2) or
(2.3)-(2.4). If A(@) is a linear operator, all the solutions of (a) and (b) satisfy
(2.1)-(2.2) and (2.3)-(2.4), respectively, under some additional natural conditions
on spaces (see Strauss [10]). In general we do not know if the above energy
equalities hold or not. However, even if these equalities are not valid, in many
important cases, solution u# can be obtained as a (weak or weak*) limit function
of the approximate solutions u,(t) (im=1, 2, 3, ---) which satisfy the above equa-
lities (see Lions [2], Lions and Strauss [3], Tsutsumi etc.), and the results
of this section remain valid for such solutions. Under the assumptions men-
tioned above we shall derive a difference inequality concerning the energy of
u(?).

Let u(f) be a solution of (a) which satisfies (2.1)-(2.2). Then, by the assump-
tions A, and (2.1), we have
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By ldss | (B, w(9)ds
S Eu@®)— E(u(t+1)) (2.5)

+{ 1A Il (9w

where we set
Eu(0)= 5 [/ Dl Faco @(t)

Since

1) el () wds

7’+1 2 e _I/(TH)SHI o/ (r+1) F+D/r=1)
(L)) s ) s

k] At s,
t
we have from (2.5

t+1 " , .
ANEDR IO

= 2{B@®)— Bu(t+ 1)} +const.| " (197w fo)l 2 ds
=k, D()*2. (2.6)
Therefore there exist tle[t, H—i—] and tze[t—f—%, H—l] such that
lw' @)W S4Y T (A0 DE) (=1, 2). 2.7)
Thus, by the equation (2.2) with above t;, we have

SZ(A(s)u(s), u(s))dségz{l(B(s)u’(s), W)+ 1(F(s), u(s)|} ds
+{ st 3 1w, ue)

<const.| “ {1+ /(9511490 v
1At ds max flu(s)llw

+const. {1 +1)f/ 7+ D(1) max ()| - (L+£)200/ T+ D(1)2}
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gconst.{(1+t)"’1+"°"+”’”+2’D(t)r“—l—(l—{—t)'”Z“‘”O/‘”z)D(t)
+3()+(1+£Y0 TP DO} 1+H? max Eu(9)'?
SErt, 1
(L0 T+ D7) 2.8)

where we set

t+1 (r+1)/(r+2)
t

aw=({, 17>+ ds)

From and A,, we see that there exists a time t*<[t,, t,] such that
E(u(t*)) < const.[(141)% T2 D)2+ {(14¢) Fr+bor+b/rea) pipyr+t
+ (1) 02400 T+ D) +-6() +(L+1)7 7+ D()} A +1)«'?
X max E(u(s)?] (2.9)

sert,t+11

and therefore by (2.1) we have

max  Bu()ZEuE)+ " (B, ()

1 Fa @)+ 1), w(s)}ds
< E(u(#*))-Fconst. {(1+#)1+0 D(t)r+*
+ (1) 200D D(E)* 4 6(E)(L+1)% 2 D(D)}
+p(t) max B(u(s). (2.10)

sE[t,t+1

Since p(t) — 0 as t — co, we see from (2.9) and that there exists 7>0
such that if ¢>T,

Jpax E(u(s))=const.[ (14820 T+ D()2 4 (1+£)~01+0 D(¢)r+2
+ (1 4-£)7 02200/ 2 D2 G(E)(1+-1)P0 T+ D(F)
(L)@ P (L gy PutOotr /e pgyres (2.11)
+(1418) 702400/ D D) 4-5(t) (1 1) 7B D(1)} 2127 D]
Here we assume
d(H=const.(1+¢) % (2.12)

where A, is a constant satisfying the following condition :
Aozmax(—(r+1)6,/(r+2)+8,, —(r+1)8,/2+6,, a/p—0,+6,, a(r+1)/p+6,)

(2.13)

Then we can see easily from that E(u(t)) is bounded on R*. Indeed, if
Eu()= E(u(t+1)) for some t=T we have
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D()=const. (L4 £)f0/ T+DT+D5(f)1/ T+
and hence, by [2.1T) and [2.12)

max E(u(s))<const. {(1-+)2-40+0o)/r+1)
SS[t,t+1]

+(1+t)(-20-01(r+1)/(T+2)+60)(7‘+2)/(r*l}
(L £)20-20m T+ 102/2+00) Cr 1
+<1+t)(-20+t90/(r+2))(1‘+2)/(T+1)
+(1+t>(—10+a/p—01+90')p/(p—])
+(1+t>p(-/7.0+a(r+l)/p—(‘r+l)f72+¢90)/(p-1)(r+l)
+(14-£)¢Rora/pp/ =D
+(1+t)(.'io+a<r+1)/13+6o)p/((p—l)(T-H))}
< M(=const.)< +oo (by (2.13)).
Therefore we have for =T,
E(u(t))émax(sgr[r%:’iT)qu(u(s)), M).
However, by a similar inequality as we know
EGu(0)< B@(0)-+const.| (1-+5/v/r+2] 79§52/ r0ds
for t=T+1, and we obtain

Eu®)=Cs< +o00 (2.14)

where C, is a constant depending on E(u(0)), M and 7. In what follows C;

(i=7, 8, --+) denote constants depending on E(u(0)) and other known constants.
By [2.11) and [2.14) we have easily, for =T,

max Eu(s)=Cr {1+ D) +0(0"+A -+ P03 ™) (2.15)

sert,t+1

where
ry=max {260,/(r+2), —0,+6,, —0,+20,/(r+2),
a/(p—1)+p(=0,+0,(r+1)/(r+2))/(p—1),
a/(p—1)+p(—=0:+0o/(r+2))/(p—1), a/(p—1)+p0,/(r+2)(p—1))},
t,=min (2, p/(p—1)).
Now, recalling the definition of D(t), we have from (2.15)
max  Eu(9)"+/7S Cy {177 (Bl ) — Bu(t+1)
h +a®)  ¢=T) (2.16)
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where
go(i):(l_I__ZL)(?()/(7+1)+tl(r+2),’725(t)(r+2)/(T+1)+5(t)2(7‘+2)/:'2
(LRI P=D §(F)PTHI (P Doz (2.17)
Thus the required difference inequality concerning the energy of the solution

u(?) of the equation (a) has been derived. In a similar manner we obtain for a
solution u(t) of the equation (b):

max  Fa,@(s) T2/ e Co {14112 F 40, (u(t))
]

’ (2.18)
_FAu+1><u(t+1>)+go(f)}

where
ri=max {20,/(r+2), —0,+0,, —0,+20,/(r+2),

a/(p—1)+p(—=0,+0(r+1)/(r+2))/(p—1),
a/(p—D)+p(—0,+8,/(r+2))/(p—1)}.

Applying the results in sectien 2 to the above inequalities we obtain the follow-
ing theorems.

THEOREM 2. Suppose A-A,. Let u(t) be a solution of (a), satisfying (2.1)
and (2.2). Then it holds that

(i) if r+2)/z,—1>0, ty(r-+2)/7,=1 and

lim (log t)1+~'2/((7'+2)«z-2)g0(t):0 ,
t—oo
then we have
E(“(D)éclo(log (l+t>)_T2/((T+2)—z—2) :
(i) if (r+2)/2—1>0, 0=2,(r+2)/7, <1 and

H -T 2)/t T -T —
Hm $-s1(r+2)/eaiil+re/ ((r+2) Z”go(f)*—O

oo

then we have
E(u(t))§Cu(l+t)—{rz—r1(r+2>}/(<r+2>—rzl :

(i) if r+2)/1a—1=0, 2,(r+2)/c,=1 (.e. ;=1) and

g =const. (1-+£)"71 (p>0)
then
Eu)=Cp(1+8"  (p’=min (C5", 7));

G(v) if r+2)/rs—1=0, 0=7,<1 and
go()=Zconst. exp{—(t+1)""}

with some v’ <t,, then
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E(u)=Cs eXp{_ (CSWLtll)—(:llafl) }

THEOREM 3. Suppose A;-A,. Let u(t) be a solution of (b), satisfying (2.3)
and (2.4). Then the assertion of Theorem 2 holds with =, and E(u(t)) replaced
by i and F 4., (u(t)), respectively.

REMARK 2. The condition is automatically fulfilled if g,(f) — 0 as t—oo.

The following corollaries are special cases of above theorems.

COROLLARY 1. Suppose A,-A, are valid with p=2, 6,=6,=0, and a=0.

Let u(t) be a solution of (a) satisfying (2.1), (2.2). Then it holds that r,=
20,/(r+2), r,=2 and

(i) if >0, 6,=1 and Itim (log H***7g(£)=0
(gl(t)E(1+t)00(1'+1)5(t>(r+2)/(r+1))
then
E(@®)=Ci(log (1+))7*'";
(i) if >0, 0=60,<1 and lim {1-000+2/" g (H=()

t—oo

then
E(h)=Cl(1+1)-2a-borr,
(iii) if r=0, 6,=1 and g(t)=const.(1+1)"7"* (5>0)
then

Eu@®)=Ci(1+7
Jor some p'>0;

(iv) iof r=0,0=6,<1 and g,(D)=const. exp{—1+D"%(6<8,), then
Eu()=Cisexp{—C, 1'%} .

COROLLARY 2. Suppose A,-A, are valid with r=0,=6,=0, p=2 and let u(t)
be a solution of (b) satisfying (2.3) and (2.4). Then we have

n=a/(p—1), T=p/(p—1)

and
(i) if p>2, 2a=p and 13_{2 (log )2/ P=2(14+1)6(t)*=0
then
Facou@®)=Cli(log (1+1))" 7272
(i) if p>2, 0=2a/p<1 and lim ¢7=2= 0/ P"04(1)=0

then
Fao,(u®)SCHA+-t)p2ad/p-2)
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(iii) if p=2, 2a=p (i.e. a=1) and é(f)=const. (1+)7*"* (5>0),
then

Faoyw@®)=Ch+07"
for some 1'>0;

(v) if p=2,0=a<l and

o()=const. exp{—{+1)"%} for some a’'<a,
then
Fa;(u@®))=Clexp{—Cyst' 2},

REMARK 3. In some concrete problems we can find precise values of ¢,
7’, Ciy and Cy; (cf. example 2 in section 3).

REMARK 4. If ,=a=0 in (iv) in corollaries 2, 3, the conditions on 4(¢) can
be replaced by

o(H)=const. exp{—A¢+1)} (1>0).

3. Some examples.

Here we give some typical examples. We begin with a simple ordinary
differential equation.

ExaMpLE 1. Consider the equation

EO+A+1D7p(@)+B(x()=1(t) (t=0). 3.1)

Let p and $ be continuous on R and satisfy the following conditions

Blsl=k | s0dn=pos  (522)

and
kyls|™2= p(s)s=ky(1+|s]")|s]?.

Moreover we assume, for simplicity, f(f) is continuous on [0, o) and |f({)] — 0
as t— oo,

Then all of the assumptions A;-A, are satisfied with a=0, p(t)=0, 0,=60,=
6,=6. The equations (2.1) and (2.2) are of course fulfilled with the usual solu-
tions of In this case 7y, 7, and g,(¢) in become

_w
nEL i BTy @
SoO)=A 4D TG DI THD L G(f)2r+2 -1/ P
+5(t)r+2’

respectively. Thus, for example, if (p—1)(r+2)>p, 2(p—1)0<p and
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lim t(1—2(p—1)0/p)[1+P/(p‘l)(r+2>—p))g0(t):0 ,

t—co
we have
lx(t)i2+ ‘ x(t) | P<const. (1+t)-(z’-2(p*1)01/(<p'1)(r+2)‘p} .

The equation with =0 has been investigated in detail in [8].
ExaMpLE 2. Consider the generalized Euler-Poisson-Darboux equation

2
_aat_z LL—Au+(l+t)"0p(x, ~—aaTu)—}—ﬁ(x, W=f(x, ) on £X%[0, )

(3.2)
1]p0=0

where 2 is a bounded domain in R" and 9£ its boundary. Let p(x, s) and
B(x, s) be measurable on £2X(—oo, c0) and continuous in s for each x, and
satisfy the following conditions

P(x; 0)=0, kol31ﬁ52|7+2§(10(x; Sl>_p(x, s)si—s) =R+ s + 18 1) s1—5,|?
and kyls|" = B(x, s)s=k,|s|7+?

for some k%, &, k,>0 and a, r satisfying

0=79, r< if n=3 and 0=y, r<oco if n=l, 2.

n—

Let f(©)ye L}, ([0, o0); L¥ D)) and (u,, uI)EI-}IXLz(Q). Then the problem (3.2)
admits a unique solution such that

wECRY; H),  w(ECR; L(Q)NLEZHR"; L(Q))

and (u(O), %u(0)>:(u0, u) (see [3], [10). Thus we can take H=LQ), W

=Lo+(Q), V=H, A=—A4+8(x, -) and B(-)=(1+"p(x, -). The equations
(2.1)-(2.2) are known to be valid for such solutions. In this case we have

=, =2 and =TT T,

Therefore the conclusion of [Corollary 1] are applied to this equation. For a
. 0 0 . .
special case p<x, r—aTu>:——a—t—u and 0=1, we can obtain more precise result.
Indeed, for this case, we have, for V¢ >0,
max Eu()=32S+4+) ¢+ 1) {Ewm()— Eu(t+1))} +const. (t-+1)25(¢)?

SErt,t+1]
for =T,

where T, is a large time depending on ¢, and S is the Sobolev constant:

lullo<Slullg,  for ucH,.
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Thus we obtain
E(u(t)),éC(e)(l—i—z‘)‘(”“““'l
provided that g,(f)=o(t~*S+4*™1) ag t — co.
. 0 0
l . 2. = = — —_— — 8
Moreover, for a special case, e.g., n=3, =1, p(x, o u) 5 W Blx, w)=u?,

we can discuss the decay of classical solutions (cf. Sather [9], Nakao [7]). But
the details are omitted.

ExamMPLE 3. We consider a first order equation :
0 0 <| 0

= U
8xi

-2

axi

u>+ﬁ(x, w=f(x, ) on Lx[0, )

(3.3)
uloe=0  (p=2)

where £ is a domain as in (3.2) and B(x, u) a nonlinear function continuous in
u for each x=Q and measurable in x for each u= R, satisfying

0=pB(x, wyu=const. (1+|u[D|u| and (B(x, u)—p(x, V)u—v)=0
with

o§q<n’+f’p—1 if n>p and 0=<g<oco if 1<u<p

and C(#) is a differentiable function such that

Bolt+1]*<C(OZ k| 1+¢t7¢ and |[C/(t)|Zconst. |1+1t]| "« (e>0).
In this case we can take W=H=L*), V=W§,? and .
C(®) S n 0
p .Qigl axi
For any initial value u,= W§? the problem (3.3) admits a unique solution
u(t)e Ly (R*, W§?) with u(0)=u, given as a weak* limit of approximate solu-
tions {un,(f)} which satisfy the equalities (2.3), (see [2]. Thus, we conclude
that the result of is valid for the solutions of (3.3).

ExaMPLE 4. Consider the equation:

a0 55l

2
——a.t; X; axi u axi

FA(t)(u>:

u ‘ ? dx—l-gggzmﬁ(x, s)ds dx .

u)—Cl(t)A—aaTu:f on QXR*

ulag:—‘O .

In this case we can take V=W}?, WZISI1 and H=L*2). For the existence of
solution see [I1]. Under appropriate conditions on Cy(f) and C,(¢), we can dis-
cuss the decay property of solutions for (3.4). But we omit the details.
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