Trotter's product formula for nonlinear semigroups generated by the subdifferentials of convex functionals

By Tosio Kato* and Kyûya Masuda

(Received June 9, 1977)

1. Introduction.

It was proved in $[1,2]$ that

$$
\begin{equation*}
s-\lim _{n \rightarrow \infty}\left[e^{-(t / \pi) A_{2}} e^{-(t / n) A_{1}}\right]^{n}=e^{-t A^{\prime}} P^{\prime}, \quad t>0, \tag{1.1}
\end{equation*}
$$

whenever A_{1}, A_{2} are nonnegative selfadjoint operators in a Hilbert space H (with no restriction on their domains). Here P^{\prime} is the orthogonal projection of H onto the subspace H^{\prime} spanned by $D^{\prime}=D\left(A_{1}^{1 / 2}\right) \cap D\left(A_{2}^{1 / 2}\right)$ and A^{\prime} is the form sum of A_{1}, A_{2} (i. e. the selfadjoint operator in H^{\prime} associated with the denselydefined, closed quadratic form $\left\|A_{1}^{1 / 2} u\right\|^{2}+\left\|A_{2}^{1 / 2} u\right\|^{2}$).

The purpose of the present paper is to prove a nonlinear analogue of (1.1). As a natural generalization of a nonnegative selfadjoint operator, A_{j} will be replaced by the subdifferential $\partial \varphi_{j}$ of a lower semicontinuous, convex function $\varphi_{j} \equiv \equiv^{\infty}$ on H to $\left.]-\infty,+\infty\right]$; $-\partial \varphi_{j}$ generates a semigroup $\left\{e^{-t \partial \varphi_{j}}\right\}$ of nonlinear nonexpansive operators on $E_{j}=c l . D\left(\varphi_{j}\right)$. (For these notions see section 2.) Moreover, we shall admit any finite number N of such semigroups. Thus our result will take the form

$$
\begin{array}{r}
\lim _{n \rightarrow \infty}\left[e^{-(t / / n) \partial \varphi_{N}} P_{N} \cdots e^{-(t / n) \partial \varphi_{1}} P_{1}\right]^{n} x=e^{-t \partial \varphi^{\prime}} x, \\
\varphi=\varphi_{1}+\cdots+\varphi_{N}, \quad t \geqq 0, x \in c l . D(\varphi), \tag{1.2}
\end{array}
$$

where P_{j} is the nonlinear projection of H onto the closed convex set E_{j}, and it is assumed that $\varphi \not \equiv+\infty$. Note that $\partial \varphi$ is the analogue of the form sum of the $\partial \varphi_{j}$. The factors P_{j} are necessary to ensure that the product on the left of (1.2) makes sense, since $e^{-t \partial \varphi_{j}}$ is defined only on E_{j}.

Remark 1.1. The condition $x \in c l . D(\varphi)$ in (1.2) is a new restriction which was not needed in the linear case (1.1). A straightforward generalization of the latter would be to admit every $x \in H$ and replace x by $P x$ on the right-

[^0]hand side of (1.2), where P is the projection onto $c l . D(\varphi)$. But this is in general impossible, as is seen from the following example. Let $N=2$ and let φ_{j} be the indicator function of a closed convex set $E_{j} \subset H$ (i.e. $\varphi_{j}(u)=0$ for $u \in E_{j}$ and $=+\infty$ otherwise) so that $D\left(\varphi_{j}\right)=E_{j}=P_{j} H$, $e^{-t \partial \varphi_{j}}=1$ on E_{j} and $e^{-t \partial \varphi}=1$ on $E=$ $E_{1} \cap E_{2}$. Then the suggested generalization would give $\lim \left(P_{2} P_{1}\right)^{n} x=P x$ for all $x \in H$. But this formula (a familiar one for linear projections) is in general false for nonlinear projections. This is seen from the special case in which $H=R^{2}, E_{1}$ is the unit disk, and E_{2} is a straight line through the origin.

Except for the restriction on x, (1.2) includes (1.1) as a special case. It is interesting to note that we are able to include the case $N>2$ without essential complication of the proof, whereas the proof given in $[1,2]$ does not seem to generalize to $N>2$ easily.

Actually we shall prove (1.2) in a more general case in which the semigroup $e^{-t \partial_{\rho}{ }_{j}} P_{j}$ is replaced by a φ_{j}-family $U_{j}(t)$ to be introduced in section 2 (which includes some useful approximations to the semigroup, for example the resolvent $\left.\left(1+t \partial \varphi_{j}\right)^{-1}\right)$. For the precise statement of the result, see the Theorem below.) (A similar generalization was considered in the linear case [1, 2]. For these generalizations, comparison of the results for linear and nonlinear cases is not easy, since the conditions for the approximating families are different.)

For nonlinear product formulas similar to (1.2) but under different assumptions, see [3; Propositions 4.3, 4.4].

2. Definitions. The main theorem.

(For basic notions and results regarding maximal monotone operators and the subdifferentials of convex functions, we refer to the book [3] by Brezis.) Let Φ denote the set of all lower semicontinuous, convex functions φ on a real Hilbert space H to $]-\infty,+\infty]$ such that $\varphi \not \equiv+\infty$. For $\varphi \in \Phi$, the effective domain $D(\varphi)$ is the (nonempty) set of all $u \in H$ with $\varphi(u)<+\infty$. Because of convexity, φ is lower semicontinuous in the weak topology of H. Let $\partial \varphi$ be the subdifferential of $\varphi ; \partial \varphi$ is a multiple-valued, maximal monotone operator in H, and the relation $f \in(\partial \varphi) u$ is characterized by

$$
\begin{equation*}
\varphi(v) \geqq \varphi(u)+(v-u, f) \quad \text { for all } \quad v \in H . \tag{2.1}
\end{equation*}
$$

$-\partial \varphi$ generates a strongly continuous semigroup $\left\{e^{-t \hat{\omega} \varphi} ; t>0\right\}$ of nonlinear nonexpansive operators on $E=c l . D(\varphi)=c l . D(\partial \varphi)$, where $c l$. denotes the closure and $D(\partial \varphi)$ is the set of all $u \in H$ such that ($\partial \varphi) u$ is not empty.

Definition 2.1. Let $\varphi \in \Phi$. A family $\{U(t) ; t>0\}$ of nonexpansive operators on H to H will be called a φ-family if

$$
\begin{equation*}
\varphi(v) \geqq \varphi(U(t) y)+t^{-1}(v-y, y-U(t) y)+(2 t)^{-1} \gamma\|y-U(t) y\|^{2} \tag{2.2}
\end{equation*}
$$

for every $v, y \in H$ and $t>0$, where γ is a positive constant. The largest number γ with this property will be called the φ-index of $\{U(t)\}$ and will be denoted by γ again.

Remark 2.2. (a) The definition of a φ-family is rather implicit; we shall give below several examples of φ-families.
(b) It is convenient to note that (2.2) is equivalent to:

$$
\begin{align*}
\varphi(v) \geqq & \varphi(U(t) y)+t^{-1}(v-w, y-U(t) y)-(2 t)^{-1}\|y-w\|^{2} \\
& +(2 t)^{-1}\|w-U(t) y\|^{2}+(2 t)^{-1}(\gamma-1)\|y-U(t) y\|^{2} \tag{2.3}
\end{align*}
$$

for every $v, y, w \in H$.
(c) If $\{U(t)\}$ is a φ-family, $U(t)$ maps H into $D(\varphi)$, as is seen from (2.2) by choosing $v \in D(\varphi)$. Also $U(t) y \rightarrow y, t \downarrow 0$, if $y \in E$. Moreover, $t^{-1}(1-U(t)) \rightarrow \partial \varphi$ in the sense of resolvent convergence. This is a special case of the Theorem for $N=1$.
(d) The value of γ is important; the family is "nice" if $\gamma \geqq 1$ (see the theorem). On the other hand, $\gamma>2$ is impossible except when $\varphi=$ const and $U(t)=1$. (To see this set $v=U(t) y$ in (2.2).)

Example 2.3. Let $\varphi \in \Phi, J(t)=(1+t \partial \varphi)^{-1}, t>0$ (the resolvent of $\partial \varphi$). As is well known [3; Proposition 2.2], $J(t)$ is a nonexpansive operator on H to $D(\partial \varphi) \subset D(\varphi) . \quad\{J(t)\}$ is a "nice" φ-family with $\gamma \geqq 2$.

To see this, we note that $t^{-1}(y-J(t) y) \in(\partial \varphi) J(t) y$ [3; after Theorem 2.2]. Hence $\varphi(v) \geqq \varphi(J(t) y)+\left(v-J(t) y, t^{-1}(y-J(t) y)\right)$ by (2.1), from which (2.2) follows with $\gamma \geqq 2$.

Example 2.4. For any fixed positive integer $m,\left\{J(t / m)^{m}\right\}$ is a "nice" φ family with $\gamma \geqq 1+m^{-1}$.

To see this, write $y_{k}=J(t / m)^{k} y, y_{0}=y$. Then $m t^{-1}\left(y_{k-1}-y_{k}\right)=m t^{-1}(1-J(t / m)) y_{k-1}$ $\in(\partial \varphi) J(t / m) y_{k-1}=(\partial \varphi) y_{k}$ as above, so that by (2.1)

$$
\begin{equation*}
\varphi(v) \geqq \varphi\left(y_{k}\right)+\left(v-y_{k}, m t^{-1}\left(y_{k-1}-y_{k}\right)\right), \quad 1 \leqq k \leqq m . \tag{2.4}
\end{equation*}
$$

On setting $v=y_{k-1}$, we see that $\varphi\left(y_{k}\right)$ is decreasing in k. Hence we may replace $\varphi\left(y_{k}\right)$ by $\varphi\left(y_{m}\right)$ in (2.4) and take the average for $k=1, \cdots, m$, obtaining

$$
\begin{equation*}
\varphi(v) \geqq \varphi\left(y_{m}\right)+t^{-1}\left(v-y, y-y_{m}\right)+t^{-1} \sum_{k=1}^{m}\left(y-y_{k}, y_{k-1}-y_{k}\right) . \tag{2.5}
\end{equation*}
$$

The last term in (2.5) becomes, with $a_{k}=y_{k-1}-y_{k}$,

$$
\begin{aligned}
& t^{-1} \sum_{k=1}^{m}\left(a_{1}+\cdots+a_{k}, a_{k}\right)=(2 t)^{-1}\left[\sum_{k=1}^{m}\left\|a_{k}\right\|^{2}+\left\|\sum_{k=1}^{m} a_{k}\right\|^{2}\right] \\
& \quad \geqq(2 t)^{-1}\left(1+m^{-1}\right)\left\|\sum_{k=1}^{m} a_{k}\right\|^{2}=(2 t)^{-1}\left(1+m^{-1}\right)\left\|y-y_{m}\right\|^{2},
\end{aligned}
$$

which proves the assertion. (A more precise estimate shows that $\gamma \geqq 1+$ $O\left((\log m)^{-1}\right)$ for large m.

Example 2.5. Let $U(t)=e^{-t a \varphi} P$, where P is the nonlinear projection of H onto $E=c l . D(\varphi)$, which is a closed convex set [3; Theorem 2.2]. $\{U(t)\}$ is a "nice" φ-family with $\gamma \geqq 1$.

This follows from Example 2.4, since $U(t) y=\lim _{m \rightarrow \infty} J(t / m)^{m} y$ for every $y \in H$ [3; Corollary 4.4].

Remark 2.6. All the examples given above apply to the linear case in which $\varphi(u)=(1 / 2)\left\|A^{1 / 2} u\right\|^{2}$ with A nonnegative selfadjoint, so that $\partial \varphi=A, E=H$ and $P=1$. In particular, $U(t)=e^{-t A}$ forms a φ-family with $\gamma \geqq 1$. In this case we have actually $\gamma \geqq \gamma_{0}>1$, where γ_{0} is a universal constant, as one can prove using the spectral formula.

We are now in a position to state the main theorem. Let $\varphi_{j} \in \Phi, j=1, \cdots, N$, with $\varphi=\varphi_{1}+\cdots+\varphi_{N} \not \equiv+\infty$, so that $\varphi \in \Phi$ too. Let $D_{j}=D\left(\varphi_{j}\right), D=D(\varphi), E_{j}=$ $c l . D_{j}, E=c l . D$, and let P_{j}, P be projections of H onto E_{j}, E, respectively.

Theorem. Let $\left\{U_{j}(t) ; t>0\right\}$ be a φ_{j}-family with φ_{j}-index $\gamma_{j}>0, j=1, \cdots, N$. Assume that one of the following conditions is satisfied.
(i) $\gamma_{j} \geqq 1$ for all $j=1, \cdots, N$, and for k with $\gamma_{k}=1$

$$
\begin{equation*}
U_{k}(t) u=U_{k}(t) P_{k} u, \quad t>0, u \in H . \tag{2.6}
\end{equation*}
$$

(ii) There is a k such that $\gamma_{j}>1$ for all $j \neq k$ and

$$
\begin{equation*}
\left(\gamma_{k}-1\right) \sum_{j \neq k}\left(\gamma_{j}-1\right)^{-1}>-1 \tag{2.7}
\end{equation*}
$$

Then we have

$$
\begin{gather*}
\lim _{t \downarrow 0}\left[1+\lambda t^{-1}\left(1-U_{N}(t) \cdots U_{1}(t)\right)\right]^{-1} x=(1+\lambda \partial \varphi)^{-1} x, \quad \lambda>0, x \in H, \tag{2.8}\\
\lim _{n \rightarrow \infty}\left[U_{N}(t / n) \cdots U_{1}(t / n)\right]^{n} x=e^{-t \partial \varphi} x, \quad t \geqq 0, \quad x \in E, \tag{2.9}
\end{gather*}
$$

the convergence in (2.9) being uniform in $t \in[0, T]$ for any $T>0$.
Corollary. (1.2) is true.
Remark 2.7. If $N=1$, assume simply $\gamma_{1}>0$ instead of (i), (ii). If $N=2$, (2.7) becomes $\gamma_{1}+\gamma_{2}>2$, and (2.6) is required only when $\gamma_{1}=\gamma_{2}=1$.

The proof of the theorem will be given in the following section. Here we give two lemmas required in the proof, under the assumptions of the theorem.

Lemma 2.8. There is $\mathrm{M}<+\infty$ such that for any $a_{j} \in H, j=1, \cdots, N$,

$$
\begin{equation*}
\sum_{j=1}^{N}\left(\gamma_{j}-1\right)\left\|a_{j}\right\|^{2}+M\left\|\sum_{j=1}^{N} a_{j}\right\|^{2} \geqq 0 . \tag{2.10}
\end{equation*}
$$

Proof. This is trivial in case (i), and also in case (ii) if $\gamma_{k} \geqq 1$. Thus we may assume (ii) with $\gamma_{k}<1$. Then (2.7) implies that there is $s>0$ such that

$$
(1+s) \Sigma^{\prime}\left(\gamma_{j}-1\right)^{-1}<\left(1-\gamma_{k}\right)^{-1}
$$

where Σ^{\prime} means $\sum_{j \neq k}$. Writing $a=a_{1}+\cdots+a_{N}$, we then have

$$
\begin{aligned}
\left\|a_{k}\right\|^{2} & =\left\|a-\Sigma^{\prime} a_{j}\right\|^{2} \leqq\left(1+s^{-1}\right)\|a\|^{2}+(1+s)\left\|\Sigma^{\prime} a_{j}\right\|^{2} \\
& \leqq\left(1+s^{-1}\right)\|a\|^{2}+(1+s)\left[\Sigma^{\prime}\left(\gamma_{j}-1\right)^{-1}\right]\left[\Sigma^{\prime}\left(\gamma_{j}-1\right)\left\|a_{j}\right\|^{2}\right] \\
& \leqq\left(1+s^{-1}\right)\|a\|^{2}+\left(1-\gamma_{k}\right)^{-1} \Sigma^{\prime}\left(\gamma_{j}-1\right)\left\|a_{j}\right\|^{2}
\end{aligned}
$$

which implies (2.10) with $M=\left(1-\gamma_{k}\right)\left(1+s^{-1}\right)$.
Lemma 2.9. Let $z \in D$ and $z_{0}(t)=z, z_{j}(t)=U_{j}(t) \cdots U_{1}(t) z, t>0, j=1, \cdots, N$. Then $z_{j}(t)-z=O\left(t^{1 / 2}\right)$ as $t \downarrow 0$.

Proof. (2.2) gives, with $v=y=z$,

$$
\begin{aligned}
+\infty & >\varphi_{j}(z) \geqq \varphi_{j}\left(U_{j}(t) z\right)+(2 t)^{-1} \gamma_{j}\left\|z-U_{j}(t) z\right\|^{2} \\
& \geqq-M\left\|U_{j}(t) z-z\right\|-M+(2 t)^{-1} \gamma_{j}\left\|U_{j}(t) z-z\right\|^{2},
\end{aligned}
$$

where M is a constant; note that any $\varphi \in \Phi$ is bounded from below by a (inhomogeneous) linear functional as is seen from (2.1). Since $\gamma_{j}>0$, it follows that $U_{j}(t) z-z=O\left(t^{1 / 2}\right)$. In particular $z_{1}(t)-z=O\left(t^{1 / 2}\right)$. The same result for $z_{j}(t)$ can be proved by induction, since

$$
\begin{aligned}
\left\|z_{j}(t)-z\right\| & \leqq\left\|z_{j}(t)-U_{j}(t) z\right\|+\left\|U_{j}(t) z-z\right\| \\
& \leqq\left\|z_{j-1}(t)-z\right\|+O\left(t^{1 / 2}\right)
\end{aligned}
$$

note that $z_{j}(t)=U_{j}(t) z_{j-1}(t)$ and that $U_{j}(t)$ is nonexpansive.

3. Proof of Theorem.

According to a lemma due to Chernoff and Brezis-Pazy (see [3; Theorem 4.3]), (2.8) implies (2.9). Thus it suffices to prove (2.8). To this end, let

$$
\begin{align*}
& y_{0}(t)=\left[1+\lambda t^{-1}\left(1-U_{N}(t) \cdots U_{1}(t)\right)\right]^{-1} x, \quad t>0 \tag{3.1}\\
& y_{j}(t)=U_{j}(t) \cdots U_{1}(t) y_{0}(t), \quad j=1, \cdots, N \tag{3.2}\\
& a_{j}(t)=y_{j-1}(t)-y_{j}(t), \quad j=1, \cdots, N \tag{3.3}\\
& a(t)=a_{1}(t)+\cdots+a_{N}(t)=y_{0}(t)-y_{N}(t) \tag{3.4}
\end{align*}
$$

(3.1) and (3.4) imply that

$$
\begin{equation*}
y_{0}(t)+\lambda t^{-1} a(t)=x \tag{3.5}
\end{equation*}
$$

PROPOSITION 3.1. $y_{0}(t), y_{j}(t)$ and $\varphi_{j}\left(y_{j}(t)\right)$ are bounded as $t \downarrow 0, j=1, \cdots, N$.

Proof. Let $z \in D$ be fixed and construct $z_{j}(t), j=0,1, \cdots, N$ as in Lemma 2.9. Since $U_{j}(t)$ is nonexpansive, we have

$$
\begin{equation*}
\left\|y_{j}(t)-z_{j}(t)\right\| \leqq\left\|y_{j-1}(t)-z_{j-1}(t)\right\| . \tag{3.6}
\end{equation*}
$$

Since $z_{j}(t) \rightarrow z$ as $t \downarrow 0$ by Lemma 2.9, it follows that

$$
\begin{equation*}
\lim _{t \downarrow 0} \sup \left[\left\|y_{j}(t)-z\right\|-\left\|y_{0}(t)-z\right\|\right] \leqq 0, \quad j=1, \cdots, N \tag{3.7}
\end{equation*}
$$

To prove that the $y_{j}(t)$ are bounded, therefore, it suffices to show that $y_{0}(t)$ is bounded.

Let $v \in D=\cap D_{j}$. Since $\left\{U_{j}(t)\right\}$ is a φ_{j}-family, we can apply (2.2) to $\varphi=\varphi_{j}$ with $y=y_{j-1}(t)$, obtaining

$$
\begin{equation*}
\varphi_{j}(v) \geqq \varphi_{j}\left(y_{j}\right)+t^{-1}\left(v-y_{j-1}, a_{j}\right)+(2 t)^{-1} \gamma_{j}\left\|a_{j}\right\|^{2} ; \tag{3.8}
\end{equation*}
$$

here and in what follows we write simply y_{j}, a_{j}, etc. for $y_{j}(t), a_{j}(t)$, etc. Summing (3.8) for $j=1, \cdots, N$ and using (3.4), (3.5), we obtain for any $v \in H$

$$
\begin{equation*}
\varphi(v) \geqq \sum_{j=1}^{N} \varphi_{j}\left(y_{j}\right)+\lambda^{-1}\left(v-y_{0}, x-y_{0}\right)+(2 t)^{-1} b, \tag{3.9}
\end{equation*}
$$

with

$$
\begin{align*}
b & =\Sigma\left[\gamma_{j}\left\|a_{j}\right\|^{2}+2\left(y_{0}-y_{j-1}, a_{j}\right)\right] \\
& =\Sigma\left[\gamma_{j}\left\|a_{j}\right\|^{2}+2\left(a_{1}+\cdots+a_{j-1}, a_{j}\right)\right] \\
& =\Sigma\left(\gamma_{j}-1\right)\left\|a_{j}\right\|^{2}+\left\|\Sigma a_{j}\right\|^{2} \\
& \geqq-M\left\|\Sigma a_{j}\right\|^{2}=-M\|a\|^{2} \geqq-M t^{2} \lambda^{-2}\left\|x-y_{0}\right\|^{2}, \tag{3.10}
\end{align*}
$$

where we have used Lemma 2.8 and (3.5). Thus (3.9) gives

$$
\begin{equation*}
\varphi(v) \geqq \sum_{j=1}^{N} \varphi_{j}\left(y_{j}\right)+\lambda^{-1}\left(v-y_{0}, x-y_{0}\right)-M t\left(2 \lambda^{2}\right)^{-1}\left\|x-y_{0}\right\|^{2} . \tag{3.11}
\end{equation*}
$$

We note again that $\varphi_{j}\left(y_{j}\right)$ is bounded from below by a (inhomogeneous) linear functional in y_{j}. In view of (3.7), therefore, we have

$$
\begin{equation*}
\varphi_{j}\left(y_{j}\right) \geqq-M-M\left\|x-y_{0}\right\| . \tag{3.12}
\end{equation*}
$$

Now it is easy, using (3.11) with $v \in D$, to show that $\left\|x-y_{0}(t)\right\|$ is bounded as $t \downarrow 0$. Hence all the $y_{j}(t)$ are bounded by (3.7).

To show that the $\varphi_{j}\left(y_{j}\right)$ are bounded, it suffices to note that they are bounded from below because of (3.12) and, consequently, also from above by (3.11).

Proposition 3.2. For each $z \in D$ we have

$$
\begin{equation*}
\left\|y_{j}(t)-z\right\|^{2}-\left\|y_{0}(t)-z\right\|^{2} \longrightarrow 0, \quad t \downarrow 0, \quad j=1, \cdots, N \tag{3.13}
\end{equation*}
$$

Proof. Since $y_{0}(t)$ is bounded, it follows from (3.4) and (3.5) that $y_{0}-y_{N}=$ $a \rightarrow 0$. In view of (3.6) and $z_{j} \rightarrow z$, we have then $\left\|y_{j}-z\right\|-\left\|y_{0}-z\right\| \rightarrow 0$. (3.13) follows from this since y_{j} and y_{0} are bounded.

Proposition 3.3. There exists a sequence $t_{n} \downarrow 0$ such that $y_{j}\left(t_{n}\right) \rightarrow y_{j} * \in H$, $j=1, \cdots, N$, where \rightarrow denotes weak convergence in H. Furthermore, we have

$$
\begin{align*}
& y_{0}{ }^{*}=y_{N}{ }^{*}, \quad y_{j}^{*} \in D_{j}, \quad j=1, \cdots, N, \tag{3.14}\\
& \varphi(v) \geqq \sum_{j=1}^{N} \varphi_{j}\left(y_{j}^{*}\right)+\lambda^{-1}\left(v-y_{0}{ }^{*}, x-y_{0}{ }^{*}\right), \quad v \in H . \tag{3.15}
\end{align*}
$$

Proof. This follows directly from the boundedness of the $y_{j}(t)$ and $\varphi_{j}\left(y_{j}(t)\right)$, and inequality (3.11), Recall that $y_{0}(t)-y_{N}(t) \rightarrow 0$ and that φ_{j} are lower semicontinuous in the weak topology.

Proposition 3.4. Set $a_{j}{ }^{*}=y_{j-1}{ }^{*}-y_{j}{ }^{*}, j=1, \cdots, N$. Then

$$
\begin{equation*}
a_{1}{ }^{*}+\cdots+a_{N} *=0 \tag{3.16}
\end{equation*}
$$

and for k with $\gamma_{k} \geqq 1$

$$
\begin{equation*}
2\left(u_{k}-z, a_{k} *\right)+\left(\gamma_{k}-1\right)\left\|a_{k} *\right\|^{2} \leqq 0, \quad z \in D, u_{k} \in E_{k} \tag{3.17}
\end{equation*}
$$

Proof. (3.16) follows from $y_{0}{ }^{*}=y_{N}{ }^{*}$ (see (3.14)). To prove (3.17), we may assume that $u_{k} \in D_{k}$. Then (2.3) gives, with $\varphi=\varphi_{k}, U=U_{k}, v=u_{k}, y=y_{k-1}(t)$, $w=z$, and $\gamma=\gamma_{k}$,

$$
\begin{gathered}
2 t \varphi_{k}\left(u_{k}\right) \geqq 2 t \varphi_{k}\left(y_{k}\right)+2\left(u_{k}-z, a_{k}\right)-\left\|y_{k-1}-z\right\|^{2} \\
+\left\|y_{k}-z\right\|^{2}+\left(\gamma_{k}-1\right)\left\|a_{k}\right\|^{2} .
\end{gathered}
$$

Letting $t=t_{n} \downarrow 0$ and using (3.13), we obtain (3.17); note that $\left\|a_{k} *\right\|^{2} \leqq$ $\lim \inf \left\|a_{k}\left(t_{n}\right)\right\|^{2}$.

Proposition 3.5. We have

$$
\begin{equation*}
\left(y_{k-1} *-z, a_{k}^{*}\right) \leqq 0, \quad z \in D, k=1, \cdots, N . \tag{3.18}
\end{equation*}
$$

Proof. First we note that $a_{k}{ }^{*}=0$ whenever $\gamma_{k}>1$, as is seen from (3.17) with $u_{k}=z$.

It follows that in case (ii), $a_{k}{ }^{*}=0$ for all k so that (3.18) is true a fortiori. Indeed, we then have $\gamma_{k}>1$, hence $a_{k}{ }^{*}=0$, except possibly for one k. But (3.16) then shows that all $a_{k}{ }^{*}$ must be zero.

It only remains to consider the case (i) with $\gamma_{k}=1$. Then we have

$$
\begin{equation*}
y_{k}(t)=U_{k}(t) y_{k-1}(t)=U_{k}(t) P_{k} y_{k-1}(t) \tag{3.19}
\end{equation*}
$$

by (2.6). Now apply (2.3) to $\varphi=\varphi_{k}, v=w=z$ and $y=P_{k} y_{k-1}(t)$. Then we obtain
by (3.19)

$$
2 t \varphi_{k}(z) \geqq 2 t \varphi_{k}\left(y_{k}\right)-\left\|P_{k} y_{k-1}-z\right\|^{2}+\left\|y_{k}-z\right\|^{2} .
$$

In view of Propositions 3.1 and 3.2, we thus obtain

$$
\begin{equation*}
\lim _{i \cup 0} \sup \left(\left\|y_{k-1}-z\right\|^{2}-\left\|P_{k} y_{k-1}-z\right\|^{2}\right) \leqq 0 \tag{3.20}
\end{equation*}
$$

On the other hand, a simple geometric consideration shows that $\|y-z\|^{2}-$ $\left\|P_{k} y-z\right\|^{2} \geqq\left\|y-P_{k} y\right\|^{2}$ for any $y \in H$, since $z \in D \subset D_{k} \subset E_{k}$ and P_{k} is the projection onto E_{k}. Thus (3.20) gives $y_{k-1}-P_{k} y_{k-1} \rightarrow 0$ as $t \downarrow 0$. Hence $y_{k-1} * \in E_{k}$ because E_{k} is weakly closed. Then we can apply (3.17) with $u_{k}=y_{k-1}{ }^{*}$ and $\gamma_{k}=1$, obtaining (3.18).

PROPOSITION 3.6. $a_{k}{ }^{*}=0, y_{k}{ }^{*}=y_{0}{ }^{*}, k=1, \cdots, N$.
Proof. (This was already proved in case (ii) in the proof of Proposition 3.5. The following proof is necessary only for case (i).) We may assume $0 \in D$ without loss of generality. Then we can set $z=0$ in (3.18), obtaining ($y_{k-1}{ }^{*}, a_{k}{ }^{*}$) $\leqq 0$ for all $k=1, \cdots, N$. Then $\left\|y_{k} *\right\|^{2}=\left\|y_{k-1} *-a_{k} *\right\|^{2} \geqq\left\|y_{k-1} *\right\|^{2}+\left\|a_{k} *\right\|^{2}$ and so $\left\|a_{1} *\right\|^{2}+\cdots+\left\|a_{N}\right\|^{2} \leqq\left\|y_{N} *\right\|^{2}-\left\|y_{0} *\right\|^{2}=0$ by (3.14), hence $a_{k}{ }^{*}=0$ for all k.

PROPOSITION 3.7. $\quad y_{0}{ }^{*}=(1+\lambda \partial \varphi)^{-1} x \in D(\partial \varphi) \subset D$.
Proof. In view of Proposition 3.6, (3.15) becomes

$$
\varphi(v) \geqq \varphi\left(y_{0}{ }^{*}\right)+\lambda^{-1}\left(v-y_{0}{ }^{*}, x-y_{0}{ }^{*}\right) .
$$

Since this is true for any $v \in H$, we have $y_{0}{ }^{*} \in D(\partial \varphi)$ and $\lambda^{-1}\left(x-y_{0}{ }^{*}\right) \in(\partial \varphi) y_{0}{ }^{*}$ (see (2.1)). Hence $x \in(1+\lambda(\partial \varphi)) y_{0}{ }^{*}$, which is equivalent to the required result.

PROPOSITION 3.8. $y_{0}(t) \rightarrow y_{0}{ }^{*}$, so that (2.8) is true.
Proof. First we note that $y_{j}(t) \rightarrow y_{j}{ }^{*}=y_{0}{ }^{*}$ as $t \downarrow 0$ for $j=0,1, \cdots, N$. This follows from the standard argument since $y_{0}{ }^{*}$ as given by Proposition 3.7 is independent of the sequence $t_{n} \downarrow 0$ used above.

To prove that we have strong rather than weak convergence, it suffices to show that $\sup \left\|y_{0}(t)\right\| \leqq\left\|y_{0}{ }^{*}\right\|$. To this end, we return to (3.11) and set $v=y_{0}{ }^{*}$ $\in D$. Then

$$
\begin{aligned}
& \lambda^{-1} \lim \sup \left(y_{0}{ }^{*}-y_{0}(t), x-y_{0}(t)\right) \\
& \quad \leqq \varphi\left(y_{0}^{*}\right)-\lim \inf \sum_{j=1}^{N} \varphi_{j}\left(y_{j}(t)\right) \leqq \varphi\left(y_{0}^{*}\right)-\varphi\left(y_{0}^{*}\right)=0
\end{aligned}
$$

Since $y_{0}(t) \rightarrow y_{0}{ }^{*}$, this implies lim sup $\left\|y_{0}(t)\right\|^{2} \leqq\left\|y_{0}{ }^{*}\right\|^{2}$ as required.

4. Remarks and examples.

The limit $u(t)=e^{-t \partial \varphi} x$ in (1.2) or (2.9) is characterized as the (strongly continuous) solution of the Cauchy problem

$$
\begin{equation*}
-d u / d t \in(\partial \varphi) u(t), \quad \text { a. e. } t>0, \quad u(0)=x ; \tag{4.1}
\end{equation*}
$$

see [3; Theorems 3.1, 3.2]. In view of (2.1), (4.1) is equivalent to

$$
\begin{equation*}
\varphi(v) \geqq \varphi(u(t))-(v-u(t), d u / d t) \quad \text { for all } \quad v \in H \tag{4.2}
\end{equation*}
$$

In this sense (4.1) is a variational inequality.
In general $\partial \varphi$ or (4.1) is difficult to describe more explicity. But it often happens that each $\varphi_{j}, \partial \varphi_{j}$ and $\varphi=\varphi_{1}+\cdots+\varphi_{N}$ are known in concrete form. In such a case, (1.2) or (2.9) is useful because it gives a constructive method for computing $u(t)$.

Example 4.1. Let $N=2$ and $\varphi_{2}=\operatorname{ind}_{E_{2}}$ (the indicator function of a convex closed set $E_{2} \subset H$). Then (4.2) becomes

$$
\begin{equation*}
\varphi_{1}(v) \geqq \varphi_{1}(u(t))-(v-u(t), d u / d t) \quad \text { for all } \quad v \in E_{2}, \tag{4.3}
\end{equation*}
$$

with the additional condition $u(t) \in E_{2}$. This is still rather implicit, but (1.2) or (2.9) gives the following formula, which is computable if one can compute the semigroup $e^{-t \partial \varphi_{1}}$ or the resolvent $\left(1+t \partial \varphi_{1}\right)^{-1}$ for $\partial \varphi_{1}$:

$$
\begin{align*}
u(t) & =\lim \left[P_{2} e^{-(t / n) \partial \varphi_{1}} P_{1}\right]^{n} x=\lim \left[e^{-(t / n) \partial \varphi_{1}} P_{1} P_{2}\right]^{n} x \\
& =\lim \left[P_{2}\left(1+(t / n) \partial \varphi_{1}\right)^{-1}\right]^{n} x=\lim \left[\left(1+(t / n) \partial \varphi_{1}\right)^{-1} P_{2}\right]^{n} x ; \tag{4.4}
\end{align*}
$$

note that $e^{-t \partial \varphi_{2}} P_{2}=\left(1+t \partial \varphi_{2}\right)^{-1}=P_{2}, t>0$, in this case [3; Example 2.8.2].
Example 4.2. In the above example, suppose that $H=L^{2}(\Omega), \Omega \subset R^{m}$ (an open set), and $\varphi_{1}(u)=(1 / 2)\|\operatorname{grad} u\|^{2}-(u, f)$, where $D\left(\varphi_{1}\right)=H_{0}^{1}(\Omega)$ (the Sobolev space) and $f \in H$. Furthermore, let $\varphi_{2}=\operatorname{ind}_{E_{2}}$ with $E_{2} \subset H$ consisting of all $u \in H$ such that $u(x) \geqq g(x)$ a. e., where g is a given function on Ω such that E_{2} is not empty. In this case $P_{2} u(x)=\sup \{u(x), g(x)\}$. Since $P_{1}=1$ and $\left(\partial \varphi_{1}\right) u=-\Delta u-f$ with $D\left(\partial \varphi_{1}\right) \subseteq H_{l o c}^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, it is in principle possible to compute (4.4). For example, $\left[P_{2} e^{-(t / n) \partial \varphi_{1}} P_{1}\right] v$ is obtained by solving the (inhomogeneous) heat equation $d w / d t=\Delta w+f$ for the time interval t / n, starting with the initial value v, and then replacing w by sup $\{w, g\}$. The variational inequality (4.2) is not so easy to handle directly. (The stationary variant of this example is a classical variational inequality studied by Lewy, Lions, Stampacchia, and others; see $[4,5]$.)

References

[1] T. Kato, On the Trotter-Lie product formula, Proc. Japan Acad., 50 (1974), 694698.
[2] T. Kato, Trotter's product formula for an arbitrary pair of selfadjoint contraction semigroups, to appear.
[3] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publ. Co., 1973.
[4] J.L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493-519.
[5] H. Lewy, On a variational problem with inequalities on the boundary, J. Math. Mech., 17 (1968), 861-884.

Tosio Kato
Department of Mathematics University of California Berkeley, California 94720 U.S. A.

Kyûya Masuda
Department of Pure and
Applied Sciences
University of Tokyo
Komaba, Meguro-ku
Tokyo, Japan

[^0]: * Partially supported by NSF Grant MCS 76-04655.

