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A. Bensoussan and J.L. Lions ([1]) has revealed a relation between an optimal
stopping problem of an additive functional of a diffusion process and a certain

variational inequality. More specifically let y(¢) be the solution of the stochastic
differential equation :

{ dy()=0(y(t), HdB,;+g(y(), t)dt
y(to):}'o .

0.1

Then they showed that the continuous and strong solution of the following
variational inequality (0.2) is the solution of the optimal stopping problem:

z.S
u(, 9= B | 767 PC(0), Ddt+e 2D (3(e3), 75)|

=inf Ex;s[srse—a“_wc(y(t); t)_i'e-a(r’-S)D(y(Ts), Ts)] .
T $

( ou ,
‘ —5 v—u)—l—é’t(u, v—u)t+a(u, v—u)=(C, v—u)
(0.2) 1 for all ve D[&,] such that v<D
use P[&,] such that v=D.

Here A(t) is the generator of the diffusion process y(¢), & is the bilinear form
associated with A(f) and 9[&,] is the domain of &,.

However it is in general not easy to show that the (weak) solution of (0.2)
is the continuous and strong one, namely, a continuous solution of

-——g—?*nL(a—A(t))u—CéO

0.3) {—%t“-ﬂa—A(z))u—c}(u—D):O

us=D.,.
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Some smoothness condition on ¢, D are required in order to derive from
0.2) (see [2].

In this paper, we take up a general symmetric, temporary homogeneous
Markov process and formulate an optimal stopping problem of a general addi-
tive functional. We then show that the weak solution of the variational in-
equality corresponding to (0.2) is just the solution of the optimal stopping prob-
lem of the additive functional. By virtue of the potential theory of the Markov
process and associated Dirichlet space ([3], [4], [5]) we can dispense with dif-
ficult argument on the regularities of the weak solution.

The author wishes to express deepest appreciation to Professor M. Fuku-
shima for his valuable advice and encouragement in whole work.

§ 1. Preliminaries.

Let X be a locally compact Hausdorff space with countable base and m be
a positive Radon everywhere dense measure on X. We denote a m-symmetric
standard process on X by M={Q, M, M, X,, P, 0;,{} and its transition semi-
group and resolvent by P; and R, respectively. We introduce a function space

EF:{uEL“’(X; m); 1}5101 %(u—Ttu, u)<00}

where T, is the L”-semi-group induced by the transition semi-group P, of M
and (,) is a inner product in L2(X, m):

(u, v):Su(x)v(x)m(dx) .

& is also described by the L%*Resolvent G, induced by R, as follows:

F={usl?; lim alu—aGu, u)<oo} .

a—co

Then we can define a symmetric bilinear form € on & by the relation
.1
E(u, v)=lim —w—"T,u, v) .
tio

In general a nonnegative symmetric bilinear form &° defined on the product
F'X F° of a linear subspace ZF° of L? is called a Dirichlet space if the follow-
ing (€.1)~(&.3) hold :

&1 F° is dense in L?

e.2) F 1s a closed linear subspace of L* with respect to the norm

VN u, w=~&u, w)+u, u)
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(€.3) if for ueZ°® and ve L® there exists Borel functions #, v such that
u=f m-a.e., v=0 m-a.e., |V x)| =Z|4(x)| for each x€X and |9(x)—0(y)| =|8(x)
—#(y)| for each x,ys X, then veF°® and v, v) <E(u, u).

In the present case (&, &) satisfies (£.1)~(&.3), so it called the Dirichlet space
associated with M.

In this paper we assume that (Z, &) is Cy-regular, that is, ¥\ C, is uniformly
dense in Co(X) and &, dense in &. Here C,(X) is a family of all continuous
functions on X with compact support.

We now introduce some related notions and summarize the known results
necessary for the proof of our theorem. _

DEFINITION 1. The capacity of a subset of X is defined as follows: For
open ACX

inf {&,(u, w); us L4} La#F¢

Cap (A= =g

where L,={usF; u=1 m-a.e. (A)}. For general BCX
Cap (B)=inf {Cap (4); BC A, A is open} .

DEFINITION 2. A subset B of X with Cap (B)=0 is called almost polar.
“Quasi-everywhere” or “q.e.” will mean “except on an almost polar set”.

1°) Following three statements are equivalent for a subset B of X:

1°. 1) Cap(B)=0,

1°. 2) there exists a Borel set B’ such that BCB' and P (rz<0)=0
m-a. e. x,

1°. 3) there exists a Borel set B’DOB with m(B")=0 satisfying

(1°.3.1) P.(X,_ or X,eB’, for some t=[0, 0))=0 for each x€ X—F'.

Here rz=inf {t: X,eB} (cf. [3], [4D.

DEFINITION 3. A Borel almost polar set B’ satisfying (1°.3) is called a pro-
per exceptional set.

Obviously X—B’ is finely open if B’ is proper exceptional.

DEFINITION 4. A function f(x) on X is said to be quasi-continuous provided
that for any &>0 there exists an open subset G, of X such that Cap(G.)<e
and f|x,-c, is continuous, where 4 is a one point compactification of X and f
is considered as a function extended to X4 with f(4)=0.

2°) Any function fE€F has its quasi-continuous version f: f(x)= F(x)
m-a.e. and f is quasi-continuous (cf. [3]).

From now on we use the expression 7 for a quasi-continuous version of f.

3°) If a function f(x) is quasi-continuous, then there exists a proper excep-
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tional set NV such that f(x) is finely continuous on X—N (cf. [3]).
4°) For each a>0, following five statements are equivalent for =g :
4°. 1) u=0, e*Tw=<u m-a.e.,
4°. 2) uz=0, BGsiau=u m-a.e., for each >0,
4°, 3) & u, v)=0 for all v=0, €7,
4°. 4) there exists a unique positive Radon measure g such that &,(u, v)

:Sv(x);,e(dx) for all ve FNC(X),
4°. 5) there exists a unique positive Radon measure g such that &,(u, v)
355(x)‘u(a'x) for all veg (cf. [3], [4]).

DEFINITION 5. If one of (4°.1)~(4°.5) holds we call u an almost a-excessive
function. The positive Radon measure g in 4°. 4) is called the measure of
finite energy. u is denoted by U,p.

We denote by I a family of all positive Radon measure with finite energy :

DEFINITION 6. A function A (w): [0, c0)X 2 A~n— (—00, 4-00] is called
an additive functional provided that:

(A1) Aw) is Ms-adapted

and there exist A€M and an almost polar set N such that P,(A)=1 for each
xeX—N and following properties are satisfied for each wed;

(A.2) Alw) is finite and right continuous in t=0 and has a
left limit in 0<t<C,

A3  Alw)=A(w), t=C,
(A4) Ac+s(w):Az(w)+As(0cw> ’ t, s=0
(A.5) Alw)=0.

When we assume the following (A.2)’ in place of (A.2), A is said to be con-
tinuous additive functional.

(A.2) Ayw) is finite and continuous in t=0.

Additive functionals A and B are said to be equivalent if for each t, P,(A,
=B,)=1, q.e. x.

We denote by A a family of all additive functionals and by 4} a family of
all non-negative continuous additive functionals.

5°) i) For each p&M there exists A=A such that EZ[S:oe‘“‘dAt] is a
quasi-continuous version of Uy
ii) When g and A are related as above E,[S:e‘“tf(Xz)dAt] is a quasi-con-

tinuous version of U,(fu) for each bounded Borel function f.
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iii) A in (i) is uniquely determined by p<Pt up to the above mentioned

equivalence (cf. [5]).

§2. Statement of Theorem.
Let v be a Radon measure such that
Yy=y,;—Y,, v, v, €M,
then there exists an additive functional
A=Al—A;, Al Aledd,
where A, (resp. A} is the unique non-negative continuous additive functional

whose a-potential is a quasi-continuous version of Uy, (resp. Uyy,):

Ex[gwe““‘dA%:l:U“vi mea.e. i=1, 2.

0

We put Upy=U,v,—U,v,, then ExU e‘“‘dAt] is a quasi-continuous version of
0
Uy

@.1) Ex[gje*“‘dAt]:Uav ma.e.

Now our problem is the following.
(0.S.P.) “Find a function u such that there exists a proper exceptional set N
and a Borel finely closed subset B of X—N for which
@) ww=E||ewda]=int B[ cwda]  for each xeX—N,
where « is a fixed positive constant, z ranges over all stopping times of M and
rp=inf {t; X,=B}.” We call B in [2.2) an optimal region. The solution u, and
u, of (O.S.P.) are said to be equivalent if u,=u, q.e.

Our concern is the relation between the above (O.S.P.) and the following
variational inequality (2.3).

ueR,
(2.3)
Elu, v—u)={y, 7—1i) for all veR,

where R={veTF; v<0 m-a.e.}, and

W, §—ﬁ>:Su(dx){i/'(x)—ﬁ(x)} .
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We note that has a unique solution. Indeed, is rewritten as follows:

t Elu—Uyy, v—u)=0 for all veR,

ueR

which is also equivalent to

2.4 [ Clu—Uy, u—U )28 (v—Uy, v—U_,v) for all veR,

UER,

because R is convex. Now we can see that there exists a unique solution of
by making use of the Parallelogram Law and the closedness of the convex
set R.

THEOREM. There exists a unique (up to the equivalence specified above) solu-
tion of (O.S.P.) and any quasi-continuous version of the solution of the variational
inequality (2.3) is the solution.

§3. Proof of Theorem.

We prepare a lemma which is essentially due to A. Bensoussan and ].L.
Lions ([1J).

LEMMA. If there exists a proper exceptional set N and some Borel finely
closed subset B of X—N for which a function u(x) satisfies the following (3.1)~
(3.4), then u is a solution of (O.S.P.):

3.1 u(x)=0 for any x€X—N
(3.2) u(x)=0 for any x€B
(3.3) u(x)§ExU:e'“‘dAt—Fe““’u(XT)] for any x€X—N

and for any stopping time ¢
3.4) u)=E| e dA+euXd|  for any xeX—N

and for any stopping time tv=7p.
PrOOF. It follows from and that

{3.5) u(x)§Ez[S:e“”dAt] for any x€X—N and for any z.
Since B is finely closed

PAX.,€B; 75<00)=P (t5< 0) for any xX—N.
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Then by (3.2)
E [e*Bu(X.5)]1=0.

Therefore we obtain by (3.4)
TB _
(3.6) u(x)—:E,[So e “‘dAt] for any x€X—N.

(3.5) and show that u(x) is a solution of (O.S.P.).

Now we proceed to the proof of our theorem.

At first we note that if ul(x):Ex[S:Ble‘“‘dAc] and uz(x):Ex[S:Bze'“tdAt]
are solutions of (0.S.P.), then u,(x)=u,(x) q.e. because ul(x)gEzU:Bze'“‘dAt]
=u,(x) q.e. and uz(x)§Ex[ﬂBle'“‘dA,]:u1(x) gq.e.

We further note that if u(x):ExU:Be'“tdAt] is a solution of (O.S.P.) and

a(x)=u(x) q.e. then @(x) is also a solution of (0.S.P.). To prove this we de-
note by N,; a proper exceptional set of u(x) and put N,={x; u(x)##(x)}.
Since N, is almost polar, there exists a proper exceptional set N; such that

N/ON,UN,. Then for each xeX— N, ﬁ(x):EI[SZBe‘“"dAt]. On the other

hand B’=B— N} is a Borel finely closed subset of X—Nj and ExUTEe“"‘dAt]
0

:Ex[ﬂye‘“td/lt] for each x= X—N{. Therefore #(x) is a solution of (O.S.P.).

Now it suffices to show that some quasi-continuous version of the solution
of the variational inequality is a solution of (O.S.P.). Take the solution u
of which is equivalent to the following double relations;

{ Elu, v)={y, V> for all ve®
Ealu, wy=<y, i) .
Then we have

3.7 ELlUpw—u, —v)=0 for all veR
{ (3.8) EUy—u, w)=0.

(3.7) shows that g=U,v—u is almost a-excessive. Therefore there exists
uniquely a non-negative continuous additive functional A€ such that its a-potential

Ez:[s e""a’A%’] is a quasi-continuous version of g. Now we put
0

3.9) u*(x):EZ[S:e"“‘dAt] —Ex[gje-mdA«g] . qe x,
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and we will show that u* satisfies the conditions of
Since u*(x) is a quasi-continuous version of u# and u(x)=<0 m-a.e., we have

(3.10) u*(x)=0 g.e.

On the other hand, for all stopping time =,

@3.11) WH(x)=E, LS:e'“‘dAt]—l—Ex[e”“’E,,[sje‘“ﬁdAt]]

—E, _S:e'“‘d/‘lf] —Ex[e‘“’EI,[Swe““ldA‘?]]

0

—F, Sre‘“td/lﬁ—e'“’u*()(r)]—EI[S;e"“‘dAf] a@e.

LJO

Here A¢ is a non-negative additive functional, so
EI[S:e““tdAf] =0 q.e.

Therefore we /get

(3.12) w(ZE| e da st X)) e

Denote by g a positive Radon measure with finite energy corresponding to
the excessive function g:

el g, v):Sp(dx)ﬁ(x) for all vEF .
Then from (3.8) it follows that
(3.13) S w(dxu*(x)=0.

Since u*(x) is quasi-continuous, there exists a proper exceptional set N° such
that u*(x) is Borel finely continuous on X—N° Therefore the set

B={xeX—N°; u*(x)=0}

is a Borel finely closed subset of X—N° From [3.10) and [3.13) it follows that
(B9)=0 and so U, (Ip p)=0 m-a.e. On the other hand

Ex[gje-%c (X)dAF|=Udly ) mea.e.

The left hand side being quasi-continuous, we get
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Ez[gje"“‘lgc (X)) dA«g]:o a.e.
For all stopping time 7 with 7<7p,

0= B,| | edaf] gEZ[S:Be‘“‘dAf]

gExU:oe‘“‘IBc (X,) dAf’] g.e.
Hence we get
E, ;Sre‘“‘dAf’]:O q.e.
Thus we obtain by

(3.14) w¥(x)=E, S:e‘“tdAt—l—e‘“’u*(X,)] Le.

for all stopping time 7=<7p.
Denote by N* a common proper exceptional set for (3.10), [(3.12) and [(3.14)
including N,. Put

B*={xe X—N*, u*(x)=0}.

Obviously B* is a Borel finely closed subset of X—N* and [3.10) and [(3.12)
hold for each x& X—N%*, so it only remains to show for each stopping time 7
with Téfgu

w(n)=E| |l taA teewn(x)]
for each xe X—N*. To see this, put c’=zA7s. Then P (z'=17)=1 for all x€
X—N* because B—B*CN* and N* is proper exceptional. Therefore [3.14)
follows from [3.14). In view of our lemma, [3.10), [3.12) and [3.14Y show that
u*(x) is a solution of O.S.P. with a proper exceptional set N* and an optimal
region B*. g.e.d.
REMARK. The same procedure as above applies to the following generalized
(O.S.P.). “Find p(x) such that

p(x)EEx[S:Be'“‘dAt—{—e“"?Bg[;(XTB)]:inf EI[S:e‘“‘dAt—I—e‘“Tgb(Xr)}
for each xeX—N, with a proper exceptional set N and some finely closed
subset B of X—N.” Here ¢ is a finely continuous function belonging to <.

In the same way as the above lemma we can assert that if p satisfies the fol-
lowing (R.1)~(R.4) for a proper exceptional set N and some finely closed subset
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B of X—N, then p is the solution of the present problem:

(R.1) p(x)=¢(x) for each x€ X—N
(R.2) p(x)=¢(x) for each x=B
(R3) p(x)gExU:e’“‘dAt—i—e‘“’p(X,)]

for each x X—N and for all stopping time =
(R4) P(X):Ex[gze'“td/lt—ke‘“’p(Xr)]

for each xe X—N and for all stopping time r=t3. The present counterpart of
2.3) is the following variational inequality

Edut+¢, v—u)=Ly, 11 for all veR
(R.5)

ueR.

Then we can see by the similar argument as the above proof of our theorem
that g=#4¢ is the solution of the present problem. Here # is any quasi-con-
tinuous version of the solution u of (R.5).

References

[1] A. Bensoussanand J.L. Lions, Problémes de temps d’arrét optimal et inéquations
variationelles paraboliques, Applicable Analysis, 3 (1973), 267-294.

[2] A. Friedman, Regularity theorems for variational inequalities in unbounded do-
mains and applications to stopping time problems, Arch. Rational Mech. Anal., 52
(1973), 134-160.

[3] M. Fukushima, Dirichlet Spaces and Markov Processes, Kinokuniya, Tokyo, 1975,
(in Japanese).

[4] M.L. Silverstein, Symmetric Markov Processes, Lect. Notes in Math. 426, Sprin-
ger-Verlag, 1974.

[5] M. Fukushima, On additive functionals admitting exceptional set, to appear.

Hideo NaGAI

Department of Mathematics
Faculty of Science

Tokyo Metropolitan University
Fukazawa-cho, setagaya-ku
Tokyo, Japan



	\S 1. Preliminaries.
	\S 2. Statement of Theorem.
	THEOREM. There ...

	\S 3. Proof of Theorem.
	References

