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Introduction.

Let & be an algebraically closed field of characteristic p, X an abelian variety
over k of dimension g, and L an ample invertible sheaf on X. For any integer
a=3, we denote by ¢,: X—P(I'(L%) the canonical embedding of X. The pur-
pose of the present paper is to prove, except the case of p=2 and 3, the state-
ment :

)5(X) 1s ideal-theoretically an intersection of cubics.

For generic polarized abelian varieties, the statement is proved by Morikawa
for any characteristic, using deformations of polarized abelian varieties.
For a=4, Mumford ([5], Theorem 10) proved that for any characteristic, ¢,(X)
is ideal-theoretically an intersection of quadrics. We shall prove our assertion
stated above, by reducing it to Mumford’s theorem. The essential tool in the
reduction process is the normal generation of ¢,(X), which is discovered by
Koizumi for characteristic zero, and later generalized by the author [7], [8]
for any characteristic.

Section 1 is devoted to recalling some results concerning the normal gener-
ation of abelian varieties. In Section 2, we shall give a slight modification of
Mumford’s theorem, in order that it will be fit for later use. The proof of our
result will be completed in Section 3.

The author would like to thank Mr. R. Sasaki for very useful conversations.
In particular, he pointed out the commutativity of such relevance of Segre em-
bedding with diagram as in Lemma 3.1 and the fact that the quadrics considered
in Mumford’s theorem appear in the equations of Segre embedding.

NoTATION. Throughout the paper, % is an algebraically closed field of charac-
teristic p, and X is an abelian variety over k£ of dimension g. We denote by X
the dual abelian variety of X, and by P the Poincaré invertible sheaf on X x X.
For any 2= X, we put P;=P|x.s. For any integer n, we put X,= {x= X|nx=0}.
For an invertible sheaf I on X, we abbreviate I'(X, L) by I'(L), and we denote

* The author expresses his thanks to the referee for suggesting a simplification of
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by ¢.:X—X the homomorphism defined by x—T*LQL'. We put K(L)=
Ker (¢.), and @(L)=the theta group of L. For an ample invertible sheaf L on
X, we denote by el: K(L)X K(L)—G, the canonical pairing defined by L. We
shall frequently consider any k-valued point z of a scheme Z over k as its B-
valued point, compositing z with the structure morphism Spec (B)—Spec (&), for
any k-algebra B.

For any finite dimensional k-vector space V, and any non-trivial k-linear
map [: V—k, we denote by [[] the k-rational point of the projective space
P(V) corresponding to /. For any form in the symmetric algebra S*(V), we
identify it with the hypersurface in P(V) defined by the form. In S*(V), we
denote the symmetric product by ® following Mumford. For subset W of V,
(W) means the subspace spanned by W. When a group G acts on V, we de-
note V¢ the subspace of V consisting of G-invariant elements.

§1. Normal generation.

We start with Koizumi’s theorem generalized in ([8], Theorem 2.4).
THEOREM 1.1. Let L be any ample invertible sheaf on X, and «, B be two
closed points on X. Then

I'(L*QPH)QI(L*QPg) —> I'(L*"QPass)

is surjective for all integers a, b such that a=2, b=3.

Here we recall a lemma of Mumford in ([5], §3).

LEMMA 1.2 (Mumford). Let L and M be invertible sheaves on X such that
I'(L)+(0), I'(M)=+(0), and LM is ample. Then

2 I(LRPIRIMQP_ ) —> I'(LOM)

nsEX

s surjective.

From this lemma, we can easily deduce

COROLLARY 1.3. Let L and M be ample invertible sheaves on X. Then, for
any non-empty open set U in X,

;UF(L®PO,)®F(M®P_&) —> ['(LQM)

1S surjective.

Proor. Let p: XX X—X and g: XX X— X be the canonical projections, and
we put L=qx(p*LRP) and MH=q«(p*MRQP*). Since the higher cohomology
groups of L®P, and MKP_, are zero, L and M are locally free sheaves on
X such that

LRQE(a)=I'(LRP,) ; HSQk(a)=I'"MRQP_,).
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Let ¢: f@af—ﬂiaf (LM)YR ¢ be the natural pairing. From Mumford’s lemma,
there exist a finite number of points ay, -+, ay in X such that

2 MLRPL)RI MBI o) —> [(LOM)

v

is surjective. Let p;: XX --- X X — X be the projection to the i-th component
for each i=1, ---, N, and we put

0= 5 H(4): 2 PHLR0pH) —> I(LRM)Ds0ss.

N ~

Since iZ pH(LRo M) and I'(LRM)R .03y are locally free sheaves on X7, the
=1

set

V={i=(h, -, 2)E XV |$Qk(#) : BT (LRP: )OI (MRP_z,)
— ['(LQM) is surjective}

——————
is an open set. Since (a,, -, ay)EV, Vis non-empty, and (UX --- XU)N\V 0,
which implies our assertion. Q.E.D.
We can see the next lemma, using Mumford’s theta structure theorem in
the same way as in the proof of Mumford’s lemma above.
LEMMA 1.4. Assume p+3. Let L be any ample invertible sheaf on X. Then
2 I LPQP)QI(LQP_ ) —> I'(LY)
aEXg
1s surjective.
The following proposition will play an essential role in the proof of our
theorem.
PROPOSITION 1.5. Assume p+2. Let L be any ample invertible sheaf on X.
Then for any a, B in X, if we take a point v of X in general position,

I(LPQP 0 )QI'(L*QPp_p) —> I'(L*QPasp)
s surjective.

REMARK. We can prove the results in the case of p=2, asserted in Theo-
rem 1.1, more easily using [Proposition 1.5 than using the Rank theorem as in
the proof given in [2], or [8].

In fact, by [Proposition 1.5, there exists an open subset U/ in X such that
I'(L*QP QI (L*QPy)—I"(L*QP,.y) is surjective for every yeU. Therefore,
applying to the diagram
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F(L*QPIR 2 I(LQPs- )R (L*QPy)} 2 I(LOP;)QI(L'QPasr)

I'(L*QP QI (L' QFyp) ' = I'(L*QPasp),

we obtain our assertion.

Proposition 1.5 is reduced to the following principal case.

PROPOSITION 1.6. Assume p+2. Let L be a principal invertible sheaf on X,
and a, B be two closed points in X If we take v of X in general position,

I(LPQP s )R (L*QPsy) —> I'(L*QPavg)
1S surjective.

In the reduction of [Proposition 1.5 to the above proposition, we need the
following lemma.

LEMMA 1.7. Let L be a principal invertible sheaf on X, and (R, m) be a local
ring over k with the residue field k. Let a, B be two R-valued points on X, and
we put @=aor and B=poe, where ¢ : Spec (R/m)—Spec (R) is the canonical mor-
phism. Then, if the map

F(LPQPHRQI(L*QPg) — I'(L*QPsyp)
1s surjective, the map
I(pFL*QP QI (pFL*QPg) —> I'(pFL*QPass)

is surjective, where p,: X XSpec (R)—X ts the projection to the first factor.

ProOF. Let 6 be any R-valued point of X, and M be any ample invertible
sheaf on X. Since the projection p,: X XSpec (R)—Spec (R) is proper and flat,
and (lx XO)*(PFrMRP;)=MQPs is ample, p, «(pFEMQOP;)=(p¥MRP;) is a free
R-module and p, «(pfMQQP;)Qr(R/m)=1"(MKPs5). Therefore, I'(p}¥L*RP,),
I'(pFL*QP;) and I'(pFL*QP..s) are free R-modules and the canonical map
I(L*QP)QRQ(L*QP;)—1T'(L*QP;.5) is obtained by reducting the map I'(L*QP,)
QI (L*QPs)—1"(L* QP15 modulo m. Hence, by Nakayama’s lemma, we obtain
our assertion. Q.E.D.

PROOF OF PROPOSITION 1.5 ASSUMING PROPOSITION 1.6. Let H be a maxi-
mal isotropic subgroup of K(L), and = : X—Y=X/H be the canonical projection.
Then there exists a principal invertible sheaf M on Y such that #*M=~L. We
choose closed points «’, 8’ in ¥ such that #(a’)=a and #(8’)=p. By virtue
of Proposition 1.6, for almost all 7’ in Y,

F<M2®Pa' +5+;’/)®F(M2®Pﬁ'—7'> —> F(M4®Pa' +3 +5)
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are surjective for all closed points § in H. Here we put y=#(’) for such a
point 7/, and we denote by W the image of the map

T I(L*QPas) QI (L*QPg-) —> I'(L*@Pass) -

To prove [Proposition 1.5 it is sufficient to show that

for any local ring (R, m) over k with the residue
™ field £ and any R-valued point 2 of Q(L*QPq4s),
Uzn*(I'(M*)QR)YCWRR .

Let j(A)=u, where j: GL*RP y15)— K(L*QP4.p) is the canonical surjection. Then
we have a commutative diagram

U,

/’—;_\

F(OFL'®P ) = [(L*QPasd) @R ———a I'(T¥ pFL‘®@Putsp) =T (L*@P s JOR

@

T* *

T3,
F(PTM"®Pw +{-}') L F(T;':u ]*M4®Pa' +ﬁ');r(pikM4®Pa'+ﬁ'+4;’>M<r:u)) .

Here n*(p¥EMP*QP y 14y ceur - ) =DPFL*QP4_r. So we obtain a commutative diagram

{I'(L*QPas)QR} QU (L*QPp- )R} ©R  .r (L'QPasp)OR

@ ”*®”*T ”
T(EM@Pasisyioosr)OT DI DPy 1) T P s

Since #(4¢ynit)=4¢(#)=0, 4¢y(rit) is a closed point of Ker #=H. Therefore,
from the choice of 77,

F<M2®Pa' +4¢M(:Z>+r')®lw(M2®Pﬁ'—r') - F(M4®Pa' +8 +4¢M(nﬂ))

is surjective. Hence, by virtue of the map ¢’ in (2) is surjective.
So (*) can be deduced from (1) and (2). Q.E.D.
We need the following three lemmas to prove [Proposition 1.6l
LEMMA 1.8. Let G be an elementary 2-group of ovder 2%, and k be a field
of characteristic p#2. Let B: G—MnXn, k) be a map, where M(nXn, k) is the
algebra of (nXn)-matrices with components in k. Then

det (X(a)B(a))( (=2~ ] det B(a).

Z,a)eéXG
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Here G is the dual group of G.
Proor. We prove our assertion by induction on d. In the case of d=1,
G=Z/2Z and G=(Z/2Z)". Therefore

det (X(a)B(a)) =

<1,a)e5xa

B(0) B(I)'

\B(O) B(1)
B(0) —B(1)

0 —2B(Q1)

=(—2)" det B(0) det B(1).

We assume our assertion for d=1. Then for d-+1, we put G=G,XH and G=
G, x H with |G,|=2¢ and H=Z/2Z. In this case,

det(%(a)B(a))( . =det (u(n)(%(0)Bla+)

2. WEGXE (xl,a)eélxm)(p,n)eﬁxbr

(deﬁning B’ : H —> M((n29)X (n29), k) by B’(h)z(%l(a)B(a+h)>

¢ )
(21,0)EG1%Gy

=det (p()B'())

(rmEHxH
=(—2)"2* det B’(0) det B'(1)
(using the inductive hypothesis,)

=(—2)@+vm2¢ TT det B(a) .
asq

Q.E.D.
LEMMA 1.9. Let G be an additive group of finite order n, and let k be a
field of characteristic p with p Y n. Let {T(Q)|A=G} be a set of independent vari-
ables over k, bijectively corresponding to G. If we define an (nXn)-matrix M by

lw:<T(2"—ﬂ))(1,/UEGxG ’
then we have

det M= 1 ( 3 2(DTR)

X=EG
(cf. [3], §2, Lemma 2.1).
Hereafter, let p#2 and L be a principal symmetric invertible sheaf on X.
Let a, 8 be two fixed closed points in X. Let &: XXX—XXX be a homomor-
phism defined by (x, y)—(x—v, x+y). Then easily we have an isomorphism

¢ : E(PHLPQP)RPF(L*QFg)) =5 P (L' QP asg) QPF(L*QP5-2)
(cf. [7], §1, Proposition 1.2). That is, we obtain an inclusion
®)) & N(LQPHRI(L*QPg) = I'(L*QPard QI (L*QPp-a) -
Let K(L*QPq+5)=K(L*QP;_o)=H(4),DH(4), be a Gopel decomposition, and put
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2H(4);=H(2); for i=1, 2. Then K(L*QP.)=K(L*QPg=H(2),BH(?2), is a Gopel
decomposition. The isomorphism ¢ defines a lifting of the group K=Keré&:

1 — G —> S(PF(L QP ard)OpF(LIQPs-0)) —> XX X, —> 0.
U U
K* = - K

If we denote by &* the centralizer of K*, then we have a canonical isomorphism
§: ¢*/K* o, G(pF(L*QPHRQpF(L*QP3)) .

We put HA)d={(x, —x)|x= H4),} and H4)4={(x, x)| x H(4),}. Since H@)4 (i=
1, 2) are isotropic subgroups in K(p¥(L*QP.+s)Rp3(L*QP5-.)), there exist level
subgroups H(4)#* of H@4)? for i=1,2. Let m:Q(L*QPap)XG(L*QPs_o)—
G(P¥(L*RP 45 RPF(L*QPps-4)) be the canonical map and we take a level sub-
group H@)F in G(L*QP;s-.) of H(4); for each i=1, 2. Then there exists a level
subgroup H'(4)¥ in G(L*QP,..s) and the subgroup H(4)#* defines an isomorphism
" HOF—H'(A)¥ by the relation (2, )= H(4)4* for each i=1, 2. Moreover,
obviously H(4)#*CG*. Therefore we can consider the images &(H(4)4*) for i=
1, 2. Since the diagrams

3 §

XXX XXX XXX XXX
T, XT, 1xXTs  and Ty XT_y Tay X1y
XXX XXX XXX J XXX

commute for any y< X, E(H(4)4*) and E(H(4)4*) are level subgroups of H(2),x {0}
and {0} X H(2), in G(pF(L*QPQp5(L*QPy)), respectively. So we can identify
these subgroups with the level subgroups H(2)¥ in ¢(L*®P,) and H(2)¥ in
G(L*@Py), respectively. Under these notations we have

LEMMA 1.10. Let u, v and 6 be non-zero sections in I'(L*QPo 7@},
F(L2®P@)”<2)3 and F(L“@Pﬁ_a)g‘“g, respectively. Then for a non-zero section t
n F(L4®Pa+ﬁ)H'“>;, we have
4 Eu®@v)= X U tQUSE.

leH(i)’i‘

Proor. From the choice of 8, {U;0} reH is a basis of I'(L*QP;s-,). Hence
E*(u@v) can be written in a form

Eu@v)= X LQUH  with HEl(L*QPyss) .

AsHMW

So, for any p= H4)¥,
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E*u@v)=E*Ugncpr , 1y (u®@0))
= 3 U,tQU,US

AEHW]

= E U#,z‘;®e(p, Z)Uv,ﬁ.

ASHWY
Therefore we have

UF!I Z‘xze(/.i, ﬂ)t} .
In particular, if we put t=t, tel’ (L4®Pa+@)”'(4>3. Moreover, for any ve H(4)F,

E*w@v)=E*Ugncr o (uQ))
= 2 U.tQU.UHI

ASHW}
- 2 Uu' t2®U1+v6 .
AeH @)}
Hence we have
Uy i=l4w e

In particular, U, t=t, for any ve H4)¥. Since £*(u®v)+0, t+0. Therefore we
obtain our assertion. Q.E.D.

PROOF OF PROPOSITION 1.6. If necessary, slightly modifying « and j3, we
may assume that L is symmetric. Since H(2);C H(4);, H(2); is automatically
lifted up to a subgroup H(2)F in H(4)} for each i=1, 2. Obviously, =({1} X H(2)F)
Cg*. Moreover, for any y= X, the diagram

XX — XXX
1eXT, T_,%T,
XXX XXX

commutes. Therefore &x({l} XH(@2)¥) is a level subgroup of the group
{(y, »)|ly=H(2);} for each i=1, 2. So, by the equation (4), for any pe H(2)¥,

E*(Zt@)U/JU):‘S*(Uyu@U/AU): 2 Ux t®U2+/40 s

ASH WY
and for any ve H(2)¥,

(v, EHUMRU 0)=EXUu@U,U,v)

- E U).'t®UvU2+/zﬁ

ASHD]

= 3 UptQe, DU 0.

lEHW
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Therefore, to prove [Proposition 1.6, we have only to show that if we put A=
(e(v, Z)U.zﬂﬂ)u,(y,»ney(uixX;, det Az%=0. Here we put B:(Uz+p5)(z,memz>1xH(zyl-
Then, denoting a complete system of representatives of H(4)}/H(2)¥ by
Rep (H(4)¥/H2)),

A=(e(y, /2>U2+p0)(2,(;¢,u))€11(4)1xX‘é
=(e(y, z)UIB)(I»)eRechua;/ch);)xymé .
Moreover, since (H(4)¥/HQ2)¥) = {e(v, 2)|ve H2)¥}, by
det A=(—2)#2¢ 12¢ 1L )det (UzB)

AERep(H (1) 1/ H ()]

—=Dg-228-1 II. . UsdetB.

ZERep(H (1)1/H(2)1)

On the other hand, by

det B= II ( X XWUHFO0.

=A@ AEHO]

This completes the proof of [Proposition 1.6l Q.E.D.

§ 2. Quadrics defining abelian varieties.

Let L be an ample invertible sheaf on X. Let p, ¢ be integers such that
p=2, ¢q=2; and we put n=p+q. For any a= X and any s;, ;' (LPQP,), t, t,
el'(L*Q®P_,), we put

Q.gﬁ)n,sg,t2:31t1©52t2_51t2©32t1 = SZ(F(Ln)) -

Let ¢, : XS P(I'(L™) be the canonical embedding. Then under these notations,
Mumford shows
THEOREM 2.1. Ideal-theoretically,

(/)n(X): ﬂA N Qs(fl,)u,sz,m
aEX 51,59 LPRPy
Ll,tQEF(L‘1®P~a)

(cf. [5], §4, Theorem 10).

We soup this theorem up into the following style.

COROLLARY 2.2. Let U be any non-empty open subset of X. Then, ideal-
theoretically

/ = () .

Qn(X) a@U S]ySQEIC_(\Lp®Pa)Q3LtLS2‘£2
11, t2ENLIBP_ )

Proor. Without loss of generality, we can assume that L is symmetric.

Let £: XXX—XXX be the homomorphism defined by (x, y)—(x—qy, x+py).

Then we have
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. EX(pFLPQpF LY =pr L"QpF L7 ",
i.e.,
E*
® I'(LP)RQI (LY —> ['(LM)QI' (L") .
Let {u}iern, {vilicry and {wi}iei..n be bases of I'(L?), I'(L%) and I'(L"),
respectively. Then from (5),

EX Q)= f‘,l w, Q05D with 09 e [(Loar),
#=

l.e.,

ue— gyt p)= 33 w05 (),
or
©) (T2u)GT 50)0)= 5w, (D0500)

Here {T*,u;} and {T}v;} are bases of I'(LPQP_pu.cp) and I'(LYQPpes; ),
respectively. We put I={{Q, 5,0, @€ X, s, s,€(LPQP,), t, e '(LIQP_ )}
in S¥I'(L™). Then there exist a finite number of points a;, -, ay in X such

that
(7) ]:<{Qéﬁit>1,sz.tzli:l, Tty N: S15 SZEF<LP®Pa,;); tly tZEF(Lq®P—a1)}> .

We choose points y{*, ---, y§ in X so that pg¢(y”)=—a; for i=1, ---, N. From
the equation (6), for any point (y,, --+, yy) in X%, we have

(ay)

.
T gyt T T

* . * " * .
pyiv Toaviiy ot

Tk TR o @Tk g TR o TR Tk o @k Tk
=T*g e, Ty 05, OT* s, Thy v, — Ty i TH,, 0, @T % 13, T 5,05,

=( 30,0070 ()O3 w057 (3.)

~(Zw B9 (DO 3w I0(3)

= 2 @gﬁf»j)l'1'2'j2)(yi)w,a©w»-

putlspsvsm

Here we put {(g, v)[1=p=v=m}={q,, ---, qu} and {(is, j1, &2, Jo)} ={P1, -, Dx}-
Then (7) implies that

) rank (QE}:(J};O)))((Lk),j)e([l,Kthl,NJ)x[l,M]:dim I.

On the other hand, the map

(y1, -+, yu) = rank (O2Ay ))cir ),
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is lower semi-continuous. Therefore the set V of points (y,, ---, yy) at which
the equation (8) is satisfied is a non-empty open set in X?. Since X?¥ is irre-
ducible, if we put (—pgé.) (U)=U",

(U X - XUINV+D.

N

Hence we obtain our assertion using [[heorem 2.1l Q.E.D.

§3. Cubics defining abelian varieties.

Let L be an ample invertible sheaf on X. For any integer ¢ with a=3, we
denote by ¢, : X—P(['(L") the canonical embedding. Let & be the subspace in
S3I'(L®) defined by the kernel of the canonical map S3(I'(L¥))—I'(L%). The
purpose of this section is to prove

MAIN THEOREM. Assume that the characteristic p+2, 3. Then, ideal-theoreti-
cally,

¢3(X):F@3F .

We start with the following lemma which will be used in the last part of
the proof of our theorem.
LEMMA 3.1. The diagram

*) W 99 PP \
: P(I(LY) e

1s commutative, where  is the Segre embedding and ¢ is the canonical surjection:
I(IHYQC(LY—I(L"). Moreover, we have the equality

H(Im (PN P (L) X (X} =Im (¢, ¢o) -

Proor. The commutativity of the diagram (*) is obvious. Therefore, auto-
matically we have the inclusion

P (o) EP(L (L)X (X)) Do(X)

Moreover, for any point a=X and for any sections u, vel'(L?); u@, p‘@e
I'L*®P,); and u“®, v l'(L*QP_,), we put

Foyvuw, yea, y@, j—o=u@u®u"*)®(u@uv®@p-)
#_<u®u(a)y(-a))@(v®v(o{)u(-a))
eS*I'(LHRQI(LY).
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Then, obviously

P (L)X (XN N N Fo o u(@ (0 @ =),
‘aeX w,v=I(LY)
w0, (DS (L2QPg)
w— @), (= L2HP_q)

and
€) P@) CPILNXPXNT N N SHOF o, w0 ,ul~ 0 5@y~ ) .
acX uv
u(Q), n(a)
uC— @, p(—a)

On the other hand,
SHTNF 0,60, 40 @) y(~) =T(U@u U™ )@ (v@Qv v =)
—2(uRQu @ P D)Y@ (VR @y @)
= QA (—0) @) y(—a)
where Q{3 ,(~o ,(@ (-« is Mumford’s quadric stated in Section 2. Moreover,

by virtue of [Theorem 1.1, the canonical map I'(L)QI (LAQP)—1'(L*QP,) is
surjective. So, in S%(I'(L"),

U@ (@ @y lu, vE (L), u'®, v P eI (L*QPo), u™®, v e '(L*QP- )}
:<{Q§‘ﬁ)zl,sz,lzlslr SZEF(L5®PC¢)) tl) tZEF(LZ®PAa)}> J

Hence, by virtue of [Theorem 2.1 and the inclusion (9), we obtain the converse
relation

P(@)  CPU (LY X P XN Th(X)
This implies the required equality. Q.E.D.
For any point acs X, we put

(10) Qo= {0 s002] 51, :EL(L*QP), 1, t,EI(LOP- )} CSHI(LY) .

Note that if L is principal, Q,={0}. The next lemma can be seen by easy
calculation.

LEMMA 3.2. For a point [1] in P(I'(L®), the following two conditions are
equivalent:

(o) [1] is a common zero of all forms in Q..

() There exist linear maps my: I'(LEQP)—k and n_,: I'(LQP_o)—k such
that the diagram

I'(L*QP)QI(LRP o) (L)

77’la®71_ « [
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commutes.

Moreover, if a satisfies the condition

(Cl) I is non-trivial on the image of I'(L* QPRI (LRP-,) in I'(L?), then
My and n_q are uniquely determined by | up to constant multiples.

REMARK. For any positive integer n and any point [/] in P(I'(L")), also
true is the same type of assertion as in the above lemma.

Note that if a point [[]Je P("(L?) satisfies the condition

) is a common zero of all forms in &,
then obviously it satisfies the conditions (Q,) for any a< X.

LEMMA 3.3. Let [1] be a point in P(I'(L®) satisfying the condition ({) and
a be a point in X salisfying the condition

(C2) I'(L*QP )R (L*RQP_,) —> I'(LY) is surjective.

Moreover, we assume that a and —a satisfy the condition (Cl,). Then | defines,
uniquely up to constant multiples, non-trivial linear maps zo: I'(LY)—k and y,:
I'(LY)—k, by the commutative diagrams

I LP*QPHRQI(L*QP-a) (LY and I'(LHRI(LY) 'Ly,

11) ma@nN / IR2a /
k

k

where mg and m_, are linear maps given in Lemma 3.2.
PrROOF. Since satisfies the condition (R), there exists a linear map x:
I'(L"—Fk such that the diagram

I(LRT(L)RI(L?) ———— I'(LY)

1®N /
k

commutes. Hence we obtain a commutative diagram

I(LQP- QI (LOPHRI(LY)

/

[(L)RI(LRP- YR (L*DP)D(LQPIRI(L*QP_) —— I'(LIST(LHYQI(LY re.

IRIR!
l®n—a®ma®na®m-a ® ® l /

k

Therefore there exists a linear map y.: I'(LQP- )R (LYP LRI’ (L")—Fk which
makes the diagram
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TNLRP_ QI (LRP IR (LHRQT (L*QP QL (L*QP_ ) I'(LQP_)QI'(LPLHRQI'(L")

n—a®na®l®nla®m-a y{z

AN
k

commute. From our assumption, there exist elements 6 *l'(LQP_.,) and
0 =I'(LRQP,) such that n_ (0 *)n(0*)+0. Here we can define a linear map
Va: I'(L")—k by

- y&(ﬁ("d)@ﬁ(d)@.l))
- n—a(ﬁ(_a))na<ﬁ(a)) .

Yalv)
Then, since n_0 )0 (w)m(u)m_(u"*)=y,(0 RO R@Quu‘*u"*) for
every u@Qu®@Qu¢ e l'(LY)YQI'(L*QP QI (L*QP_,), we obtain the equality

Yl U )= ) mu Y m_o(u ),

i.e., the diagram

D(LYQI(L*QPHRI(L*QP_ )

z®ma®N /
k

commutes. Moreover, obviously there exists a linear map z,: ['(L)QI'(L)—k
which makes the diagram

I'(LYQI(L*QPHR(L*QP_a) - ['(L")

/

I'(L)YQI(LY)
IRQM QM _ o Va

Zu

(L)

k

commute. Since [ is non-trivial, there exists an element u,=/'(L? such that
l(ug)#0. We define z,:I'(LY)—Fk by
2o(Uy@Qw)

I(u,)
Then, since [(ug)mo(u)m_(u""®) = zo(u, QuPu"®) for every u@Ruc-*
TN L*QP )R (L*RKP_,), we have the equality

z2o(w)=

2 DOUD) = (U m_ LU,
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i.e., the diagram

I(L*QPHQI(L*QP_ ) (L)

MM _ o Z
«Q

k

commutes. Moreover, since a satisfies these v, and z, are those which
we searched for. Q.E.D.

Here, for a point £ in X, we consider a condition

{ [ does not vanish on the image of I'(L)RI'(LRQP;)RI'(LEKP_;)
in I'(L?).

(C3)

Since the diagram

I'(L*QPHRQI(LRIP_)
(12)

I'IDRILYPHQI(LRP-3)

(DL ~ I'(L?)

ILPHRI(L*QP-2)

commutes, £ and —# satisfy the condition (Cl,), providing that % satisfies (C3;).
Therefore, in Lemma 3.3, the condition on a can be replaced by (C3)).

LEMMA 34. If a point [1] in P(I'(L?) satisfies (8), and «, B in X satisfy
(C2) and (C3)), then the z, and z; (a fortiori, y. and yg) in Lemma 3.3 differ
possibly only by a scalar.

Proor. By the condition (C3;) on a, 8, there exists a section §=/'(L) such
that n,0)+0, where m,: ['(L*»)—Fk and n,:['(L)—k are linear maps given in
[Cemma 3.2. Moreover, in view of the diagram (12) for £&=« and B, m, is non-
trivial on the images of I'(LQP)RI(LRP-,) and of ['(LQPHRXI'(LQP_-g) in
I'(L?. Therefore we can choose elements < '(LRQP,), 0 (LRP-q),
0P '(LQP;s), and 0Pl (LQP_;) such that

HOO O ) =m4(00“)n_ (6 =)
=m_ (00 (0)

=ny(0)me(0PF*)+0

and
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1(0@(,3)@(—5)): mfg(eﬁ(‘a))ﬂ _ﬁ(@(—ﬁ))
=m_g(00*)ng0?)
=no(@)my(0P0<P)+0 .

Let w be any element of I'(L*). Since a and § satisfy the condition there
exist elements D ui®Qu{™ e '(L*QP)RI'(L*QP-,) and ZvPRui» ' (L*QPy)
2 J

QRI(L*QP_z), whose images in I'(L*) are w. So, the cubic
00(43)5('5’@(20('“)1¢§“>©6(“)u§‘“’)
7
_.00(a)0(~a)@(E6(—5)1};}5)@0(,3)7}&—‘3))
J

is contained in {. Hence we have

1060 5) {E LA O u@) (@@, ")}
— (6O ) {Z 1(19""3)1)}5))1(6‘(3)v;‘ra))}
F]

=100POP ) _ (0O (0) zo(w)
'—l(ﬁﬁ(“)ﬁ(_“’)n_ﬁ(ﬁ("5))n5(0(f9))qg(10):0 .

This completes the proof. Q.E.D.
Of course, there exists in P(I'(L?*) having no points satisfying the con-

dition (C3,). So, in our proof, we must soonsider the isomorphisms U,: I'(L?)

*
—7:—»1” (T*¥L% =5 I'(L*) for any closed points z K(L?®). These U, induce ca-

nonically automorphisms S*(U,) of the symmetric algebra S*(/'(L?)). Obviously,
R=S%U,)(R). Therefore, if a point in P(I'(L%) satisfies the condition (&),
so does the point [[o2U,].

LEMMA 3.5. For any point [I1= P(I'(L?), there exists a closed point z in
K(L?®) such that [oU, does not vanish identically on the image of I'(L)RI'(L?) in
I'(L3).

Proor. By virtue of

X MLOPIRI(L*@P- ) —> I'(LY)

acXg

is surjective. Therefore there exists a point o< )?3 such that [ does not vanish
identically on the image of I'(LQP )R (L*QRP_-,) in I'(L?). Here we take a
closed point z= K(L®) with ¢,(2)=a. Then, since the diagram
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[(RILY -
T*QTS | T

| "
[(T*L)@T(T*LY o P

| 51
[(LOPIRT(L®P-) -

commutes, [oU, is non-trivial on the image of I'(L)RI'(L? in I'(L?). Q.E.D.

For completing the proof of our theorem, we need the following Lemma
whose proof is a modification of Mumford’s proof in [5, p. 83 and p. 88].

LEMMA 3.6. Let p, q be positive integers and n=p+q. Then for a non-trivial
linear map 1: I'(L™)—Fk, there exists an open subset V in X such that | does not
vanish identically on the image of I'(LPQP )QQI'(L'QP_,) in I'(L™) for every
point acV.

PROOF. In the same way as in the proof of we have locally
free sheaves £=¢«(p*L*QP) and L,=q+(p*L*@P*) on X such that £,Qk(a)
=~ (L*QP,) and L,Qk(a)=I"(L'QP_,), and the canonical pairing

¢ LiQopLe —> qx(p*LM)=I'(L")R10

Let D=Ker ()cI'(L™), which is a proper subspace. We put ¢ the composite
homomorphism

91 L1QogLs —i (LM 0z —> (L'(L™)/D)Q:0z -

Then ¢ is a non-zero section of the locally free sheaf Homeo(L1®poLs,
(I(L™)/D)R:0z) on X. Therefore the set

V={ac X|d(a)+0}

:{ae)?

[ does not vanish identically on the image}

of I'LPQP)QI'(LIRQP_,) in I'(L™)

is a non-empty open set and we are done. Q.E.D.

Under these preliminaries, we now prove our main theorem. In the main
theorem, the inclusion relation C is obvious. Conversely, let [[] be a point
of N\ F.

FeK
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The diagram

&
X - P(I'(L%)
T P(U,)
X A PU(LY)

is commutative for any closed point z in K(L®). Therefore, if we prove that
[loU,] is contained in ¢5(X) for some z= K(L®), we see that [/] is also contained
in ¢y(X). Hence, to prove our assertion, by virtue of we may assume
that [ does not vanish identically on the image of I'(L)®I'(L?) in I'(L®). Since
satisfies (®), a fortiori (,) for any ac X, there exist linear maps g, 7-q
such that the diagram

I(L*QP QI (LAP-o)

MM _ l

I'L?)

k

commutes for any a< X. In particular, there exist non-trivial linear maps, m, n
which make the diagram:

I(LHRQI(L)

m% [

k

(L%

commute. Applying to m, there exists an open subset U, in X such
that m does not vanish identically on the image of I'(LQP)RI'(LRP_,) in
I'(L?) for every point « in U,. Moreover, by virtue of [Proposition 1.5, there
exists an open set U, in X every point of which satisfies the condition [CZ).
Here we put U=U,~\U, which is a non-empty subset of X. Then every point
of U satisfies the conditions and (C3,). Therefore, in view of
zq (resp. y,) for all = U, in define a same point in P(I'(L*)) (resp.
in P(I'(L")), which is independent of « and is denoted by [z] (resp. [y]). More-
over, implies that ([/], [z])=P(z)([y]). On the other hand, in view
of the remark to [Lemma 3.2 and [Corollary 2.2, we see that [z] is contained in
¢X). Hence, by virtue of Lemma 3.1, ([1, [z])Im (¢, ¢y), i€, [1] is con-
tained in ¢4(X). These arguments are true for (k[ X]/(X?))-valued points instead
of k-valued points. So we complete the proof of our main theorem. Q.E.D.
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