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§ 0. Introduction.

In this paper we shall study hypoellipticity for a partial differential
operator of the form

0.1 P=a(x,y, D;)+g(x)b(x,y,Dy) in R"=RZ'XRp,

where a(x, y, D;) and b(x, v, D,) are strongly elliptic operators of order 2/ and
2m with respect to x and y, respectively, and g(x) is a smooth non-negative
function with a zero point of infinite order at x=0 in R7%!. The operator of
the form (—4,)'+g(x)(—4,)™ is a typical example.

Our main theorem is roughly stated as follows: Assume that b(x, y, D) is
of second order (, but a(x, y, D,) is not necessarily of second order). Then we
have the statement:

(*) “us’'(Q), PusHL*(Q)>usHW>(Q2)” for any QC R",

and therefore P is hypoelliptic in R*. When b(x, y, D,) is of higher order =4,
we set the following condition on g(x).

Condition (G).
105 g (x) | =Csg(x)t7o? in a neighborhood of x=0

for a fixed ¢ (0<o<{2(m+I(m—1))}"?). Then, we have the statement (*) in

this case, too. (Such a ¢ is determined from Propositions and See
Remark of [Proposition 5.2 )

When g(x) has a zero point of finite order, fairly complete results have
been obtained by Hoérmander [8], [9], Grushin [6], [7], Beals [T], Y. Kato [11],

Kumano-go-Taniguchi [15], Taniguchi [17], Tsutsumi [19], etc. In such case
except we have the stronger result than (*), that is, the statement

(**) “usd’(Q), PucsHY(Q2)> usHS, (2)”  for any QCR™

holds for some positive number ¢,. It should be noted that we can no longer
expect the statement (**) for the operator of the form (0.1) when g(x) has
a zero point of infinite order (see [Theorem 1.2).
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As an example which does not satisfy the sufficient condition for hypo-
ellipticity given by Hormander [9], V.S. Fedii considered an operator
P=0%+¢ (x)?0; where ¢(x) satisfies ¢(x) >0 for x#0 and ¢‘7>(0)=0 for any j,
and he proved the statement (*) for that operator, improving the criterion
given by Treves [18]. Remark that his result can be obtained by setting
g(x)=¢(x).

The plan of this paper is as follows. In Section 1 we state our main result
(Theorem 1.1). In Section 2 we introduce a notion “weakly-elliptic” for an
operator P concerning sufficient conditions for hypoellipticity given in [5],
[16], [18], and we prove that the statement (*) holds for the weakly-elliptic
operators (, so P is necessarily hypoelliptic). In Sections 3 and 4 we prove
that P of the form (0.1) is weakly-elliptic. Section 5 is devoted to the proof
of Lemma 4.1, which plays an important role in Section 4.

The author wishes to express his hearty gratitude to Professor H. Kumano-go
for suggesting this problem and for his attention to this work.

§1. Notations and main result.

For a multi-index a=(«;, -, a,) of non-negative integers «; (j=1, ---, n)
and a point x=(x, -*-, x,) ER™ we use the notations:

lal=a,+ - +an, al=a,!-a,!, x*=x{--x5m,

R ai/ De=Dst - D3,
. 0
Dyy=—1i Q= {1+]x]} 2

)
an

Let C~(£2) denote the set of infinitely differentiable functions in £ and let
Cy () denote the set of C*(£2)-functions with compact support, where &£ is an
open set in R™. For a compact set K of £, C;(K) denotes the set of C*(2)-
functions whose supports are contained in K. Let ®(2) denote the set of
C>(£)-functions whose derivatives of any order are all bounded in £, and let
9’(2) denote the set of distributions in £2. &’ (K) is the set of distributions
with support in K. C*(R™), Cy(R™), 8(R™), 9'(R™) are often denoted simply
by C=, Cf7, 8, 92, respectively. S=S(R") denotes the Schwartz space of
rapidly decreasing functions and &’ denotes its dual space. For u&S, the
Fourier transform # (&) =% [u](¢) is defined by

FLul(§) = S ey (x)dy, x-E=x,&64 - +xabn,
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and then, for # (&) €S, the inverse Fourier transform %[#] is defined by
Tl ={ea@ds,  ds=@n e
For real s we define the Sobolev space H; as the completion of S in the norm
N 1/2
Jul={ [<&>la@rae}”.

HY(Q) denotes the space {ue9'(2); gucsH; for ¢=Cs(2)}. For ¢, o=C(2)
we write ¢ CC ¢ when ¢ (x) =1 in a neighborhood of supp ¢.

Now we shall study the hypoellipticity of a differential operator P of
the form

0.1 P=a(x,y, D;) +g(x)b(x,y, D,) in R"=R}PXRy
under the following conditions :

1°) a(x, y, D) is a differential operator of order 2/ with C* coefficients
and satisfies for large [£|

(1.1 Re a(x, y, §) =C,[§* (C,>0).

2°) b(x,y, Dy) is a differential operator of order 2m with C= coefficients
and satisfies for large ||

1.2) Re b(x, y, n) =C,ln|*™ (C,>0).

3°) g(x) belongs to C*(R%), g(x) >0 for x+0, and 4 g(0)=0 for any pB.

THEOREM 1.1. Let P satisfy Conditions 1°), 2°) and 3°). Then, we obtain
the following two assertions:

i) If m=1 (,i.e., b{x, y, Dy) is of second order), then the statement
(*) “us P’ (), PucesH>()>usH:(2)” for ony Q2 C R™

holds. Therefore, P is hypoelliptic.

i) In case m=2, we add the following condition (G) for g(x). Then we
have the statement (*).

Condition (G). For any B there exists a constant Cg such that
(1.3) 105 g (x) |=Ca g (x)'7o¥ in a neighborhood of x=0.
Here ¢ is a fixed positive number such that

(1.4) 0<o< {2(m+1(m—1))}
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REMARK 1. It is easy to see that in general any non-negative function
g(x) always satisfies the inequality (1.3) with ¢=1/2. In fact, for |x|=1,
—1=t<1 and M= max 10%,g(x)| the inequality
J» Iz

2
0=g(x+te;) =g (x)+toz; g (x)+ %M

holds, and so, setting

t=—sign (0:; g (x)) Vg (x) / vV g (x)*+ (M/2)*
we have
10,2 (2)|=CVg(x) on {lx]=1}.
REMARK 2. We see that the function e /" satisfies Condition 3°) and

the inequality (1.3) with arbitrary positive . The function

f(x) =e~ V1D sinz—ll— o ial?

x|
does not satisfy the inequality (1.3) for any ¢ (<1/2), though it satisfies
Condition 3°). Because we have for integer k

02, f(x)=0(e7=*), f(x)=0(e™*), |x|=(zk)* as k— oo,

We note that f is not expressed in the form f(x)=¢(x)* for any non-negative
C=-function ¢. '

As stated in Introduction, if we replace the condition “9% g(0)=0 for any
B” in Condition 3°) by “d£°g(0)+0 for some B,”, we can expect a stronger
statement than (*):

(**) “ue 9’ (), PueHX™(Q2)>usH, (2)” for any £ C R™,
for some ¢,>0. It is impossible to replace (*) by (**) in [Theorem 1.1, in
general. To explain this fact we prove the following

THEOREM 1.2. Let P=p(x, v, D,, Dy) be a differential operator of the
form (0.1). We assume that there exists some o,>0 such that

(1.5) lullz,=CUPulls+uld), uw=eCiQ)

for some constant C when £ 1is an open set (containing {0}) of R%,. Then,
there exists some B, such that 8£°g(0) 0.

To prove this theorem we use the following theorem (see Hérmander [8]).
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THEOREM 1.3. Let P=p(x, D,) be a differential operator of order m with
coefficients in C*(R%). Suppose that, for a fixed ,>0 and an open set £ of
R%, we have the estimate

lulle,=C(IPulf+1luld), w=CF Q)

for some constant C,. Then, for any integer N>0, any 6 (0<0=1/2) and any
compact set K of £ we have the estimate

Lo [@=lpo)lrdy

=Gl 3 800 9@ @) Do (3)/ (! B [dy

i a+BI<N

+egpmy s (105G,

la+Bl=N+m
(x, ) eKXRE ¢(9) €CF(RY),
for a constant C,=C,(K). Here p{3(x, £)=0¢D%p(x, &).

PrOOF OF THEOREM 1.2. Assume that 9% g(0)=0 for any 5. Then, apply-
ing to (1.5), that is, setting (x, y)=(0, 0) and (&, 7)=(0, ) for
p(x, v, D, D), we have from (1.6)

{proollg ()7
<C{| m+§<N P50, 0, 0, 7) <ppftia =180 (iz)3

XDEP(2)/(a! B IPHp* 2V 3 122 DF g (2]

lX+BISN+M

¢ (2) €CT(R}), RI=RPXRp,

%},

where M=max (2/, 2m). Fix ¢(z)=0 and 6§ so that 26/<e¢, Then, taking N
so large that M—ON <0 and noting that when |a|>2/ (=the order of a(x, v, &)
in &) p#%(0, 0,0, ») =0 for any 3, we have

<77>20‘0§C//<7]>401 fOI' any 7],

which is a contradiction. Q.E.D.

§ 2. Weakly-elliptic operator and hypoellipticity.

DEFINITION 2.1. A differential operator P=p(x, D;) of order m with
coefficients in C*(f2) is called ‘weakly-elliptic’ (or simply ‘w-elliptic’) in 2 if
P satisfies the following conditions :
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[) For any compact set K of 2 and any N>0 there exists a constant
C,=C,(K, N) such that

(2.1) lulle=Ci(lPullot-lull-x), usCy(K).

) For any compact set K of £, and 8 (|5/#0), any p¢>0,and any N>0
there exists a constant C;=C,(X, B, ¢, N) such that

2.2) [Py ull-ip = pl Pullo+Collul-y, veCy(K), (1B1#0)
where pes (x, §)=DEp(x, §).

) For any x,€£ and any neighborhood U of x, there exists ¢ (x) €C§ (U)
such that

¢(x)=1 in some neighborhood of x,

and the estimate

(2.3) ILP, ¢uls=Co (K, s, N, @) (1 Pulls-etlul-n), usCq(K)

holds for any compact set K, any real s and any N>0, where £>0 may
depend on x,, and [P, ¢]=P¢—¢P.

REMARK. We see that many hypoelliptic operators are w-elliptic. For
instance semi-elliptic operators, subelliptic operators in Egorov [3], and
hypoelliptic operators treated in Hormander are w-elliptic. But, in general,
hyperbolic operators are not w-elliptic, since the estimates II) and II) do not
hold.

THEOREM 2.2. Let a differential operator P be w-elliptic in 2. Then, for
any open set 2’ C 2 we have

veD’ (), PveHP(2)> veHl ().

REMARK 1. This theorem is a re-formation of theorems given by Fedit
[5], Oleinik-Radkevich and Treves [18]. It seems that the assumptions
of this theorem does not include the following estimate (, which is derived
from the hypotheses of their theorems): “For any real s, any p¢>0 and any
N>0 there exists a constant C such that

1P ull, < pll Pulls+Clul_y, ueCs(K),

where p7’(x, §)=0¢;p(x, §).” We do not know whether the above estimate
holds for the operators P in [Theorem 1.1, when the order of a(x, y, D,) is
not less than 4.
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REMARK 2. will be proved by showing that, for any fixed
point x,€£’, there exist ¢, ¢<=Cy(£2’) such that ¢(x)=1 in a neighborhood
of x, and ¢ CC ¢, and for some large N>0 and a constant C the estimate

2.4 lgvl,=Cl¢pPvlls+ldvl-w

holds. Therefore, by modifying the coefficients of P outside of supp¢ we
may assume without loss of generality that all the coefficients of P belong
to B(R").

Before the proof of we define pseudodifferential operators
and state several propositions without proofs (see [2], [8], [12], and [14]).

Let 2(§) be a basic weight function in R™ with the following conditions :
(2.5) ATHET=2(8) =A< (A40>0, 0">0),
(2.6) A0 (E) | S AaA(E) 1.

By using this fixed function A(§) we define a class of pseudodifferential
operators.

DEFINITION 2.3. We say that the C®-function p(x, §) in R%¥: belongs to
S}ryLPﬁ (—DO<7/}1,<OO’ 0= (51; M) 5n>’ o= (pl) ) pn); 0§_53<P]§1’ ]:1r ) n):
when for any multi-indices a=(a;, ***, a,), f=(By, -, B2) We have

2.7) 1B (x, E) |SCapg A(E)™ "7 on R,

where
PO O=GDLD(x, §), p-a= 3 psan 0-8= 30,8,

Then, the pseudodifferential operator P=p(x, D,) (denoted by P&S$7,; with
the symbol p(x, &) is defined by

2.8) puzgewfp(x, Hu(e)ds, ues.
We often denote the symbol of P=p(x, D,) by o(P).

REMARK 1. When p=(po, -, po), 0=1(do, ***, 05), we denote STps, STss by
ST 050 ST anse Tespectively. Furthermore when 1=<(£), p,=1, d,=0, we often
write ST p0,00=S" ST 5, =S™. A differential operator of order m with coeffici-
ents in B(R™) is clearly the element of ™.
2. S?,, is Fréchet space provided with semi-norms
|pliw= max sup{|p{(x, §)|A(§) ™07,

la+Bl<l R2M

We say that the subset B of S%,; is bounded when sgg{lpli’“} <oo for any [
p
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3. We set Sis:= w(ﬂ< 8%p5. It is easy to see that Si5;=S™.
oot micon

PROPOSITION 2.4. Let P;=p;(x, D,) €834 5. Then, we have P,P,=S7im
and

1
2.9) G(PiPY) = T (@ &) paceo (3, §) SSTHFT,

where to=min(p;—0;). Furthermore, we have
J

—1)18
(2.10) (P, PA—, % U P pigespres

wlavp<y  alB!

We define |uls,; by

o= ({2@12@ 1ag)"  for ues.

When 2=<§), we denote |ul;,;=ull;.

PrROPOSITION 2.5. Let P=p(x, D) €8%ss. Then for any real s there exist
C and | depending on m and s such that

(2.1D) IPulls 2=Cl ol ullssm,2  for uss.

PROPOSITION 2.6. Let P=p(x, D,) €8F%ps and let ¢ and JEB satisfy
dis(supp @, supp ¢) =Co>0. Then, pPHE8™™.

PROPOSITION 2.7. Let p(x, &) €575 satisfy the following conditions (which
1s called (H)-condition) :

i) There exist Co>0 and some real m’ such that
(2.12) 1p(x, ©)12C 2™ for large &l

ii) For any a, B there exists a constant Cq, 5 such that
(2.13) 6@ (x, £) /0 (x, §)|=Ca, 5227 *  for large [£].

Then, there exists a parametrix Q=gq(x, D,) =Si%s such that I=QP=PQ
(mod §7%), that is,

(2.14) I=QP+K=PQ+K’ for some K and K'&8 .
Furthermore, we can write
JQZQle
(2.15) l for Q.€83%s defined by 0(Qo)=g¢-(x, H=p(x, 7 for large |£],

and some Q,€8%,5.
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PrROOF. Note that ¢,{3(x, §) consists of the linear combination of symbols
of the form

(P71 pd) - (p7pGk)p~  for large |£|
(@' + - tat=a, B+ - +B*=8, k=<|al+]18)).

Then, from (2.12) and (2.13) we have g,(x, §) €S1%5, s0 Q,=S57%s. Similarly,

using (2.9) in [Proposition 2.4, from (2.12) and (2.13) it is easy to check

o (I—PQ) €S3%s, where t,=min(p;—d,). Set R=I—PQ,. Then, since '35,
J

there exists Q,=S9,s such that Qlwgo R in the sense
N-1
Q,— Jgo RI€8;9Y
holds for any N (see [8]). Asymptotically, we have
(I=R)Q:~(U~R) R ~1.
Consequently we obtain

PQ,Q,=(UI—R)Q,=I+K' for some K'&87™,

Hence, we see that Q=0Q,0Q,=57%5 is a right parametrix. Similarly, checking

oc(I—Q,P), we have a left parametrix Q’ such that Q’P=I (mod $™=). By
means of the equality

Q'=Q'(PQ)=(Q'P)Q=Q (mod §7%),
we have QP=] (mod $ ), that is, QP=I+K, K8~ Q.E.D.

REMARK. Let p(x, &) €S7,; satisfy
[p(x, §)|=Co2 ()™ (Co>0) for large |&].

Then, using |p% (x, §) | =Cq, s 2(5)™* 73 2%, we get (2.13). Therefore, p(x, D)
€87, has a parametrix Q=S57%;.

LEMMA 2.8. Let A, 4,. denote a pseudodifferential operator with the symbol
CEX*(1+e{&))™* for real s, e>0 and k=0. Then, A 1,87, and for any ¢>0
there exists a constant C, such that

(2 16) ”As, k,suHs’éce”u“S%-s’—k: ‘LLES.
Furthermore, {;, .} is a bounded set in $°, so the estimate

(2 17) “As,k,su]]s'§conu”s’+s: ues
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holds for a constant C, independent of e. Moreover, for any a there exists a
constant C, such that

(2 18) ”A.g,dle),s u“oéca“/ls—lai, k,suHO; 'L{ES.
PrROOF. (2.16) and (2.17) are clear. Using the inequality

108 ((€)° (14+e<{ED)*) | SCLk&)* 1 (1+e{E))7*
we obtain (2. 18). Q.E.D.

LEMMA 2.9. Let Z={a=(ay, a, -+, a;)} be a set of real vectors with a;>0
(1=j=0) satisfying the following: For any p>0 there exists some constant C,
such that

-1 l
a;=p 2 ap+C, kE a, for any a€Zz
k=0 =j+1

Then, for any p'>0, we can find a constant C;, such that
ag;=pa+Cpa,  for any a€X (j=1, -, [-1).

ProOF. For any p;>0 (1=j=/[—1) we have

l
a;=p; k% art+Cp; k=§+1 a for any ac5&

for some C,;. Multiplying both sides by some d;>0 and taking the sum over
1=<7=<I[—1, we obtain

-1 d < l-1 d -1 -1 d C /4
,Z=1 jaj:<j2=1 i j> kZ:)O @it jZ=:O Ing k§+1 Qe
Then we have
-1 -1 -1
3 hias=(Z pids) ot (5 diCu)a,
where
1-1 -1 j-1
hl:dl_kgl predy, hj=d;— kgl pedr— kgl dkcyk

(j=2, -+, [—1).
For any ¢'>0 we can find d;>0, z#;>0 such that

-1
h>lpl, 3 pdi<pl (=1, 0, 1-1).
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(For instance, we can determine {d;, y;} by

d1:1: ,ulzﬂl/zy d2:1+(:/11 dl; /lzdz—_—/l//‘l, )
i1 . )
&=14 3 Cuy ras prydy=pt' /2, -, (j=1, =, 1=1).)
Therefore, we have for any 0<py'<1

' -1 -1
A1) 2 a,2p'at( S d,C)a,  acE. Q.E.D.
J=1 j=1

From now on let P denote a differential operator of order m with coef-
ficients € 8(R").

LEMMA 2.10. Let P satisfy Condition 1I) of Definition 2.1. Then, for any
compact set KC 2, any B (I81#0), any real s, any p>0, N>0, ¢>0 and k=0
there exists a constant C=C(K, B, s, u, N, k) independent of ¢ such that

(2.19) N As- 181, ,e Pegy ullo = pll A, &, e Pullo+Clull-n, usCq(K).

PrOOF. Take ¢, ¢=Cr(£2) such that § CC ¢ and ¢(x) =1 on K. Then,
for ueCy (K) we have ¢A; ;. ucsCq(K’), where K'=supp¢. Replacing u by
dAs e u in (2.2) we obtain

1Pegs pds, vyetill i oo = pll P As, b, e ullo+Cill @Ay, s ull - v
SplPPAs v, ulo+Clllull-yis, usCP(K).
We used the estimate (2.17) in the last step. Since N is arbitrary, we have
1Pcs pAs, el -1
splPoAs, veulot+Cilul-y, uweCy(K).

Noting that A, .. u=¢d;, 5, u+1—¢) Ay 5,.¢u for usCs(K) and P (1—¢)
“As,r,e =8~ from [Proposition 2.6, we obtain

[Pcgy As,r,eull o5 SN Pegy @ s, v, el oo +HCollull-w, ueCH(K).
In the same way we have
1PPAs, b, ullo SN PAs, 2, e ulo+Collull-n, ueCr(K).
From the above three estimates it follows that the estimate
1Pegs A, vyeull =15 S el PAg, v, ullo+Cillull -y, usCy(K)

holds. Using the expansion formula
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(_1) lai

<ialstm+N

[Pr As, k,s]—

2~ N
;?k),sp(a)es

in [Proposition 2.4, we see that the estimate

1P As,n,culo=I1 s, b, Pullo+1LP, As,5,eJullo

< dguye Pulo+Co( 3 1A P ulot lul )

< |lal<s+m+N

<M1, PulotCo( 5 e, bye Peoo tllo+lul ),

o< |lal<s+m+ N
usCy(K)

holds for a constant C} (independent of ¢). We used the estimate (2.18) in
the last step. Similarly we have

“As—m, k,sP(ﬂ) ully= ”an) As,k,au”— 181

]

1ty 1,6 P o -l ), u€CF (K).

6
<I‘8!<Ial<s+m+N

From the above three estimates it follows that for any 0<|B|<s+m-+N the
estimate

“As—'ilil,k,ep(ﬂ)u”() éﬂ(l%As,k,aPLLIl0+ > ”As—!m,k,ep(a')uno)

ollal<s+m+ N

145w, bye Peao ot lull o), € CF(K)

-C
T 7(
BI<lal<s+m+N

holds for a constant C, (independent of ¢). Applying to the above
estimate for 0<|B|<s+m+N, that is, setting [4s,,Pulle, [4s-1p,2,ePecprutllo
(0<|Bl<s+m+N) and |ul|-y for a, a; (j=1, -+, [=1) and g, respectively,
it is easy to see that (2.19) holds. Q.E.D.

COROLLARY. Let P satisfy Condition II) of Definition 2.1. Then, for any
KC 2, any real s, s, any N>0, e>0 and k=0 there exists a constant
C=C(K, s, ', N, k) independent of ¢ such that

(2.20) ILP, Asyx,Julls SCUlAsss, v e Pullotllull-n), ueCP(K).

ProOOF. From the expansion

[P’ As,k,g]_‘ 2 Ca/ﬁfx/z,st)ES"N's'

o< |al<s+8'+m+ N

and (2.19) it is easy to see that (2.20) holds. Q.E.D.
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LEMMA 2.11. Let P satisfy Conditions 1) and 1) of Definition 2.1. Then,
any K, s, N>0, ¢>0 and k=0 there exists a constant C=C(K, s, N, k) inde-
pendent of ¢ such that

(2.21) 14, e, ulle=C U A5, 5, Pullotlull-»), usCy(K).

PrOOF. Take ¢=Cy(2) so that ¢(x)=1 on K, and replace u=Cy (K)
by ¢Ar.u in (2.1). Then, by the same way as in the first half of the
proof of we have

145, &, uloe=Ci(I1PAs s, ullotlull-x), ueCy(K).

Using PAs,,.=As, 4, PHLP, As,1,.] and (2.20) we obtain the estimate (2.21).
Q.E.D.

REMARK. Set k=s,+m-+N for s,>0. Then, for any veH_y N\ E(K) the
estimate

(2.22) 145,58, V0 =C U 4s, 5, Prllo+ vl - )

holds, where s<s, and C is a constant independent of . Indeed, taking the
sequence {u;} 5, such that

w,eCy(K) (KCK Cf), uj—v in H._y,

and noting that A .., A .PESY for fixed ¢e>0 and that the estimate
(2.21) holds for u,=C§(K’), we have (2.22) by j— oo.

LEMMA 2.12. Let P satisfy Condition 1I) of Definition 2.1. Suppose that
Q is a differential operator of order m’ with coefficients in B(R™) and that for
any KC Q, real s and N>0 there exists a constant C,=C,(K, s, N) such that

(2.23) 1Qull,=C (I Pulls-c+lull-»), ueCFK),

where r is some real number. Then, for any B, any KC 2, real s and N>0
we can find some constant Co=C,(B, K, s, N) Ssuch that

2.24 1Qcp ulls =Co(lPulls-gup FHllul-n), ueCq(K).

Furthermore for any >0 and k=0 we can find a constant Co;=C;(B, K, s, N, k)
independent of e such that

2.25) N dscipn, ke Qep ulle SCo ([ sy v, Pullotllull-n), usCF(K).

PrROOF. By induction on || we show that (2.24) holds. When |B]=0, it
is trivial that (2.24) holds. Assume that the estimate (2.24) holds for |B|=n.
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It is easy to see that if [f|=n+1, then Qs=L[D., Qs>] for [f’|=n. Using
this, for |B|=n+1 we have
1Qc> wly=NDay QersT el
<IDa;Qcpulls+1Qcp Da, ul
=CQcpullss1+1Qcp» Dojulls), usCy(K),

where C is some constant (we often denote different constants by same nota-
tion C in what follows). By the inductive hypothesis we have

1Qcsullss1H1Qcs>Dajulls
SCUIPullsv1181-eFIPDojullsv181 -t lull -w),
ueCy(K).
From (2.19) of the estimate

|PD.,ull,<ICP, D.Jull,+IDq;Pul,
=C(|Pejyull s+ Pulls41)
SCIPullssrtlull-w), usCHK)
holds for any real s. Hence, from the above three estimates we obtain (2. 24)
with |f]=n+1. Next we prove (2.25). Replacing u by A_s,,.% in (2.24) as
in the first half of the proof of we have
“Q(,B)A—lﬁl,k,eu”séc(”PA—:m,k,eu”s—ﬁlﬁl‘l‘“u”—N)
SCU Asry v, PulloHICP, Aiar, by dtlls-sris T+l -5,
ueCy(K).

Applying (2.20) in [Corollary] to Lemma 2.10 to the second term on the right
side, we obtain
1Qcss A-ipr, b, e ull s SC| A5, 1, e Pullotull ), u€CT(K).

Using the expansion
(_1)10:[

o<la<sim +N-18 !

[Q(ﬂ): A—Iﬂl, k,e]—

-N -
(—dl‘)Bl,k.eQ(a+ﬁ)ES s’
we have

”/Is—ml, k,sQ(mu”oé IlQ(ﬁ)A-lﬁl,k,eu[|s+I| [Q(ﬂ» 4. Iﬁl,k,e]ulls

< 1Qep Ao, 1,1l -C( 1A% 1.0 Qcas 3ol 1l )

0<[a1<s+§'+N— 181
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< 1Qs Ao, byl +C( 145wy 5,e Qe o+l ),

BI<ladd<st+m'+ N
ueCy(K).

We used (2.18) in the last step. From the above two estimates we obtain for

0= (BlI<stm'+N

”As-lﬁl,k,chmuno

< C(14s-s, 1, Pulo+ s, 1, Qe ot ),

BI<lal<s+m’'+N
ueCy(K).

Applying to the above estimate for 0=|p|<s+m'+N, it is easy to
see that (2.25) holds. Hence, the lemma is proved. Q.E.D.

REMARK. Set k=max(so+m+N, sy+m’+N) for s,>0, where m and m’
are the orders of P and @, respectively. Then, for any ve H_y N &(K) the
estimate

(2.26) 14,8, Qulle SCUI As-py5,e PrlloF N0l - )

holds, where s=s, and C is a constant independent of ¢. This fact is obtained
from (2.25) by the same way as in Remark of

LEMMA 2.13. Let P satisfy Condition 1I) of Definition 2.1 and let £ be
some real number. Let Q be a differential operator of order m’ with coefficients
in B(R™) such that for any KC 2, any B, some real s; and any N>0 the
estimate

2.27) 1Qez ullsg-15 =CK, B, N)(I1Pullsg-stllull-»), usC(K)

holds for some constant C(K, B, N). Then, for any real s there exists a con-
stant C(K, B, N, s) such that the estimate, replaced sg by s in (2. 27), holds.

ProOF. Replacing u by As_sﬂu in (2.27) as in the first half of the proof
of Lemma 2.10| (where /Is_sﬁ denotes the pseudodifferential operator with
symbol <&)>*7%s), we have

”Q(‘S‘)As-stgu”slg—lﬂléc(]lPAs-SﬁuIISﬁ—x+”u“—N)
<CUPull-s TP, Ascsdullpmetlull-n)
=C(|Pulls-sHllull-5), usCF(K).



342 Y. MORIMOTO

Here we used (2.20) with 2=0 in the last step. Furthermore, we have
“Q(ﬁ)u”s—lﬁlé”Q(ﬂ)As—s‘guHm— o HI0Q g, As—sslullss-ip

<C(1Pulli-st 2 NQuwulsiatluly),  uSCi(K),

1Bi<lal<s+m’+ N
Therefore, by we obtain

1Q s ulls-1a = CPulls-+lull-5), usCH(K).
Q.E.D.

We end this section by completing the proof of [Theorem 2.2, that is, we
prove that (2.4) holds.

THE PROOF OF THEOREM 2.2. Let x, be any fixed point in £’ and let
PH(x)eCy(2') such that ¢(x)=1 in a neighborhood U(x,) of x, Then, for any
natural number [ we can find a finite sequence {¢(x)}}-; C C5(2’) such that

) CC ¢, CCT -+ CC ¢, CC ¢,
di(x)=1 in a neighborhood of x,,

and we have

(2.28) ICP, ¢duls=C(K, s, N, ¢;) (| Pulls- o+ lull-»),
(]:1) ) l): uec;;a([{),

for any KC 2, real s and N>0, where £ is some positive number. Indeed,
from Condition III) of we can take ¢,(x)eC7(U(x,)) such that
¢,(x)=1 in some neighborhood V(x,) of x, and satisfies (2.3). It is clear that
¢, CC ¢. For x, and V(x,) we can take again ¢.,(x)&C5(V(x,)) such that
¢:(x)=1 in some neighborhood of x, and satisfies (2.3). Repeating these steps
[ times, we have {¢,(x)}}\-y CCF(£2). Set ¢;=¢; ;11 (j=1, -+, ). Then,
{¢;}i-; is a desired sequence. As well-known, for ¢ve&’ there exists N>0
such that ¢ve H_y. Let us choose [ bigger than (s+m—+N)/k. By Remark of
Lemma 2. 11|, for ¢,veH_y N &(K) (, where K=supp ¢) the estimate

(2.29) 45, k,eP1010=CUI Aoy p,e Phrvllo+ 1y vl - w)

holds for C independent of & and k=s+m+N. (Let the same notation C
denote different constants independent of ¢ in what follows.) Furthermore,
setting Q=[P, ¢,] in from (2.28) and Remark of it
is easy to see that if k=s+m-N, then for s’<s the estimate
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(2.30) 1455, [P, i1 sl
=CU s -y ye PP jeavllo I hsravll-a)
holds. Noting [P, ¢;1¢;:1=P¢,—¢; P, we have from (2.29)
1 45,5, P10Ile=Cll As, e 1 Pollo+ 11 45,1, TP, Prdavllo vl n).
Applying (2.30) to the second term on the right side, and noting
Igsvll-v=l¢;¢vl-xy=Cligv]-x,
we obtain
s, p,e 01010 S CUIAs,p,e 01 Pollo 1 Aso gy, P2 vllo+ 0] - )
SCAsyp, e P1 Pollot 1 As-eyn,e P2 Polo
1 Asoe,5,e [P, dolsvllotldvli-n).
Applying (2.30) to third term on the right side, and repeating the samé_
procedure, we have

H/Is,k,ssb10”0§ C(jE; ||As—x(j—1),k,e¢jpv”0+]|As—xl,k,sp¢v”0+”Sbvn—N)-

Since ¢;PvE H, from the hypothesis of theorem, and since A, . .P=S™V for
any ¢, we obtain from (2.17)

14ey1,e3000= C( 3 15 Pol-ecro - Ivlo)

= ClgPvl s+ ldvll-).

Letting ¢ — +0, we finally get (2.4) with ¢=¢,. The theorem is proved.
Q.E.D.

§3. Proof of Theorem 1.1 (Part I).

Let P=p(x, y, D, D,)=A+gB=a(x, y, D;)+g(x)b(x, y, D,) denote a dif-
ferential operator in [Theorem 1.1. We shall show that P is w-elliptic in R™.
Since the conditions of are stated for some compact set K of
R™, we may assume, without loss of generality, that g(x) and coefficients of A
and B belong to 4, and g(x) satisfies for any ¢>0

(3.1 g(x)=C.>0 on {|x|=e}.

LEMMA 3.1. Set 2.={(x, y)R™; |x|<e}. Then, for any ¢>0, any a, any
real s and any N>0 there exist constants Cle, s, N) and C(e, a, s, N) such that
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(3.2) [ulls=C(e, s, N)(|1Pulls-co+ 1l -»),
(3.3) [Pul,=Cle, @, s, N)(|Pulls-pq1a1+ll1ll-5),
uECB"(R"—-,Qs),
where k,=min (2/, 2m) and p,=min(m/l, /m), respectively.
PROOF. Modifying g(x) in {|x|<e}, we may assume that (3.1) holds for
any x=R7l. As far as we consider the estimates for ueC{(R*—Q.), such
modification is permitted. Set k=max (2/, 2m) and set A(§, n)=(|&[2*+|p|*™+1)VE,

Then A=A(&, 5) is a basic weight function and p(x, y, §, ) belongs to 85 ;..
From (1.1), (1.2) and (3.1) we obtain

Ip(x, v, & PI=C.2% (&, p)  for large [§]+]yl,

where C.>0 depends on e. By [Proposition 2.7 and its Remark we have a
parametrix Q=83%, such that I=QP+K, K8~ It is easy to check that
Q<eS$y and PQeS,. Therefore, noting that the semi-norms of o(Q)
depend on ¢, by means of [Proposition 2.5 we obtain (3.2) and (3. 3).

Q.E.D.

LEMMA 3.2. Let ¢(x)=C=(R3Y) such that for any a#0, ¢y=0 on {|x|=e},
where ¢y=D3¢(x). Then, for any ¢>0, any real s and any N>0 there exists
a constant C(e, s, N) such that

3.4) ICP, ¢lulls=C(e, s, N)(IPulls-py+lull-n), usCy(R™),
where po=min(l/m, m/l).

Proor. Let u=C{(R"™). Then, ¢usCy(R"—8.) for any a+0. Hence,
by we have for any a#0 and B8+#0

3.5) [PP Geay ulls EC(IPPca ttlls- oot ull-n), usCFH(R™).
Using this we obtain

ILP, ¢lul,=C 3 [P ¢ uls

12 |ais2!l

SC(_ 2 NPdcetlls-pptlull-)

15 jais21

<CUIPul-pt 3 NP, pealulsepytluln)

SCUPulls-py+ 3 NPPGeqrpyttlls-ppTllull-n),

15 ol s2t
121812

usCy(R™).
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Applying (3.5) to the second term on the right side, we have

ICP, $Jul SCUPul o+, S 1Pl tlul-n),

usC§y(R™).
Repeating this procedure j times, we obtain
ICP, gi]ul[éC(llPulls-pﬁjéIEM [P car lls- joo+ N2t -5,

ucsCy(R™).
If we choose j so that s—p,j+2/<—N, we obtain (3. 4). Q.E.D.

LEMMA 3.3. For any p>0 and any N>0 there exists a constant C(y, N)
such that

(3.6) lullo=pll Pullo+C(y, Nllull-n, usCF(R™).
ProofF. From Conditions 1°), 2°) and 3°) for P it is easy to see that
3.7 KD uli=C(Re(Pu, w)+|ul3)
=C(|Pulz+ulf), usCr(R™).

Here <(D,>! is an operator defined by
[eceswnceyrae, pazdy, ues.

Let ¢(x)=C7(R™) such that supp ¢ C{|x|<e}, ¢(x)=1 on {[x|=¢/2}. Then, on
account of Poincaré’s inequality we have

[pullo=0(e)I<D )t pulls, usCy(R™),

where d(¢) — 0 (¢ —0). From this and the estimate obtained by setting u=g¢u
in (3.7) we have

Ipule=Co(e) (I Ppullo+llgulle), usCy(R™).
Hence, taking a sufficiently small ¢>0 for any fixed ¢>0, we obtain
lpulo=plPoule, usCy(R™).
Since (1—¢)ucsCy(R*—£,), from (3.2) we get
IA—=@) ulo=CPA—=@) ull gyt lull-x), usCy(R")

for a constant C. depending on e. From the above two estimates we have
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lulo=pl Poulle-+CllPA—@) ull-c,+lull-»)
S pCll Pullot+Co(l Pull -, HILP, ¢lullotllull-»), usCy(R™).

Since ¢(x) satisfies the hypothesis of by applying the estimate
(3.4) to the third term on the right side we obtain

lullo= pCl Pullo+Cull Pull -y +llul-x), usC(R™).

Using the interpolation inequality to the second term on the right side we
finally obtain (3.6). Thus, the lemma is proved. Q.E.D.

By immediately we see that P satisfies Condition I) of Defini-
tion 2. 1.

§4. Proof of Theorem 1.1 (Part II).

To show that P satisfies Conditions II) and III) of Definition 2.1, we
prepare
LEMMA 4.1. For some 0<k<1 there exists a constant C, such that

(4.1 gDy ulo =Gl Pullo+llulle), usCF(R™).

Furthermore, for any B (0<|Bl<2m) and any p>0 there exists a constant
Cly, B) such that

4.2) lgcp () <D * ™ ul -z = pel| Pullo+C (g, B)lluello,
(1B1#0) u=sCF(R™).

Here {D,>*u is an operator defined by
ge“’”"c*”'”’(r])xﬁ(é, n) 45 dy for ued.

Since the proof of this lemma is so long, it will be given in the next
section.
Using Lemmas and (4. 1] we obtain the following two lemmas.

LEMMA 4.2. For any |B|#0, any p>0 cend any N>O0 there exists a con-
stant C=C(B, pu, N) such that

4.3) | Pegyull- g S pll Pullo+Cllull-n, (181#0) ucsCy(R™).
PrOOF. We note

P, =Ap+ 2 CppgsrBegn.
BTADT, L 888 Degn
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First we observe that
4. 4) Ay ull - =Cs(Aull - i+ lulle), (B1#0) useCy(R™).

If [81=2], then (4.4) is obvious. For |8/<2l, we have

(4.5) “A(@UH-!@!:”/I—|ﬁ|A<ﬁ)u”o
SCUApA-gulet 2 Ao iprarAgra ot ullo),

0<lal <z~ 13)

useCy(R™),

where A, is a pseudodifferential operator with the symbol (|&]2+|p|2+1)%2
From Condition 1°) for A it follows that

TAp ulle =C([Aullot+llulle), uwsCT(R™).
Applying this estimate to the first term on the right side of (4.5), we obtain

I ull-ia=CUALd gule+ 3 N4 igra Acgrar ullotllullo)

o<1l <2~ 13l

=C(lAulloig+ 2 N4 israAoulo

0<lal 2L~ 181

2 MAgroul-ipratlule), usC(R™).

o<1l 2l = 18I

Using the interpolation inequality, we have for x>0 and 0<|p|<2!

lApulomSCUAu st 3 Ao ull- i+l

4 ! © n
Y o<1§<2z Ao ull-1m, usCF(R™).

By means of we obtain (4.4). On the other hand
| Aull_ = Pul-,+|g(x) Bull -,

= pl Pule+CUg<Dy>*™ P ullo+lulle), usCT(R™).
Combining this with (4.4), we have
1A ull-ip S pel Pulle+Clg{Dy>* " ulo+lull), (B1#0) usCH(R™M).
Noting that
lg(x)<D* ™ ullo= pllg(x) Dy>* ™ ullo+Callule, usC(R™),

we obtain from (4.1)

(4.6) 1 Acpyull- 15 = pell Pullot-Cliullo,  (181#0) usCF(R™).
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Using (4.1) and (4.2) we get for 0<|8|<2m

4.7) 5,2‘9,:5”&19') ch ul - 181 =C )ﬁ,é).ﬁi Hg<ﬁ'><Dy>2m ul - 18l

<C(_ 3, gDy mul ipi4-18Dy)* ullo)

< 1B 1<2m
=pllPulotCllullo usCy(R).

If |fl=2m, then the left side of (4.7) is bounded only by C|ul,. Therefore,
from (4.6) and (4.7) we have

[Pcgsullo i = gell Pullo+Cllullo, (181#0) usCH(R™).
By means of (3.6) we obtain (4. 3). Q.E.D.

LEMMA 4.3. Let ¢(x, y)=¢(x) d(y) (€C7(R™)) where ¢,=1 on {|x|<e},
$:(x)ECT(REY), ¢o(y)ECP(Ry?). Then, for any ¢>0, real s and N>0 there exists
a constant C=C(e, s, N) such that

(4.8) ICP, ¢lulls=CUPulls-o+lul_-n), usCy(R™),
where £'=min{lk/2m—1+k), k) and & is the positive number in Lemma 4.1.

PROOF. We devide the proof into three steps.

i) Assume that for any a#0, 8, real s and N>0 there exists a constant
C such that

(4.9) 1P Pearprul s SCUIPharpytlls-o +lull-n), usC(R™).

Then, (4.8) is valid. Indeed, using (4.9) we have
ICP, ¢1ul =C, 3, 1P dearull

<C( 3, IPdcoullo-r+lul-)
<C(IPull-e+ B, ILP, ¢outhe+lul-x)

<CIPulsest 3, B 1PP darprulletlul-),
us Gy (R™).

Applying (4.9) to the second term on the right side, again, we get
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ICP, ¢1uki= C(IPuloet B, 3, I1PPcaspotlcse +lul-)

< , ,
<C(1Pulliet 2 NP, frwTtlioe+lulx),
usCy(R™),
where k=max (2/, 2m). Repeating this procedure, as in the proof of Lemma

3.2, we finally obtain (4. 8).

ii) We prove (4.9). Let a=(a;, a,) where «, and «, are multi-indices
with respect to x and y, respectively. If a;+#0, then for any B, ¢caspp=0 on
Q.={(x, y); |x|=¢}. Hence, by [Lemma 3.1, the estimate (4.9) clearly holds.
When «a,=0, that is, a=(0, a,), a,#0, we prove
(4.10) [POull<C(|Pulls-e+lull-»), usC(R").

Then, replacing u by ¢aspu, we get easily (4.9). Since we have
| P ul=B“(x, 3, Dy){Dy>* *"g(x){Dy>*™ 1 ul;
=Clg(x)<Dy>*™ tull;, usC(R™),
the estimate (4.10) is obtained if we derive the estimate
(4.11) 18D y>*" ul s =C(| Pulls-e +ull-»), usC(R™).

iii) On account of the estimate (4.11) holds if we prove that

the estimate

(4.12) lgeaXDp>*™ ull o1 =CI Pullo+llull-n), usCH(R™)

holds for any 8 and N>0. (Though g(x){D,>*™* is not a differential operator,

we can apply Lemma 2.13 to this operator since [ g(x)<{D>*™  ullg_1p Iis
equivalent 'coI 1s2 . lg(x) Dyully-15.) By means of Minkovski’s inequality, it is
als2m—

easy to see
&1+l 1) (p2mt < EDF (pdEm™ 1 (ppem=1+e
S C((EY -y m=1w Bm=D/me) y (phemee =1y,

If we take £’ so that max(«’2m—1)/(I—k’), £’)<k, where r is the positive
number in Lemma 4.7, we have for any S

lgcs XDy ull e -1
=CUKD gepull-ip e XDy ™ ull - g
=CUKDR ullotllges<Dy>* ™ ull 15, ue CF(R™).
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Using (3.7), the first term on the right side is bounded by C(|Pulj,-+ulo).
By the second term is also bounded by C(||Pul,+ull,) since x<1.
Therefore, using (3.6) we have (4.12). Q.E.D.

The completion of the proof of [Theorem 1.1, By Lemmas B.3 and 4.2
we see that P satisfies I) and II) of Definition 2.1, respectively.
shows that Condition III) is satisfied for points (0, y) (yeR"2). For points
(x, y) with x=+0, take ¢(x, y)eCy(R™) such that supp ¢ C{|/x|=¢}. Then, we
can get the estimate (4.8) with x’=min(l/m, m/l), by the same way as in the
proof of Therefore Condition III) is satisfied for points (x, y) with
x#0. Consequently, P is w-elliptic in R". Q.E.D.

§5. Proof of Lemma 4.1.

From Condition (G) of Section 1 or Remark of we have for
any j3

5.1) lga ()| =Cg(x)~o# in a neighborhood of x=0,
where

o=1/2 when m=1
.2) {

0<o<2(m+I(m—1))}* when m=2.

Since P is semi-elliptic in R*— {x=0}, it is easy to see that (4.1) and (4.2)
hold for ueCy(R*— {x=0}), by the same way as in the proof of Lemma 3.1
We may only prove in a neighborhood of x=0. Therefore we
may assume, without loss of generality, that (5.1) holds for all x, by modify-
ing g(x) outside of x=0.

Let @), ¢,(1) and ¢,(f) be C=-functions in [0, o) such that

supp ¢, (1) € [0, 1), ¢(H)=1 on [0, 1/2],
supp ¢, () C [0, 2), ¢ (=1 on [0, 1],
supp ¢, (1) C (1, ), ¢,()=1  in [2, o0),

and
(5.3) $1t¢.=1 in [0, o).
Set Z(E, 77)_.___(IEIZl(l+1)(l+2)_‘l__<)7>277H'(l+])(l+2))1/(2l(l+1)(l+2))
r={+1)/(I+2) for m=1
(. 4) {
r=l/(m(+1)) for m=2.

Then, since 2mz(l+1)(I4+2) is an integer, A satisfies (2.5) and (2.6), so it is a
basic weight function.
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PROPOSITION 5.1. Set h(&, n)=A&, n)* /" and set X(x, &, n)=¢ (g(x)h(&, 1))
(j=0, 1, 2). Then, X{x, D, D,)€831,5, where 1=(1, ---, 1) and 6=(0y, **+, 0n,, 0,
e, 0), 0,=0,=2lc(1—7)/7 (k=1, -+, n)). Furthermore

(5.5) Xi+X,=I.

PrOOF. The equality (5.5) is obvious from (5.3). We check that X(x,§&, n)
(=2;(x, & n), j=0, 1, 2) satisfies for any a and B

(5.6) 1(0: 39)*DEX(x, &, P =Cpapa®F 1 in R2,XRE.
From the Leibnitz formula we have for |a-+8]/+0

XB= > Cpp®(g(x)h(E, 1))

ok jat Bl

(al (ak
X » Cal,..,ak,ﬁl,...,ﬂkg(ﬁl) "'g([gk)ha) <o pCEO,

altal+. +ak=a

Blrg% et ph=p
Using (5.1) and |A|<Cyhi™ ', we obtain

HHISC,_ B 6P AE, ) gl R 1.

0< ks iat sl
Noting that for k2+0,

1/2<g(x)R(&, n)<2  on supp ¢®(g(x)A(&, 7)),
we obtain (5. 6). Q.E.D.

REMARK. We have proved that X;€8%:;. Recall that by Definition 2.3
0,<1, that is
(5.7) 2lo(1—7)/c<1.
On account of (5.2) and (5.4) it is easy to see that (5.7) is valid.

We shall first see that the estimates with replaced u by %;u (j=1, 2) in
(4.1) and (4.2), hold, and prove that the estimate

(5.8) ILP, Xulo=C(|Pulot+lully), ueCy(R™)
holds.

PROPOSITION 5.2. Set v,=X(x, D,, Dy)u for ucC;y(R™). Then, we can find
a constant C, such that

(5.9 lg(x)<D > uille = Col Pvsllot-lvallo),

where k=2om(1—71), and for any 0<|B|<2m and any p>0 we can find C(y, B)
such that
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(5. 10) g s (x)<Dy*™ villo1p = pll Pusllo+C (g, Bllville.
Proor. From (5.2) and (5.4) it follows that
(5.11) mr+2om(1—7)—1=0.

For the brevity we write v=v,. Let ¢,(t) be a C>-function in [0, o) such
that

supp ¢s(1) C [0, 3), @x()=1 on [0, 2].
Set Xy(x, D)=¢:(g(x) h(0, 1)). Then we see X,(x, D,)v=v, since

Xs(x, Do) v(x, y)zge"“‘”xs(x, ) 0(x, p)dy

:Sei(x'$+y~7/))(3(x, 77)7(1(}(, &, n)udédﬁ

and Xy (x, 7)=1 on suppX,(x, & %). Using (5.11) and the fact that g(x)=
3{p> ¥ on supp Xs(x, ), we have

gy O /B Gy tom o] gsym]
=3 g™
Similarly, from (5.1) and (5.11) it follows that for 0<|B3|<2m
| g {p*™ 1P X5 | S Cpl gV P (™™ P g2 ™|
SCi(pymemipranzomaze| giizpym|
=Calg’*m™|.

In the second inequality we used the fact that 1/2—¢|B|=0 for |8|<2m since
o satisfies (5.2). Hence, using v=2X,v, we obtain

lg(x)<Dyp?m=tr2em=pl+ > g <D™ vl -ia

o< 1fZem
=C|g"* <D™ vl,.
From Conditions 1°), 2°) and 3°), clearly we have
lg*<Dy>™ vl5=(g(x)<Dy>*" v, v)
=CRe(Pv, v)+vl7)
<p|| Polig+Cllvl3.
Consequently we have (5.9) and (5. 10). Q.E.D.
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REMARK. By the condition (5.2), i.e.
o=1/2 when m=1
{0<o<{Z(m—f-l(m—l))}'1 when m=2,
we can choose 7 in (5.4) to satisfy (5.7) and (5. 11) simultaneously.

To get (5.8) and the estimates with replaced u by X,u in (4.1) and (4. 2),
we consider an operator p(x, y, D,, D,) which is obtained by modifying
p(x, v, D, Dy) in “a neighborhood of x=0" as follows: Set

p(x 3, & p=alx, y, &)+ (g(X) WE, P+X(x, & 7)) WE, 7)7b(x, 3, 1)
=a(x, y, &)+(x, & n)AE, n)b(x, ¥, 7).
Then, we have

PROPOSITION 5.3. P=p(x, y, D,, D,)E8¥ss and H(x, y, & 5) satisfies (H)-

condition, in the following sense:

i) There exists a constant Cy;>0 such that

(5.12) 16 (x, 3, & IZCoAE, )t for large €]+l
ii) For any a and B there exists a constant Cqp Such that
(5.13) 1DB(x, v, & p)/D(x, 3, & PISCap A, )P
for large [§]+]7],
where 0=, =, 1, Prys1r ** Pnyeng)y Pr=po=min(1, I/m)
and 0=(0y, **, Ony, 0, =+, 0), 0,=0v=2l0(1—7)/7.

PROOF. Using |A‘“?|<C,h2"'" and X,=S%1,5, it is easy to check 5 (x, v, &,
n)eS¥ss. When |&|=|n|™/! the inequality (5.12) is obvious. Indeed, from
Conditions 1°), 2°) and 3°)

B(x, 3, & 7I=Re f=Re a=Clg[= ¢ 2.

On the other hand, if |§|=|»|™"", then we have
Re n(§, )b (x, y, PZ{>*" P Re b2C<77>2"”z—g-2“.

From the definition of X, it follows that
1(x, & =g(x) R, n)+XAx, & 7)=1/2 in R, X R%q.

Hence (5.12) is valid in this case, too. We check (5.13) in dividing it into
two cases.
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1) The case x€Q,={x; g(x)h(&, 7)<2} : We have for any a« and B

(5.14) 1p&/D1<lal /PI+ E Coarprarl (TRTEI DGR/ D

|H

Let a=(a;, @) where a, and a, are multi-indices with respect to x and y,
respectively. Using (5.12) and noting that a{f=0 if |a,/#0 or |a,|>2l, the
first term on the right side is bounded by Ci™'*. By means of (5.1) and
g(x)=2h(&, n)™* on £,, we have

(T3] S Carmamoeso-ia,

If a"=(af, &) with |ay|>2m or |ai|>0, then b{$3=0. When a”=(0, af)
such that |af|<2m, we obtain

I(ih—l Ec};;;bgg:;/ﬂsc) 21(1=7)/t+5-B8' ~ ‘allmzm la"l 2-2

<C25-ﬁ— la’l =1 Ia'!/(mﬂ.

From (5.4) it follows that [/(mz)>1. Hence the second term on the right side
of (5.14) is bounded by CA%#-1a,

2) The case x&2,={x; g(x)h(&, n)>2}: Clearly we have p=p, so we
have for any a and B

~

1P |§IGE§§/PH‘ > Cﬁﬁlg(ﬁ)b(@ /bl

In the same way as in 1) the first term is bounded by Ci . Since g(x)E 3,
we may assume that |[g(x)|[<M. For a=(0, a,) such that |a,|<2m, we have
from (5.1)

g0 b /DI = Cgmo® glmiee /(S g+ gGppm)
§C(]W)g_”!"9']( (Iflzl+<7]>2m)1/21>(—1,/m) lagl

g C(M)g—alﬁ’lz-p'a.

Using that g(x)‘1<%h({:, 7) in £, the left side is bounded by Ca*Ff-ee

Thus the proposition is proved. Q.E.D.

In the consequence of Propositions 2.7 and we have a parametrix
Qe87% 5 such that for P85

(5. 15) I=QP+K, KeS-=,
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furthermore

{ Q:QOQD QOES;,%Z,B: QIES%,PJ;

(5.16) 3
c(Q)=p(x,y, & n)*  for large [&]+Iyl.

PROPOSITION 5.4. For any B and N>O0 there exists a constant C=C(8, N)
such that

(5.17) ”g(ﬂ)(x)<Dy>2mu”—I[Bl,zéc(”ﬁuné-ﬂ—I‘BI,Z‘I‘Hu”—N,i.)’ usCy(R™),

where

lul=( {26, priace, prrdgan)”.

ProOOF. In the same way as in the proof of [Proposition 5.3, by checking
the symbol of g s,(x)<{Dy>*™Q, we have g (x)<{D»*™Q,=8555. From (5.16)
it follows that g¢s,(x){D,»*™Q<8%% 5. By means of (5.15) we have

g<,6><Dy>2m:gﬁ/a><Dy>2mQP+K’, Ke§™.
Therefore, by [Proposition 2.5 we obtain (5. 17). Q.E.D.

COROLLARY. Set v,=Xyx, D, D))u for usCy(R"). Then, we can find C,
such that

(5.18) [ g(x)<Dy>*™ o)l = Coll| Prallo+ 1 v2ll0),
and for any p>0 and any B (#0) we can find C(u, B) such that

(5.19) l.gess(x) <D™ vell - 11 = pell Prallo+C (g, Bllvallo,  (18150).

PrROOF. Noting that ||, ,=|-]l, and that
Pr,=Pt,+K,X, for some K,e$,

from (5.17) with =0 we have (5.18). Using that |-].5=I]l-\5,2 and inter-
polation inequality |-lls5.5-1p, 2=l < llo,2+Cull - ll-x,2 (18]#0), we have (5.19)
from (5. 17). Q.E.D.

PROPOSITION 5.5. For any real s and N>O0 there exists a constant C=
C(s, N) such that

(5.20) ICP, Xdulls, :SCUIPullscy, 2t ull-x, 2, usCo(R™),
where

z'(,:lg}g (pj—08;)=min(1—-2le(1—7)/z, I/m).
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PrROOF. In the same way as in the proof of (5.13), by expanding the
symbol of P{HQ we get P{HQ<8354. It follows from (5. 15) that

I P@ulle, :=CU Pullssssopaatlll-n,2, wECF(R™).

If @a+5+0, then ﬁxjﬁg;EPX 3> (j=1,2) (mod $~). Consequently, for any

7@

a, B, @ and B (@+f+0) we obtain

G.21)  1PGLB Ul a=CUPYE tllsespmpoay Il oy, 2 uECT(R™).

J(ay J(a)

For the brevity we write X=X;. Using the expansion formula (2.10) in Pro-
position 2.4, we have from (5.21)

IL2, Qule,=C( 2 IPGLEul,+lul v, z)

0< e+ BI< Ny

IA

(5 1Pyl
0<|a§3[<N0 I PXE ull s 4. 5= poay 2t 1] v, 2

=C(_ 2 LB Pulss- a2

0< @t BI<Ng

HITP, KB ulss03-pra )+ Il -, 2)

= C(I|Pu“s“~'0,l+ 2 HP@) X(ﬁ+§) ul s+0-f-praty A

1= 1@ ¥FI<Ng & @
1€la+8I<Ng

+lul-x,z),  uSCFR™).

Here Ny=(Q2I/7+s+N)/z,. We apply (5.21) to the second term on the last side.
Repeating this procedure M times, we finally obtain

IEP, Xulaya= C(IPulliceyat 3 [ PAB U s a2

M<lafBi<MNg
+lul-x,z), uSCHR™).

If we take M so that 2//c+s—coM<—N, then we get (5. 20). Q.E.D.

REMARK. Clearly we obtain (5.8) from (5. 20).
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THE COMPLETION OF THE PROOF OF LEMMA 4.1. By [Proposition 5.2 and
Corollary| to [Proposition 5.4 we have for k=2om(1—7)>0

lg(x) <Dy~ % ullo
=lg() <D™ vyl +lg(x) <D™ vsllo

<C 2 (1Pl llv;lo)

<C(IPulot 3 ICP, 23ulatlvsl).

Using (5.8) and |v,|[,<Cllull, we obtain (4.1). Similarly, we have (4.2), too.
Q.E.D.
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