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A. Bensoussan and J.L. Lions ([1]) has revealed a relation between an optimal
stopping problem of an additive functional of a diffusion process and a certain
variational inequality. More specifically let $y(t)$ be the solution of the stochastic
differential equation:

(0.1) $\left\{\begin{array}{l}dy(t)=\sigma(y(t), t)dB_{t}+g(y(t), t)dt\\y(t_{0})=y_{0}.\end{array}\right.$

Then they showed that the continuous and strong solution of the following
variational inequality (0.2) is the solution of the optimal stopping problem:

$u(x, s)\equiv E_{xs}[\int_{s}^{*}e^{-\alpha(t- s)}C(y(t), t)dt+e^{-a(\not\in- s)}D(y(\tau b), \tau_{B}^{S})]$

$=\inf_{\tau_{1}}E_{x,s}[\int_{s}^{\tau_{s}}e^{-\alpha(t-s)}C(y(t), t)+e^{-a(r_{S}-s)}D(y(\tau_{s}), \tau_{s})]$ .

$(-(\frac{\partial u}{\partial t},$ $v-u)+\mathcal{E}_{t}(u, v-u)+\alpha(u, v-u)\geqq(C, v-u)$

(0.2)

1 $u\in \mathcal{D}[\mathcal{E}_{t}]$ such
$thatforv\leqq a11$

D.

$v\in \mathcal{D}[\mathcal{E}_{t}]$ such that $v\leqq D$

Here $A(t)$ is the generator of the diffusion process $y(t),$ $\mathcal{E}_{t}$ is the bilinear form
associated with $A(t)$ and $\mathcal{D}[\mathcal{E}_{t}]$ is the domain of $\mathcal{E}_{t}$ .

However it is in general not easy to show that the (weak) solution of (0.2)
is the continuous and strong one, namely, a continuous solution of

(0.3) $\left\{\begin{array}{l}-\frac{\partial u}{\partial t}+(\alpha-A(i))u-C\leqq 0\\\{-\frac{\partial u}{\partial t}+(\alpha-A(t))u-C\}(u-D)=0\\u\leqq D.\end{array}\right.$
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Some smoothness condition on $\sigma,$
$D$ are required in order to derive (0.3) from

(0.2) (see [2]).

In this paper, we take up a general symmetric, temporary homogeneous
Markov process and formulate an optimal stopping problem of a general addi-
tive functional. We then show that the weak solution of the variational in-
equality corresponding to (0.2) is just the solution of the optimal stopping prob-
lem of the additive functional. By virtue of the potential theory of the Markov
process and associated Dirichlet space ([3], [4], [5]) we can dispense with dif-
ficult argument on the regularities of the weak solution.

The author wishes to express deepest appreciation to Professor M. Fuku-
shima for his valuable advice and encouragement in whole work.

\S 1. Preliminaries.

Let $X$ be a locally compact Hausdorff space with countable base and $m$ be
a positive Radon everywhere dense measure on $X$. We denote a m-symmetric
standard process on $X$ by $M=\{\Omega, \mathcal{M}, \mathcal{M}_{t}, X_{t}, P_{x}, \theta_{t}, \zeta\}$ and its transition semi-
group and resolvent by $P_{t}$ and $R_{\alpha}$ respectively. We introduce a function space

$\mathcal{F}=\{u\in L^{2}(X;m);\lim_{t\downarrow 0}\div(u-T_{t}u, u)<\infty\}$

where $T_{t}$ is the $L^{2}$-semi-group induced by the transition semi-group $P_{t}$ of $j\gamma I$

and $(, )$ is a inner product in $L^{2}(X, m)$ :

$(u, v)=\int u(x)v(x)m(dx)$ .

$\mathcal{F}$ is also described by the $L^{2}$-Resolvent $G_{\alpha}$ induced by $R_{\alpha}$ as follows:

$\mathcal{F}=\{u\in L^{2} ; \lim_{\angle\leftrightarrow\infty}\alpha(u-\alpha G_{a}u, u)<\infty\}$ .

Then we can define a symmetric bilinear form $\mathcal{E}$ on $\mathcal{F}$ by the relation

$\mathcal{E}(u, v)=\lim\perp(u-T_{t}u, v)$ .
$t\downarrow 0$ $t$

In general a nonnegative symmetric bilinear form $\mathcal{E}^{0}$ defined on the product
$\mathcal{F}^{0}\times \mathcal{F}^{0}$ of a linear subspace $\mathcal{F}^{0}$ of $L^{2}$ is called a Dirichlet space if the follow-
ing $(\mathcal{E}.1)\sim(\mathcal{E}.3)$ hold:

$(\mathcal{E}.1)$ $\mathcal{F}^{0}$ is dense in $L^{2}$

$(\mathcal{E}.2)$ $\mathcal{F}^{0}$ is a closed linear subspace of $L^{2}$ with respect to the norm

$\sqrt{\mathcal{E}_{1}^{0}(u,u)}=\sqrt{\mathcal{E}^{0}(u,u)+(u,u)}$
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$(\mathcal{E}.3)$ if for $u\in \mathcal{F}^{0}$ and $v\in L^{2}$ there exists Borel functions $a,$ $\sim v$ such ihat
$u=\tilde{u}$ m-a. $e.,$ $ v=v\sim$ m-a. $e.,$ $|\sim v(x)|\leqq|\hat{\text{{\it \^{u}}}}(x)|$ for each $x\in X$ and $|\sim v(x)-\sim v(y)|\leqq|\hat{\text{{\it \^{u}}}}(x)$

$-a(y)|$ for each $x,$ $y\in X$, then $v\in \mathcal{F}^{0}$ and $\mathcal{E}^{0}(v, v)\leqq \mathcal{E}^{0}(u, u)$ .

In the present case $(\mathcal{F}, \mathcal{E})$ satisfies $(\mathcal{E}.1)\sim(\mathcal{E}.3)$ , so it called the Dirichlet space
associated with $M$.

In this paper we assume that $(\mathcal{F}, \mathcal{E})$ is $C_{0}$-regular, that is, $\mathcal{F}\cap C_{0}$ is uniformly
dense in $C_{0}(X)$ and $\mathcal{E}_{1}$ dense in $\mathcal{F}$ . Here $C_{0}(X)$ is a family of all continuous
functions on $X$ with compact support.

We now introduce some related notions and summarize the known results
necessary for the proof of our theorem.

DEFINITION 1. The capacity of a subset of $X$ is dePned as follows: For
open $A\subset X$

Cap $(A)=\left\{\begin{array}{ll}inf\{\mathcal{E}_{1}(u, u);u\in \mathcal{L}_{A}\} & \mathcal{L}_{A}\neq\phi\\\infty & \mathcal{L}_{A}=\phi,\end{array}\right.$

where $\mathcal{L}_{A}=$ { $u\in \mathcal{F};u\geqq 1$ m-a. $e$ . $(A)$ }. For general $B\subset X$

Cap $(B)=\inf$ {Cap $(A);B\subset A,$ $A$ is open}.

DEFINITION 2. A subset $B$ of $X$ with Cap $(B)=0$ is called almost pOlar.
”Quasi-everywhere” or “

$q$ . $e$ . will mean ”except on an almost polar set”.
1) Following three statements are equivalent for a subset $B$ of $X$ :
1. 1) Cap $(B)=0$ ,
1. 2) there exists a Borel set $B^{\prime}$ such that $B\subset B^{\prime}$ and $P.(\tau_{B^{t}}<\infty)=0$

m-a. $e$ . $X$,
1. 3) there exists a Borel set $B^{\prime}\supset B$ with $m(B^{\prime})=0$ satisfying

(1.3.1) $P_{x}$( $X_{t-}$ or $X_{t}\in B^{\prime}$ , for some $t\in[0,$ $\infty$)) $=0$ for each $x\in X-B^{\prime}$ .

Here $\tau_{B}--\inf\{t:X_{t}\in B\}$ (cf. [3], [4]).

DEFINITION 3. A Borel almost polar set $B^{\prime}$ satisfying (1.3) is called a pro-
per exceptional set.

Obviously $X-B^{\prime}$ is finely open if $B^{\prime}$ is proper exceptional.
DEFINITION 4. A function $f(x)$ on $X$ is said to be quasi-continuous provided

that for any $\epsilon>0$ there exists an open subset $G_{\epsilon}$ of $X$ such that Cap $(G_{\epsilon})<\epsilon$

and $f|_{X_{\Delta}-G_{\text{\’{e}}}}$ is continuous, where $\Delta$ is a one point compactification of $X$ and $f$

is considered as a function extended to $X_{\Delta}$ with $f(\Delta)=0$ .
$2^{o})$ Any function $f\in \mathcal{F}$ has its quasi-continuous version $f;f(x)=f\tilde{(}x)$

m-a. $e$ . and $f$ is quasi-continuous (cf. [3]).

From now on we use the expression $f$ for a quasi-continuous version of $f$.
$3^{o})$ If a function $f(x)$ is quasi-continuous, then there exists a proper excep-
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tional set $N$ such that $f(x)$ is finely continuous on $X-N$ (cf. [3]).
$4^{o})$ For each $\alpha>0$ , following five statements are equivalent for $u\in \mathcal{F}$ :
4. 1) $u\geqq 0,$ $e^{-at}T_{t}u\leqq u$ m-a. $e.$ ,
4. 2) $u\geqq 0,$ $\beta G_{\beta+\alpha}u\leqq u$ m-a. $e.$ , for each $\beta>0$ ,
$4^{o}$ . 3) $e.(u, v)\geqq 0$ for all $v\geqq 0,$ $\in \mathcal{F}$ ,
4. 4) there exists a unique positive Radon measure $\mu$ such that $\mathcal{E}_{\alpha}(u, v)$

$=\int v(x)\mu(dx)$ for all $v\in \mathcal{F}\cap C_{0}(X)$ ,

4 5) there exists a unique positive Radon measure $\mu$ such that $\mathcal{E}_{\alpha}(u, v)$

$=\int\sim v(x)\mu(dx)$ for all $v\in \mathcal{F}$ (cf. [3], [4]).

DEFINITION 5. If one of $(4^{o}.1)\sim(4^{o}.5)$ holds we call $u$ an almost $\alpha$-excessive
function. The positive Radon measure $\mu$ in $4^{O}$ . $4$) is called the measure of
finite energy. $u$ is denoted by $ U_{a}\mu$

We denote by $\mathfrak{M}$ a family of all positive Radon measure with finite energy:
DEFINITION 6. A function $A_{t}(\omega):[0, \infty)\times\Omega\leftrightarrow(-\infty, +\infty]$ is called

an additive functional provided that:

(A.1) $A_{t}(\omega)$ is $\mathcal{M}_{t}$-adapted

and there exist $\Lambda\in \mathcal{M}$ and an almost polar set $N$ such that $P_{x}(\Lambda)=1$ for each
$x\in X-N$ and following properties are satisfied for each $\omega\in\Lambda$ ;

(A.2) $A_{t}(\omega)$ is finite and right continuous in $t\geqq 0$ and has a
left limit in $ 0<t<\zeta$ ,

(A.3) $A_{t}(\omega)=A_{\zeta-}(\omega)$ , $ t\geqq\zeta$ ,

(A.4) $A_{t+s}(\omega)=A_{t}(\omega)+A_{s}(\theta_{t}\omega)$ , $t,$ $s\geqq 0$

$(A.5)$ $A_{0}(\omega)=0$ .
When we assume the following (A.2)’ in place of (A.2), $A$ is said to be con-
tinuous addrtive functional.

(A.2)’ $A_{t}(\omega)$ is finite and continuous in $t\geqq 0$ .
Additive functionals $A$ and $B$ are said to be equivalent if for each $t,$ $P_{x}(A_{t}$

$=B_{t})=1,$ $q$ . $e$ . $x$ .

We denote by $\leftrightarrow I$ a family of all additive functionals and by $A_{c}^{+}$ a family of
all non-negative continuous additive functionals.

5’) i) For each $\mu\in \mathfrak{M}$ there exists $A\in A_{c}^{+}$ such that $E_{x}[\int_{0}^{\infty}e^{-\alpha t}dA_{t}]$ is $a$

quasi-continuous version of $ U_{\alpha}\mu$ .
ii) When $\mu$ and $A$ are related as above $E_{x}[\int_{0}^{\infty}e^{-\alpha t}f(X_{t})dA_{t}]$ is a quasi-con-

tinuous version of $U_{\alpha}(f\mu)$ for each bounded Borel function $f$.
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iii) $A$ in (i) is uniquely determined by $\mu\in \mathfrak{M}$ up to the above mentioned
equivalence (cf. [5]).

\S 2. Statement of Theorem.

Let $\nu$ be a Radon measure such that

$\nu=\nu_{1}-\nu_{2}$ , $\nu_{1},$
$\nu_{2}\in \mathfrak{M}$ ,

then there exists an additive functional

$A_{t}=A_{t}^{1}-A_{t}^{2}$ , $A_{t}^{1},$ $A_{t}^{2}\in d_{c}^{+}$ ,

where $A_{t}$ (resp. $A_{t}^{2}$) is the unique non-negative continuous additive functionaI
whose $\alpha$-potential is a quasi-continuous version of $U_{\alpha}\nu_{1}$ (resp. $U_{\alpha}\nu_{2}$):

$E_{x}[\int_{0}^{\infty}e^{-\alpha t}dA_{t}^{i}]=U_{\alpha}\nu_{i}$ m-a. $e$ . $i=1,2$ .

We put $U_{\alpha}\nu=U_{\alpha}\nu_{1}-U_{\alpha}\nu_{2}$ , then $E_{x}[\int_{0}^{\infty}e^{-\alpha t}dA_{t}]$ is a quasi-continuous version of
$ U_{\alpha}\nu$ ;

(2.1) $ E_{x}[\int_{0}^{\infty}e^{-\alpha t}dA_{t}]=U_{\alpha}\nu$ m-a. $e$ .

Now our problem is the following.
(O.S.P.) “Find a function $u$ such that there exists a proper exceptional set $N$

and a Borel finely closed subset $B$ of $X-N$ for which

(2.2) $u(x)\equiv E_{x}[\int_{0}^{\tau_{B}}e^{-\alpha t}dA_{t}]=\inf_{\tau}E_{x}[\int_{0}^{\tau}e^{-\alpha t}dA_{t}]$ for each $x\in X-N$ ,

where $\alpha$ is a fixed positive constant, $\tau$ ranges over all stopping times of $M$ and
$T_{B^{-\inf}}^{-}\{t;X_{t}\in B\}$ . We call $B$ in (2.2) an optimal region. The solution $u_{1}$ and
$u_{2}$ of (O.S.P.) are said to be equivalent if $u_{1}=u_{2}q$ . $e$ .

Our concern is the relation between the above $(0.S.P.)$ and the following
variational inequality (2.3).

(2.3) $\left\{\begin{array}{ll}u\in \mathcal{R}, & \\\mathcal{E}_{\alpha}(u, v-u)\geqq\langle\nu, \tilde{v}-\hat{\text{{\it \^{u}}}}\rangle & for all v\in \mathcal{R},\end{array}\right.$

where $\mathcal{R}=$ { $v\in \mathcal{F};v\leqq 0$ m-a. $e.$ }, and

$\langle\nu, \tilde{v}-\tilde{u}\rangle=\int\nu(dx)\{\sim v(x)-\tilde{u}(x)\}$ .
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We note that (2.3) has a unique solution. Indeed, (2.3) is rewritten as follows:

$\left\{\begin{array}{ll}\mathcal{E}_{\alpha}(u-U_{\alpha}\nu, v-u)\geqq 0 & for all v\in \mathcal{R},\\u\in \mathcal{R} & \end{array}\right.$

which is also equivalent to

(2.4) $\{\mathcal{E}_{\alpha}(u-U_{\alpha}\nu u\in \mathcal{R},u-U_{\alpha}\nu)\leqq \mathcal{E}_{\alpha}(v-U_{\alpha}\nu, v-U_{\alpha}v)$

for all $v\in \mathcal{R}$ ,

because $\mathcal{R}$ is convex. Now we can see that there exists $a$ unique solution of
(2.4) by making use of the Parallelogram Law and the closedness of the convex
set $\mathcal{R}$ .

THEOREM. There exists a unique (up to the equivalence specified above) solu-
tion of $(0.S.P.)$ and any quasi-continuous version of the solution of the variational
inequality (2.3) is the solution.

\S 3. Proof of Theorem.

We prepare $a$ lemma which is essentially due to A. Bensoussan and J. L.
Lions ([1]).

LEMMA. If there exists a proper exceptional set $N$ and some Borel finely
closed subset $B$ of $X-N$ for which a function $u(x)$ satisfies the following $(3.1)\sim$

\langle$3.4$), then $u$ is a solution of (O.S. $P.$) $.\cdot$

(3.1) $u(x)\leqq 0$ for any $x\in X-N$

\langle 3.2) $u(x)=0$ for any $x\in B$

(3.3) $u(x)\leqq E_{x}[\int_{0}^{\tau}e^{-\alpha t}dA_{t}+e^{-\alpha\tau}u(X_{\tau})]$ for any $x\in X-N$

and for any stoPping time $\tau$

\langle 3.4) $u(x)=E_{x}[\int_{0}^{\tau}e^{-\alpha t}dA_{t}+e^{-\alpha\tau}u(X_{\tau})]$ for any $x\in X-N$

and for any stoppjng time $\tau\leqq\tau_{B}$ .
PROOF. It follows from (3.1) and (3.3) that

(3.5) $u(x)\leqq E_{x}[\int_{0}^{\tau}e^{-\alpha t}dA_{t}]$ for any $x\in X-N$ and for any $\tau$ .

Since $B$ is finely closed

$P_{x}(X_{\tau_{B}}\in B;\tau_{B}<\infty)=P_{x}(\tau_{B}<\infty)$ for any $x\in X-N$ .
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Then by (3.2)
$E_{x}[e^{-\alpha\tau_{B}}u(X_{\tau_{B}})]=0$ .

Therefore we obtain by (3.4)

(3.6) $u(x)=E_{x}[\int_{0}^{\tau_{B}}e^{-\alpha t}dA_{t}]$ for any $x\in X-N$ .

(3.5) and (3.6) show that $u(x)$ is $a$ solution of (O.S.P.).

Now we proceed to the proof of our theorem.

At first we note that if $u_{1}(x)=E_{x}[\int_{0}^{\tau_{B_{1}}}e^{-\alpha t}dA_{t}]$ and $u_{2}(x)=E_{x}[\int_{0}^{\tau_{B_{2}}}e^{-\alpha t}dA_{t}]$

are solutions of (O.S.P.), then $u_{1}(x)=u_{2}(x)q$ . $e$ . because $u_{1}(x)\leqq E_{x}[\int_{0}^{\tau_{B_{2}}}e^{-at}dA_{t}]$

$=u_{2}(x)q.e$ . and $u_{2}(x)\leqq E_{x}[\int_{0}^{\tau_{B_{1}}}e^{-at}dA_{t}]=u_{1}(x)q.e$ .

We further note that if $u(x)=E_{x}[\int_{0}^{\tau_{B}}e^{-\alpha t}dA_{t}]$ is $a$ solution of (O.S.P.) and
$\overline{u}(x)=u(x)q$ . $e$ . then $\overline{u}(x)$ is also a solution of (O.S.P.). To prove this we de-
note by $N_{1}$ a proper exceptional set of $u(x)$ and put $N_{2}=\{x;u(x)\neq\overline{u}(x)\}$ .
Since $N_{2}$ is almost polar, there exists $a$ proper exceptional set $N_{2}^{\prime}$ such that

$N_{2}^{\prime}\supset N_{1}\cup N_{2}$ . Then for each $x\in X-N_{2}^{\prime},\overline{u}(x)=E_{x}[\int_{0}^{\tau_{B}}e^{-\alpha t}dA_{t}]$ . On the other

hand $B^{\prime}=B-N_{2}^{\prime}$ is $a$ Borel finely closed subset of $X-N_{2}^{\prime}$ and $E_{x}[\int_{0}^{\sim_{B}}e^{-\alpha t}dA_{t}]$

$=E_{x}[\int_{0}^{\tau_{B^{\prime}}}e^{-\alpha t}dA_{t}]$ for each $x\in X-N_{2}^{\prime}$ . Therefore $\overline{u}(x)$ is a solution of (O.S.P.).

Now it suffices to show that some quasi-continuous version of the solution
of the variational inequality (2.3) is $a$ solution of (O.S.P.). Take the solution $u$

of (2.3) which is equivalent to the following double relations;

$\{\mathcal{E}_{\alpha}(u\mathcal{E}_{\alpha}(u, u)=\langle\nu,\hat{\text{{\it \^{u}}}}\rangle v)\geqq\langle\nu,\sim v\rangle$

.
for all $v\in \mathcal{R}$

Then we have

$\left\{\begin{array}{ll}(3.7) & \mathcal{E}_{\alpha}(U_{a}\nu-u, -v)\geqq 0 for all v\in \mathcal{R}\\(3.8) & \mathcal{E}_{a}(U_{\alpha}\nu-u, u)=0.\end{array}\right.$

(3.7) shows that $g\equiv U_{\alpha}\nu-u$ is almost $\alpha$-excessive. Therefore there exists
uniquely $a$ non-negative continuous additive functional $A_{t}^{g}$ such that its $\alpha$-potential

$E_{x}=[\int_{0}^{\infty}e^{-\alpha t}dA_{t}^{g}]$ is a quasi-continuous version of $g$. Now we put

(3.9) $u^{*}(x)=E_{x}[\int_{0}^{\infty}e^{-\alpha t}dA_{t}]-E_{x}[\int_{0}^{\infty}e^{-\alpha t}dA_{t}^{g}]$ , $q$ . $e$ . $x$ ,
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and we will show that $u^{*}$ satisfies the conditions of Lemma.
Since $u^{*}(x)$ is a quasi-continuous version of $u$ and $u(x)\leqq 0$ m-a. $e.$ , we have

(3.10) $u^{*}(x)\leqq 0$ $q$ . $e$ .

On the other hand, for all stopping time $\tau$ ,

(3.11) $u^{*}(x)=E_{x}[\int_{0}^{\tau}e^{-\alpha t}dA_{t}]+E_{x}[e^{-\alpha\tau}E_{x_{\tau}}[\int_{0}^{\infty}e^{-\alpha t}dA_{t}]]$

$-E_{x}[\int_{0}^{\tau}e^{-\alpha t}dA_{t}^{g}]-E_{x}[e^{-\alpha\rightarrow}E_{x_{\tau}}[\int_{0}^{\infty}e^{-\alpha t}dA_{t}^{g}]]$

$=E_{x}[\int_{0}^{r}e^{-\alpha t}dA_{t}+e^{-\alpha\tau}u^{*}(X_{r})]-E_{x}[\int_{0}^{r}e^{-\alpha t}dA_{t}^{g}]$ $q$ . $e$ .

Here $A_{t}^{g}$ is a non-negative additive functional, so

$E_{x}[\int_{0}^{\tau}e^{-\alpha t}dA_{t}^{g}]\geqq 0$
$q$ . $e$ .

Therefore we get

(3.12) $u^{*}(x)\leqq E_{x}[\int_{0}^{r}e^{-\alpha t}dA_{t}+e^{-m}u^{*}(X_{\tau})]$ $q$ . $e$ .

Denote by $\mu$ $a$ positive Radon measure with finite energy corresponding to
the excessive function $g$ :

$\mathcal{E}_{\alpha}(g, v)=\int\mu(dx)\sim v(x)$ for all $v\in \mathcal{F}$ .

Then from (3.8) it follows that

(3.13) $\int\mu(dx)u^{*}(x)=0$ .

Since $u^{*}(x)$ is quasi-continuous, there exists a proper exceptional set $N^{0}$ such
that $u^{*}(x)$ is Borel finely continuous on $X-N^{0}$ . Therefore the set

$B=\{x\in X-N^{0} ; u^{*}(x)=0\}$

is a Borel finely closed subset of $X-N^{0}$ . From (3.10) and (3.13) it follows that
$\mu(B^{c})=0$ and so $U_{\alpha}(I_{B^{C}}\mu)=0$ m-a. $e$ . On the other hand

$E_{x}[\int_{0}^{\infty}e^{-\alpha t}I_{B^{C}}(X_{t})dA_{t}^{g}]=U_{\alpha}(I_{B^{C}}\mu)$

The left hand side being quasi-continuous, we get
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$E_{x}[\int_{0}^{\infty}e^{-\alpha t}I_{B^{C}}(X_{t})dA_{t}^{g}]=0$ $q.e$ .

For all stopping time $\tau$ with $\tau\leqq\tau_{B}$ ,

$0\leqq E_{x}[\int_{0}^{r}e^{-\alpha t}dA_{t}^{g}]\leqq E_{x}[\int_{0}^{\tau_{B}}e^{-\alpha t}dA_{t}^{g}]$

$\leqq E_{x}[\int_{0}^{\infty}e^{-\alpha t}I_{B^{c}}(X_{t})dA_{t}^{g}]$ $q.e$ .

Hence we get

$E_{x}[\int_{0}^{\tau}e^{-\alpha t}dA_{t}^{g}]=0$ $q.e$ .

Thus we obtain by (3.11)

(3.14) $u^{*}(x)=E_{x}[\int_{0}^{\tau}e^{-\alpha t}dA_{t}+e^{-\alpha\tau}u^{*}(X_{r})]$ $q.e$ .

for all stopping time $\tau\leqq\tau_{B}$ .
Denote by $N^{*}$ a common proper exceptional set for (3.10), (3.12) and (3.14)

including $N_{0}$ . Put
$B^{*}=\{x\in X-N^{*}, u^{*}(x)=0\}$ .

Obviously $B^{*}$ is $a$ Borel finely closed subset of $X-N^{*}$ and (3.10) and (3.12)
hold for each $x\in X-N^{*}$ , so it only remains to show for each stopping time $\tau$

with $\tau\leqq\tau_{B^{*}}$

(3.14); $u^{*}(x)=E_{x}[\int_{0}^{\tau}e^{-\alpha t}dA_{t}+e^{-\alpha\tau}u^{*}(X_{r})]$

for each $x\in X-N^{*}$ . To see this, put $\tau^{\prime}=\tau\wedge\tau_{B}$ . $ThenP_{x}(\tau^{\prime}=\tau)=1$ for all $ x\in$

$X-N^{*}$ because $B-B^{*}\subset N^{*}$ and $N^{*}$ is proper exceptional. Therefore (3.14)

follows from (3.14). In view of our lemma, (3.10), (3.12) and (3.14) show that
$u^{*}(x)$ is $a$ solution of O.S.P. with a proper exceptional set $N^{*}$ and an optimal
region $B^{*}$ . $q$ . $e$ . $d$ .

REMARK. The same procedure as above applies to the following generalized
(O.S.P.). “Find $\rho(x)$ such that

$\rho\equiv E_{x}$

for each $x\in X-N$, with $a$ proper exceptional set $N$ and some finely closed
subset $B$ of $X-N$. Here $\psi$ is a finely continuous function belonging to $\mathcal{F}$ .
In the same way as the above lemma we can assert that if $\rho$ satisfies the fol-
lowing $(R.1)\sim(R.4)$ for a proper exceptional set $N$ and some finely closed subset
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$B$ of $X-N$, then $\rho$ is the solution of the present problem:

(R.1) $\rho(x)\leqq\psi(x)$ for each $x\in X-N$

(R.2) $\rho(x)=\psi(x)$ for each $x\in B$

(R.3) $\rho(x)\leqq E_{x}[\int_{0}^{\tau}e^{-\alpha t}dA_{t}+e^{-\alpha_{\vee}^{-}}\rho(X_{r})]$

for each $x\in X-N$ and for all stopping time $\tau$

(R.4) $\rho(x)=E_{x}[\int_{0}^{\tau}e^{-\alpha t}dA_{t}+e^{-\alpha\tau}\rho(X_{r})]$

for each $x\in X-N$ and for all stopping time $\tau\leqq\tau_{B}$ . The present counterpart of
(2.3) is the following variational inequality

(R.5) $\left\{\begin{array}{ll}\mathcal{E}_{\alpha}(u+\psi, v-u)\geqq\langle\nu, \tilde{v}-\tilde{u}\rangle & for all v\in \mathcal{R}\\u\in \mathcal{R}. & \end{array}\right.$

Then we can see by the similar argument as the above proof of our theorem
that $\tilde{\rho}=\tilde{u}+\psi$ is the solution of the present problem. Here $\tilde{u}$ is any quasi-con-
tinuous version of the solution $u$ of (R.5).
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