Zero-divisors of character rings of finite groups

By Shoichi KONDO

(Received April 26, 1977) (Revised July 22, 1977)

Introduction.

In [9] Roquette gives a decomposition of 1 in $R_{\lambda}(G)$ into a sum of primitive idempotents, where G is a finite group and $R_{\lambda}(G)$ denotes the character ring of G with coefficients in p-adic integers λ . On the other hand, Serre [10] has shown that the prime spectrum Spec(R(G)) of the character ring R(G) is connected with respect to the Zariski topology, that is, R(G) has no non-trivial idempotent.

This paper aims at extending these results to the case where the coefficient ring λ is a Dedekind domain in the complex number field. It is shown in the section 3 that if every non-zero prime ideal contains a prime number, then it is necessary and sufficient for $\operatorname{Spec}(R_{\lambda}(G))$ to be connected that no prime divisor of the order of G is a unit in λ (Corollary 1 to Proposition 6). From this result a characterization of finite *p*-groups is given in Theorem 3. In particular, G is a *p*-group if and only if $\operatorname{Spec}(R_{\lambda}(G))$ is connected when λ is a discrete valuation ring in which *p* is a non-unit.

The main step in the proofs of these results is to find special zero-divisors of $R_{\lambda}(G)$ (Theorem 2), and this is done by using the ideas of [9] and [11]. These zero-divisors are also used to prove a converse of some result due to Atiyah [1].

The above results contain the corresponding results for a finite abelian group ring, since in this case the group ring is isomorphic to the character ring. Swan [13, Corollary 8.1] has shown that the group ring $\lambda[G]$ has no non-trivial idempotent if λ is a Dedekind domain of characteristic 0 and no prime divisor of the order of G is a unit in λ . If G is abelian, then it follows from Proposition 5 that G is a p-group if R(G) is Hausdorff with respect to the augmentation topology (see § 3.1). This is a special case of Sinha [12, Corollary].

The section 1 of this paper deals with the prime ideals of $R_{\lambda}(G)$ for an arbitrary ring λ contained in the complex number field. As an analogue of [6, §2, h) and i)], Proposition 1 gives a necessary and sufficient condition for $R_{\lambda}(G)$ to be a local ring. Moreover some zero-divisors of $R_{\lambda}(G)$ are constructed

and applied to an isomorphism problem of character rings (Theorem 1 and Proposition 3). The section 2 contains the proofs of Theorem 2 and Brauer's theorem on induced characters.

1. Prime ideals of $R_{\lambda}(G)$.

Let G be a finite group of order |G|, and let R(G) be its character ring (for character rings we refer to [1, §6] and [10, §§9-11]). For a subring λ (with identity) of the complex number field C we define the ring

$$R_{\lambda}(G) = \lambda \bigotimes_{\sigma} R(G),$$

where Z denotes the ring of rational integers. This is a commutative λ -algebra and its identity is the principal character 1_G of G. The elements of $R_{\lambda}(G)$ are λ -linear combinations of the complex irreducible characters χ of G, and the χ 's form a free basis of $R_{\lambda}(G)$ as a λ -module.

We denote by A the subring of C generated by all |G|-th roots of unity over λ . Then $R_{\lambda}(G)$ is regarded as a subring of the ring A^{G} of all A-valued functions on G. The ring λ can be embedded in $R_{\lambda}(G)$ by $\lambda \cdot 1_{G}$. Thus we have inclusions

$$\lambda \subseteq R_{\lambda}(G) \subseteq A^{G}.$$

We note that A^{G} is integral over $R_{\lambda}(G)$, since A is integral over λ . Therefore every prime ideal of $R_{\lambda}(G)$ is the contraction of some prime ideal of A^{G} [2, Theorem 5.10]. In other words, it is of the form

$$P_{\mathfrak{p},x} = \{ f \in R_{\lambda}(G) | f(x) \in \mathfrak{p} \}$$

for some $x \in G$ and some prime ideal \mathfrak{p} of A. In particular, the minimal prime ideals $P_{\mathfrak{o},x}$ are obtained by putting $\mathfrak{p}=0$. Since $f(e) \in \lambda$ for $f \in R_{\lambda}(G)$, we have $P_{\mathfrak{p},e}=P_{\mathfrak{m},e}$ where $\mathfrak{m}=\mathfrak{p} \cap \lambda$ and e denotes the identity of G.

For a prime number p every element x of G is uniquely expressed as $x = x_p \cdot y$, where x_p and y commute, the order of x_p is prime to p, and the order of y is a power of p. We call x_p the p-regular factor of x.

LEMMA 1. If $p \in \mathfrak{p}$, then for any $f \in R_{\lambda}(G)$

$$f(x) \equiv f(x_p) \mod \mathfrak{p}.$$

PROOF. See the proof of [1, Lemma (6.3)].

If G is a p-group and λ is a (Noetherian) local ring with maximal ideal m such that the residue field λ/m has characteristic p, then it follows from Lemma 1 that $R_{\lambda}(G)$ is a (Noetherian) local ring (cf. [8, §2]). We can also prove the converse. PROPOSITION 1. Suppose $G \neq \{e\}$. If $R_{\lambda}(G)$ is a (Noetherian) local ring, then G is a p-group and λ is a (Noetherian) local ring whose residue field has characteristic p.

PROOF. Using an augmentation $\varepsilon : R_{\lambda}(G) \to \lambda$ defined by $\varepsilon(f)=f(e)$, we observe that λ is a (Noetherian) local ring. Let \mathfrak{m} be the maximal ideal of λ . Then $P_{\mathfrak{m},e}=\varepsilon^{-1}(\mathfrak{m})$ is a unique maximal ideal of $R_{\lambda}(G)$. From the assumption $G \neq \{e\}$ the character r_{G} afforded by the regular representation of G is a nonunit in $R_{\lambda}(G)$, hence $r_{G} \in P_{\mathfrak{m},e}$. Since $r_{G}(e)=|G|$, it follows that $\mathfrak{m} \cap \mathbb{Z}=p\mathbb{Z}$ for some prime number p dividing |G|.

To prove that G is a p-group, let P be a Sylow p-subgroup of G. If f is the character of G induced from the principal character 1_P of P, then $f \notin P_{m,e}$, hence f is a unit in $R_{\lambda}(G)$ and therefore $f(x) \neq 0$ for all $x \in G$. Consequently every element of G has for its order a power of p.

Now let K and L denote the quotient fields of λ and A, respectively. Then L is a finite normal extension of K, and each automorphism σ of the Galois group Gal(L/K) is given by

$$\sigma(w) = w^t$$

for all |G|-th roots w of unity, where t is an integer prime to |G|. We denote by Γ_K the image of the homomorphism from Gal(L/K) into the group of units of $\mathbb{Z}/|G|\mathbb{Z}$, and by σ_t the automorphism of Gal(L/K) corresponding to tmod|G| in Γ_K . For simplicity we shall write t instead of $t \mod |G|$.

Two elements x, y of G are said to be K-conjugate (notation: $x \underset{K}{\sim} y$) if x^t , y are conjugate in G for some $t \in \Gamma_K$. By a K-class function we mean a function f on G such that f(x)=f(y) if $x \sim y$.

LEMMA 2. Every function $f \in R_{\lambda}(G)$ satisfies the equations

$$\sigma_t(f(x)) = f(x^t),$$

where $x \in G$ and $t \in \Gamma_K$. If λ is integrally closed, then $R_{\lambda}(G)$ contains all λ -valued K-class functions of $R_A(G)$ (= $A \bigotimes R_{\lambda}(G)$).

PROOF. See [10, Theorem 26].

We shall frequently use the following orthogonality relations:

$$\sum_{\chi} \chi(x^{-1}) \chi(y) = \begin{cases} |Z(x)| & \text{if } x \text{ and } y \text{ are conjugate,} \\ 0 & \text{otherwise,} \end{cases}$$

where Z(x) is the centralizer of x in G.

THEOREM 1. If λ is integrally closed, then for each $x \in G$ there exists a function ξ_x of $R_{\lambda}(G)$ such that $\xi_x(y) \neq 0$ if $x \sim y$; otherwise $\xi_x(y) = 0$.

PROOF. For each χ , define $a_{\chi} \in A$ by

$$a_{\chi} = \sum_{t \in \Gamma_K} \chi(x^{-t}).$$

Then Lemma 2 implies that $\sigma_t(a_{\lambda}) = a_{\lambda}$ for all $t \in \Gamma_K$, hence $a_{\lambda} \in A \cap K = \lambda$, since λ is integrally closed. If we set

$$\hat{\xi}_x = \sum_{\chi} a_{\chi} \chi,$$

then $\xi_x \in R_{\lambda}(G)$, and the result follows from the above orthogonality relations.

It is clear that $\xi_x \in P_{0,x}$, but $\xi_x \in P_{0,y}$ if x, y are not K-conjugate. Therefore $P_{0,x} \neq P_{0,y}$. On the other hand, if $x \sim y$, then $P_{0,x} = P_{0,y}$ by Lemma 2. Thus we obtain a generalization of [7, Theorem 1] as follows:

PROPOSITION 2. If λ is integrally closed, then the number of the minimal prime ideals of $R_{\lambda}(G)$ is equal to the number of the K-conjugate classes of G.

As another application of Theorem 1 we consider an isomorphism problem of character rings. Let $\alpha: G \to G'$ be a homomorphism of groups. Then we have a canonical ring-homomorphism $\alpha^*: R_{\lambda}(G') \to R_{\lambda}(G)$ defined by $\alpha^*(f) = f \circ \alpha$. It is easy to see that α^* is injective if α is surjective.

PROPOSITION 3. If α^* is an isomorphism, then so is α .

PROOF. Choose elements $f_{\chi} \in R_{\lambda}(G')$ so that $\alpha^*(f_{\chi}) = \chi$. If $\chi \in \text{Ker } \alpha$, then $\chi(\chi) = \chi(e)$ for all χ , hence $\chi = e$ by the orthogonality relations.

Suppose α is not surjective. Then there exists $y \in G'$ such that $y \notin t^{-1}\alpha(G)t$ for all $t \in G'$. Let ξ_y be the function as in Theorem 1. Then $\xi_y(\alpha(x))=0$ for $x \in G$, hence $\alpha^*(\xi_y)=0$. Since α^* is injective, we have $\xi_y=0$, which is contrary to $\xi_y(y) \neq 0$.

2. The main theorem.

We shall prove our main theorem. Suppose λ is Noetherian and of (Krull) dimension ≤ 1 . Let m be a maximal ideal of λ , and let $B = S^{-1}A$ where $S = \lambda - m$. Then B is a Noetherian semi-local domain of dimension ≤ 1 (cf. [4, Chap. 4, §2, Corollary 3 to Proposition 9]). We denote by a the set J^{G} of all functions on G which take their values in the Jacobson radical J of B. Obviously a is an ideal of B^{G} . We note that every non-zero ideal of B contains a power of J (cf. [2, Proposition 9.1]).

LEMMA 3. $R_B(G)$ is a closed (and open) subset of B^G with respect to the α -adic topology.

PROOF. It suffices to show that $a^k \subseteq R_B(G)$ for some k. Let $T=B-\{0\}$. Then $T^{-1}B$ is the quotient field L of A. The orthogonality relations yield

740

 $T^{-1}R_B(G) = L^G$. Since $L^G = T^{-1}(B^G)$ and B^G is a finitely generated *B*-module, it follows that $t(B^G)(=(tB)^G) \subseteq R_B(G)$ for some $t \in T$. If we choose k so that $J^k \subseteq tB$, then we have $\mathfrak{a}^k \subseteq R_B(G)$.

THEOREM 2. Let λ be a Dedekind domain, and \mathfrak{m} a maximal ideal of λ containing p. Then for any p-regular element $a \in G$ there exists a λ -valued K-class function $\phi_a \in R_{\lambda}(G)$ such that $\phi_a(a) \in \mathfrak{m}$ and $\phi_a(x) = 0$ if x_p is not K-conjugate to a.

PROOF. Let $b \in G$ be K-conjugate to a. It follows from [5, Lemma (40.7)] that there exists a λ -valued class function $\eta \in R_B(G)$ such that $\eta(b)=1$ and $\eta(x)=0$ if x_p is not conjugate to b. (Note that η lies in Ind $R_B(H)$, an ideal of $R_B(G)$ induced from the ring $R_B(H)$ of a p-elementary subgroup H of G. This fact is used in the proof of Lemma 4.)

Now let \mathfrak{p}' be a maximal ideal of *B*, then $\mathfrak{m} \subseteq \mathfrak{p}'$. If x_p is conjugate to *b*, then it follows from Lemma 1 that $\eta(x) \equiv 1 \mod \mathfrak{p}'$. Therefore we have $\eta(x) \equiv 1 \mod J$. Noting $p \in J$, one can show by induction on *n* that

$$\eta(x)^{p^n} \equiv 1 \mod J^{n+1}$$

for all n.

Define a sequence $\{\alpha_n\}$ of $R_B(G)$ by $\alpha_n = \eta^{p^n}$. Then for $n \ge k$ we have, taking congruences modulo J^k ,

$$\alpha_n(x) \equiv \begin{cases}
1 & \text{if } x_p \text{ is conjugate to } b, \\
0 & \text{otherwise.}
\end{cases}$$

Let θ_b be a function of B^G such that $\theta_b(x)=1$ if x_p is a conjugate of b; otherwise $\theta_b(x)=0$. Then θ_b is a limit of $\{\alpha_n\}$ in B^G with respect to the a-adic topology, since $\theta_b-\alpha_n\in\mathfrak{a}^k$ for $n\geq k$. Therefore Lemma 3 implies $\theta_b\in R_B(G)$.

We denote by C_a a full set of representatives of the conjugate classes in all elements of G which are K-conjugates of a, and define a function ϕ' of $R_B(G)$ by

$$\phi' = \sum_{b \in C_a} \theta_b.$$

Then $\phi'(x)=1$ if $x_{p_{\kappa}} a$; otherwise $\phi'(x)=0$. Choose $s \in S$ so that $s\phi' \in R_A(G)$, and set $\phi_a = s\phi'$. From Lemma 2 it follows that $\phi_a \in R_\lambda(G)$. Clearly ϕ_a has the properties asserted in this theorem.

We now give a proof of Brauer's theorem on induced characters. Let C_p denote a full set of representatives of the *K*-conjugate classes in the *p*-regular elements of *G*, and let

$${\pmb{\varPhi}} = igcup_p \left\{ \phi_a | \, a \!\in\! C_p
ight\}$$
 ,

where ϕ_a is the function for a as in Theorem 2.

PROPOSITION 4. If every maximal ideal of λ contains a prime number, then Φ is contained in no proper ideals of $R_{\lambda}(G)$.

PROOF. It is sufficient to prove that Φ is not contained in any maximal ideal $P_{\mathfrak{p},x}$. By assumption \mathfrak{p} contains a prime number p. If x_p is K-conjugate to $a \in C_p$, then by Lemma 1 we have $\phi_a(x) \notin \mathfrak{p}$ showing $\phi_a \notin P_{\mathfrak{p},x}$.

Let us denote by X_p the set of all *p*-elementary subgroups of *G*, and define an ideal V_p of $R_{\lambda}(G)$ by

$$V_p = \sum_{H \in X_p} \operatorname{Ind} R_{\lambda}(H),$$

where Ind is a λ -homomorphism $R_{\lambda}(H) \rightarrow R_{\lambda}(G)$ defined by means of induced characters.

LEMMA 4 (Shiratani [11]). If λ is a principal ideal domain in which p is a non-unit, then $\phi_a \in V_p$ for all $a \in C_p$.

PROOF. We adopt the notation in the proof of Theorem 2. Let $\{c_i\}$ be a full set of representatives of the conjugate classes of G where the *p*-regular factor of c_i is conjugate to *b*. Define $n_i = \eta(c_i) \cdot |Z(c_i)|$. We can choose *k* so that $J^k \subseteq n_i B$ for all *i*. Then the elements

$$a_{\boldsymbol{\chi},i} = \frac{1}{n_i} \left\{ \theta_b(c_i) - \alpha_k(c_i) \right\} \boldsymbol{\chi}(c_i^{-1})$$

are contained in B, since $\theta_b(c_i) - \alpha_k(c_i) \in J^k$. Using the orthogonality relations one can show that

$$\theta_b = \alpha_k + \sum_{\chi,i} a_{\chi,i} \chi_{\eta}.$$

Since α_k , $\eta \in \text{Ind } R_B(H)$, it follows that $\theta_b \in \text{Ind } R_B(H)$, hence $\phi_a \in A \bigotimes V_p$. However, by the same argument as [5, pp. 285-286] we have $V_p = R_\lambda(G) \cap A \bigotimes V_p$ and therefore $\phi_a \in V_p$.

Taking $\lambda = Z$, Proposition 4 together with Lemma 4 gives

BRAUER'S THEOREM ON INDUCED CHARACTERS. $R(G) = \sum_{p, H \in X_p} \operatorname{Ind} R(H).$

3. Applications.

3.1. Augmentation topology. We shall extend a result of Atiyah [1, Proposition (6.10)] to the case where λ is a Dedekind domain. To do this we need

LEMMA 5. Suppose λ is a Dedekind domain. If $p \in \mathfrak{p}$, then $P_{0,x} \subseteq P_{\mathfrak{p},y}$ implies $x_p \underset{\kappa}{\sim} y_p$.

PROOF. Let $a=y_p$, and ϕ_a the function as in Theorem 2. Then by Lemma 1 we have $\phi_a \notin P_{\mathfrak{p}, y}$, hence $\phi_a \notin P_{\mathfrak{q}, x}$, which shows $x_p \sim a$.

If we set $I_{\lambda}(G) = P_{0,e}$, then the same argument as [1] yields

$$\bigcap_{n=1}^{\infty} I_{\lambda}(G)^{n} = \{ f \in R_{\lambda}(G) \mid f(x) = 0 \text{ for all } x \text{ having prime power order} \}.$$

It is clear that $\bigcap_n I_{\lambda}(G)^n = 0$, i.e. $R_{\lambda}(G)$ is Hausdorff with respect to the augmentation topology if G consists of elements having prime power order. We shall prove a converse.

PROPOSITION 5. Suppose λ is a Dedekind domain and contains a prime number p which is a non-unit in λ , and which does not divide the order of G. If $\bigcap_{n=1}^{\infty} I_{\lambda}(G)^{n} = 0$, then G consists of elements having prime power order.

PROOF. If there exists $a \in G$ whose order has two distinct prime divisors, then a is a p-regular element, and the function ϕ_a as in Theorem 2 lies in $\bigcap I_{\lambda}(G)^n$, for if x has a prime power order, then x_p is not K-conjugate to a, hence $\phi_a(x)=0$.

3.2. Connectedness of $\operatorname{Spec}(R_{\lambda}(G))$. We shall give a more precise result than [10, Proposition 31]. Let $\{P_{0,c_i}\}_{1 \leq i \leq r}$ be the set of distinct minimal prime ideals of $R_{\lambda}(G)$. We denote by V_i the set of all prime ideals of $R_{\lambda}(G)$ containing P_{0,c_i} . Then the V_i are connected closed sets whose union is $\operatorname{Spec}(R_{\lambda}(G))$ (for prime spectrum see [2], [4]).

PROPOSITION 6. Two distinct minimal prime ideals $P_{0,x}$ and $P_{0,y}$ are contained in the same connected component of $\text{Spec}(R_{\lambda}(G))$ if there exist elements x_0, x_1, \dots, x_n of G and prime numbers p_1, \dots, p_n such that

- 1) $x_0 = x$ and $x_n = y$,
- 2) the p_{α} are non-units in λ , and
- 3) the p_{α} -regular factors of $x_{\alpha-1}$ and x_{α} are K-conjugate $(1 \leq \alpha \leq n)$.

Furthermore, the converse is true when λ is a Dedekind domain such that every non-zero prime ideal contains a prime number.

PROOF. We may assume that $P_{0,x_{\alpha}} = P_{0,c_{\alpha}}$ $(1 \le \alpha \le n)$. If \mathfrak{p}_{α} is a prime ideal of A containing p_{α} , then it follows from Lemmas 1 and 2 that $P_{\mathfrak{p}_{\alpha},x_{\alpha}} \in V_{\alpha-1} \cap V_{\alpha}$, which proves the first assertion.

Now suppose that λ satisfies the above condition. If two distinct ideals $P_{0,x}$ and $P_{0,y}$ are contained in the same connected component, then there exists a sequence $\{V_{j_{\alpha}}\}_{0 \leq \alpha \leq n}$ such that $P_{0,x} \in V_{j_0}$, $P_{0,y} \in V_{j_n}$, and $V_{j_{\alpha-1}} \cap V_{j_{\alpha}} \neq \emptyset$ $(1 \leq \alpha \leq n)$. If we choose prime ideals $P_{\mathfrak{p}_{\alpha},\mathfrak{y}_{\alpha}} \in V_{j_{\alpha-1}} \cap V_{j_{\alpha}}$ such that $\mathfrak{p}_{\alpha} \cap \mathbb{Z} = p_{\alpha}\mathbb{Z}$ for some prime numbers p_{α} $(1 \leq \alpha \leq n)$, then it follows from Lemma 5

that the p_{α} -regular factors of $c_{j_{\alpha-1}}$ and $c_{j_{\alpha}}$ are K-conjugate. Furthermore Proposition 2 implies that x and y are K-conjugate to c_{j_0} and c_{j_n} , respectively. The result is obtained by setting $x_{\alpha} = c_{j_{\alpha}}$ $(1 \le \alpha < n)$.

COROLLARY 1. If no prime divisor of the order of G is a unit in λ , then $\operatorname{Spec}(R_{\lambda}(G))$ is connected. Furthermore, the converse is true when λ is the ring as in the proposition.

PROOF. To prove the first part it suffices to show that for any $x \in G$, $P_{0,x}$ and $P_{0,e}$ are contained in the same connected component. Let $\{p_{\alpha}\}_{1 \leq \alpha \leq n}$ be the set of all prime divisors of the order of x, then each p_{α} is a non-unit in λ . Take x_{α} to be the p_{α} -regular factor of $x_{\alpha-1}$ $(1 \leq \alpha \leq n)$ where $x_0 = x$, and apply the proposition to $\{x_{\alpha}\}$ and $\{p_{\alpha}\}$.

We now assume that λ is the ring as asserted in the proposition and that $\operatorname{Spec}(R_{\lambda}(G))$ is connected. Let x be any element of G. It suffices to show that the order of x is a non-unit in λ . Since $P_{0,e}$ and $P_{0,x}$ are contained in the same connected component, there exist two sequences $\{x_{\alpha}\}$ and $\{p_{\alpha}\}$ which have the properties in the proposition. Then $x_0 = e$ means that the order of x_1 is a power of p_1 . Similarly the prime divisors of the order of x_2 are at most p_1 and p_2 , and so on. Thus the prime divisors of the order of x are at most p_1, p_2, \dots, p_n . Hence the order of x is a non-unit in λ .

COROLLARY 2 (Serre [10, Proposition 31]). Spec(R(G)) is connected.

By Proposition 6 we can determine the individual summand in the decomposition of $R_{\lambda}(G)$ into a direct sum of indecomposable ideals. In particular, we have the following:

PROPOSITION 7. Suppose that λ is a discrete valuation ring in which p is a non-unit. Let $\{C_i\}_{1 \leq i \leq s}$ be the set of all K-conjugate classes in the p-regular elements of G, and let

$$B_i = \bigcap_{y_{n \notin C_i}} P_{0, y} \quad (1 \leq i \leq s).$$

Then $R_{\lambda}(G)$ is a direct sum of indecomposable ideals B_i .

PROOF. Let $B'_i = \bigcap_{y_p \in C_i} P_{0,y}$, then $B_i \cap B'_i = 0$. If $R_{\lambda}(G) \neq B_i + B'_i$, then there exists a maximal ideal $P_{\mathfrak{p},x}$ such that $B_i + B'_i \subseteq P_{\mathfrak{p},x}$. According to [2, Proposition 1.11] we have $y_p \notin C_i$ and $y'_p \in C_i$ such that $P_{0,y} + P_{0,y'} \subseteq P_{\mathfrak{p},x}$. However, since $p \in \mathfrak{p}$, it follows from Lemma 5 that $y_p \underset{K}{\sim} y'_p$, which is a contradiction. Thus $R_{\lambda}(G) = B_i + B'_i$ for all *i*. Noting $\sum_{j \neq i} B_j \subseteq B'_i$ and $\bigcap_i B'_i = 0$, we see that $R_{\lambda}(G)$ is a direct sum of the B_i .

Now suppose that B_i is not indecomposable, and let W be the set of all prime ideals of $R_{\lambda}(G)$ which contain B'_i . It is not hard to show that W is not a connected subset of Spec $(R_{\lambda}(G))$. However, Proposition 6 asserts that W is connected, a contradiction.

REMARK. In the case where λ is a field K, every $P_{0,x}$ is a maximal ideal of $R_{\lambda}(G)$. Let $\{x_i\}_{1 \leq i \leq t}$ be a full set of representatives of the K-conjugate classes of G, then $\bigcap_i P_{0,x_i} = 0$. If we set $B_i = \bigcap_{j \neq i} P_{0,x_j}$, then $R_{\lambda}(G) = P_{0,x_i} + B_i$, hence $R_{\lambda}(G)$ is a direct sum of B_i . On the other hand, since P_{0,x_i} is the kernel of the map $R_{\lambda}(G) \to L$ which assigns to each f its value $f(x_i)$ at x_i , it follows that $R_{\lambda}(G)/P_{0,x_i}$ (and hence B_i) is isomorphic to the subfield of L generated by all $\lambda(x_i)$ over K. Further results on this ring $R_{\lambda}(G)$ may be found in [7] and [14].

3.3. A characterization of p-groups. Finally we give a characterization of p-groups.

THEOREM 3. Under the hypothesis for λ as in Proposition 7, the following conditions are equivalent.

- (1) G is a p-group.
- (2) $R_{\lambda}(G)$ is a Neotherian local ring.
- (3) $R_{\lambda}(G)$ is Hausdorff with respect to the augmentation topology.
- (4) Spec($R_{\lambda}(G)$) is connected.

PROOF. (1) \Rightarrow (2) follows from Proposition 1.

 $(2) \Rightarrow (3)$. Use the intersection theorem of Krull [2, Corollary 10.20].

 $(3) \Rightarrow (4)$. Since $I_{\lambda}(G)$ is a prime ideal, it follows that $R_{\lambda}(G)$ has no non-trivial idempotents. Therefore Spec $(R_{\lambda}(G))$ is connected.

 $(4) \Rightarrow (1)$ follows from Proposition 7.

References

- [1] M.F. Atiyah, Characters and cohomology of finite groups, Inst. Hautes Études Sci. Publ. Math., 9 (1961), 23-64.
- [2] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, Mass., 1969.
- [3] B. Banaschewski, On the character rings of finite groups, Canad. J. Math., 15 (1963), 605-612.
- [4] N. Bourbaki, Commutative algebra, Hermann, Paris; Addison-Wesley, Reading, Mass., 1972.
- [5] C.W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962.
- [6] T. Gulliksen, P. Ribenboim and T. M. Viswanathan, An elementary note on group-rings, J. Reine Angew. Math., 242 (1970), 148-162.
- [7] S. Kondo, On the character rings of finite groups, Proc. Japan Acad., 49 (1973), 685-689.
- [8] S. Kondo, A remark on the character rings of finite groups, Proc. Japan Acad., 52 (1976), 98-101.
- [9] P. Roquette, Arithmetische Untersuchung des Charakterringes einer endlichen Gruppe, J. Reine Angew. Math., 190 (1952), 148-168.

- [10] J.-P. Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1971.
- [11] K. Shiratani, On the characters and the character rings of finite groups, Mem. Kyusyu Univ., 11 (1957), 99-115.
- [12] I. Sinha, 0-divisors in group rings, Proc. Amer. Math. Soc., 43 (1974), 476-477.
- [13] R.G. Swan, Induced representations and projective modules, Ann. of Math., 71 (1960), 552-578.
- [14] J.G. Thompson, A non-duality theorem_for finite groups, J. Algebra, 14 (1970), 1-4.

Shoichi KONDO Department of Mathematics School of Education Waseda University Nishi-Waseda, Shinjuku-ku Tokyo, Japan