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Introduction.

0-1. In his papers [10], [11] and [12], H. M. Stark introduced certain ray
class invariants for totally real fields in terms of the value at $s=0$ of the
derivative of some L-series of the fields. Then he presented (with numerical
evidences) a striking conjecture on the arithmetic nature of the invariants.
In this paper, we show that, for each given real quadratic field, the invariants
are described in terms of special values of a certain special function. The
function is closely related to the double gamma function of E. W. Barnes. Then
we prove the conjecture for a very special (but non-trivial) case.

0-2. For a pair $\omega=(\omega_{1}, \omega_{2})$ of positive numbers we denote by $\Gamma_{2}(z, \omega)$ the
double gamma function introduced by E. W. Barnes (for the definition and basic
Properties of the double gamma function, see [2] and [7]). Set

$F(z, \omega)=\Gamma_{2}(z, \omega)/\Gamma_{2}(\omega_{1}+\omega_{2}-z, \omega)$ .
Then $F$ is a meromorphic function of $z$ which satisfies the following equalities
(0-1) and (0-2).

(0-1) $F(z+\omega_{1}, \omega)=2$ sin $(\pi z/\omega_{2})F(z, \omega)$ ,

$F(z+\omega_{2}, \omega)=2$ sin $(\pi z/\omega_{1})F(z, \omega)$ .
(0-2) $F((\omega_{1}+\omega_{2})/2, \omega)=1$ .
If $\omega_{2}/\omega_{1}$ is irrational, properties (0-1) and (0-2) characterize $F$ as a meromorphic
function of $z$ . Let $F$ be a real quadratic field embedded in the real number
field $R$ . For an integral ideal $\mathfrak{f}$ of $F$, denote by $H_{F}(t)$ the group of narrow ray
classes modulo $\mathfrak{f}$ of $F$ . Assume that $\mathfrak{f}$ satisfies the following condition (0-3):

(0-3) For any totally positive unit $u$ of $F,$ $u+1\not\in f$

Take a totally positive integer $\nu$ of $F$ with the property $\nu+1\in \mathfrak{f}$ . Denote by
the same letter $\nu$ the narrow ray class modulo $\mathfrak{f}$ represented by the principal

. ideal (v). Then $\nu$ is an element of order 2 of the group $H_{F}(t)$ . Choose integral
ideals $0_{1},$ $\mathfrak{a}_{2},$

$\cdots$ , $\mathfrak{a}_{h_{0}}$ of $F$ so that they form a complete set of narrow ideal
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classes of $F$. For each $c\in H_{F}(t)$, there is a unique index $j(1\leqq j\leqq h_{0})$ such that
$c$ and $\mathfrak{a}_{j}\mathfrak{f}$ are in the same narrow ideal class of $F$. Denote by $\epsilon$ a fundamental
totally positive unit of $F$ and set

(0-4) $R(\epsilon, c)=\{$

$0<x\leqq 1$ , $0\leqq y<1$ , $(z)\mathfrak{a}_{j}f=c$ in
$H_{F}(\mathfrak{f})\}$

.
$z=x+y\epsilon\in(\mathfrak{a}_{j}\mathfrak{f})^{-1}$ ; $x,$ $y\in Q$ ,

Then $R(\epsilon, c)$ is a finite subset of $(\mathfrak{a}_{j}\mathfrak{f})^{-1}$ . Set

(0-5) $X_{f}(c)=\prod_{z\in R(\epsilon c)}.\{F(z, (1, \epsilon))F(z^{\prime}, (1, \epsilon^{\prime}))\}$ ,

where $z^{\prime}$ (resp. $\epsilon^{\prime}$ ) is the conjugate of $z$ (resp. $\epsilon$ ). The invariant $X_{f}(c)$ is positive
for each $c\in H_{F}(\mathfrak{f})$ . Set $\zeta_{F}(s, c)=\sum_{a}N(\mathfrak{a})^{-s}$, where the summation with respect

to $\mathfrak{a}$ is over all integral ideals of $F$ which are in the same narrow ray class
modulo $t$ as $c$ . It is known that $\zeta_{F}(s, c)$ is holomorphic except for a simple
pole at $s=1$ . The following theorem guarantees that $X_{f}(c)$ is independent of
the choice of $\mathfrak{a}_{1},$

$\mathfrak{a}_{h_{0}}$ .
THEOREM 1. The notation and assumptions being as above.

$\zeta_{F}^{\prime}(0, c)-\zeta_{F}^{\prime}(0, c\nu)=\log X_{f}(c)$ .
We further assume that $\mathfrak{f}$ satisfies the following condition (0-6):

(0-6) There is no unit of $F$ such that $u>0$ , $u^{\prime}<0$ and $u-1\in t$ .
Let $\mu$ be an integer of $F$ such that $\mu<0,$ $\mu^{\prime}>0$ and $\mu-1\in t$ . Denote by

the same letter $\mu$ the narrow ray class modulo $\mathfrak{f}$ represented by the principal
ideal $(\mu)$ . Then $\mu$ is an element of order at most two of the group $H_{F}(\mathfrak{f})$ .
Let $G$ be a subgroup of $H_{F}(t)$ . Assume that $\mu$ is in $G$ but $\nu$ is not in $G$ . Set

$X_{f}(c, G)=\prod_{q\in G}X_{f}(cg)$ .
Then $X_{f}(c, G)$ is an invariant for $c\in H_{F}(t)/G$ . Denote by $K_{F}(t)$ the maximal
narrow ray class field over $F$ with conductor $\mathfrak{f}$ and denote by $\sigma$ the Artin
canonical isomorphism from $H_{F}(\mathfrak{f})$ onto the Galois group of $K_{F}(\mathfrak{f})$ with respect
to $F$. Furthermore, let $K_{F}(\mathfrak{f}, G)$ be the subfield of $\sigma(G)- fixed$ elements of $K_{F}(\mathfrak{f})$ .
In view of Theorem 1, Stark’s conjecture in $[10]-[12]$ implies the following
(cf. [8]):

(0-7) Conjecture (modified version of the Stark conjecture). There exists a
positive rational integer $m$ such that the following assertions (i) and (ii)
hold:

(i) For each $c\in H_{F}(f)/G,$ $X_{\mathfrak{f}}(c, G)^{m}$ is a unit of $K_{F}(\mathfrak{f}, G)$ .
Moreover, $\{X_{f}(c, G)^{m}\}^{\sigma(c_{0})}=X_{f}(cc_{0}, G)^{m}$ $(\forall c_{0}\in H_{F}(\mathfrak{f}))$ .

(ii) A system of invariants
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(0-8) $\bigcup_{f_{0}}\{X_{f_{0}}(c,\tilde{G})^{m} ; c\in H_{F}(\mathfrak{f}_{0})/\tilde{G}\}$

generates $K_{F}(\mathfrak{f}, G)$ over $F$.
In (0-8), $\mathfrak{f}_{0}^{\prime}s$ are divisors of $\mathfrak{f}$ with properties (0-3) and (0-6) and $\tilde{G}$ is the
image of $G$ under the natural homomorphism from $H_{F}(\mathfrak{f})$ onto $H_{F}(t_{0})$ .
Without loss of generality, we may assume that $\mathfrak{f}$ is invariant under the non-
trivial automorphism $\iota$ of $F$. In fact, if $t\neq\iota(\mathfrak{f})$ , we may replace $\mathfrak{f}$ by $\mathfrak{f}\cap\iota(\mathfrak{f})$ and
$G$ by its inverse image under the natural homomorphism from $H_{F}(\mathfrak{f}\cap\iota(\mathfrak{f}))$ onto
$H_{F}(t)$ .

We prove the conjecture under the following assumption (0-9).

(0-9) The field $K_{F}(\mathfrak{f}, G)$ is a quadratic extension of its maximal absolutely
abelian subfield. Moreover exactly one of two inPnite primes of $F$ (one

which corresponds to the prescribed embedding of $F$ into $R$) splits in
$K_{F}(\mathfrak{f}, G)$ .

Denote by $K$ the normal closure of $K_{F}(\mathfrak{f}, G)$ with respect to $Q$ . Then (0-9)
implies that $K$ is a quadratic extension of $K_{F}(\mathfrak{f}, G)$ contained in $K_{F}(\mathfrak{f})$ . Let $G_{1}$ be
the subgroup of $H_{F}(t)$ which corresponds to $K$. Then $G_{1}$ is invariant under $\iota$ and
is a subgroup of index 2 of $G$ . Furthermore, $G$ is generated by $\mu$ and $G_{1}$ . Set

$(H_{F}(\mathfrak{f})/G_{1})_{0}=\{c\in H_{F}(t)/G_{1} ; c(c)=c\}$ .
Then (0-9) implies that $(H_{F}(\mathfrak{f})/G_{1})_{0}$ is a subgroup of index two of $H_{F}(\mathfrak{f})/G_{1}$ .

Thus, it is now easy to see that the condition (0-9) is equivalent to the
following condition $(0-9)^{\prime}$ on $G$ :

(0-9) There exists a subgroup $G_{1}$ of $G$ with index 2 invariant under $\iota$ such
that

$[H_{F}(t)/G_{1}, (H_{F}(t)/G_{1})_{0}]=2$ .
THEOREM 2. Under the assumption(0-9) (which is equivalent to $(0-9)^{\prime}$ ), the

conjecture is true.

0-3. The present paper consists of three sections. In \S 1 we summarize
some results of Ramachandra [5] for later applications. In \S 2, we first recall
certain results of [7] and prove Theorem 1. In fact, Theorem 1 is implicit in
Corollary 2 to Theorem 1 of [7]. Then we show that, under the assumptions
of Theorem 2, $L_{F}(s, \chi)$ , where $\chi$ is a character of the group $H_{F}(\mathfrak{f})/G$ such that
$\chi(\nu)=-1$ , coincides with an $L$ function of a suitable imaginary quadratic field.
Applying results of Ramachandra, we can express $X_{f}(c, G)^{m}$ in terms of singular
values of elliptic modular functions and prove Theorem 2. We must emphasize
that assumptions imposed on Theorem 2 are quite restrictive. Moreover, the
expression (0-5) for $X_{f}(c)$ in terms of the function $F$ plays no role in our proof
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of Theorem 2. However, (0-5) is quite useful for numerical computations of
$X_{\mathfrak{f}}(c)$ . In \S 3, we report on a few numerical experiments based on (0-5) which
support the conjecture when Theorem 2 is not applicable.

0-4. When the author was writing down the first version of the present
paper, Stark’s papers $[10]-[12]$ were unknown to him. A summary of the first
version was announced in [8].

Notation.

As usual, we denote by $C,$ $R,$ $Q$ and by $Z$ the field of complex numbers,
the field of real numbers, the field of rational numbers and the ring of rational
integers, respectively. For $x\in R-\{0\}$ , sgn $(x)=x/|x|$ . For a complex number
$z,$ ${\rm Re}(z)$ (resp. ${\rm Im}(z)$ ) denotes the real part (resp. imaginary part) of $z$ . For
a finite set $S,$ $|S|$ is the cardinality of $S$. For a given group $G,$ $\langle g_{1}, g_{2}, \cdots, g_{m}\rangle$

$(g_{1}, g_{2}, \cdots, g_{m}\in G)$ is the subgroup of $G$ generated by $g_{1},$
$\cdots$ , $g_{m}$ . For a finite

algebraic number field $k,$ $\mathfrak{O}_{k}$ denotes the ring of integers of $k$ and $\mathfrak{d}_{k}$ denotes
the differente of $k$ . For $t\in k-\{0\},$ $(t)$ is the principal ideal of $k$ generated by
$t$ . For a fractional ideal $\mathfrak{a}$ of $k,$ $N(\mathfrak{a})$ is the (absolute) norm of $\mathfrak{a}$ . For any
integral ideal $\mathfrak{f}$ of $k,$ $H_{k}(t)$ , the group of narrow ray classes with conductor $\mathfrak{f}$,
is the quotient group $I_{k}(\mathfrak{f})/P_{+}(\mathfrak{f})$ , where $I_{k}(\mathfrak{f})$ is the group of fractional ideals
of $k$ prime to $\mathfrak{f}$ and $P_{+}(\mathfrak{f})$ is the group of principal ideals of $k$ generated by
totally positive numbers $t$ of $k$ such that the numerator of $(t-1)$ is divisible
by $\mathfrak{f}$

If $\mathfrak{f}_{0}$ is a divisor of $\mathfrak{f}$, the natural injection of $I_{k}(\mathfrak{f})$ into $I_{k}(\mathfrak{f}_{0})$ induces a
surjective homomorphism from $H_{k}(\mathfrak{f})$ onto $H_{k}(\mathfrak{f}_{0})$ . The homomorphism is called
the natural homomorphism from $H_{k}(\mathfrak{f})$ onto $H_{k}(\mathfrak{f}_{0})$ . For a character $\chi$ of the
group $H_{k}(\mathfrak{f})$ ,

$L_{k}(s, \chi)=\Sigma\chi(\mathfrak{a})N(\mathfrak{a})^{-s}$ ,

where the summation with respect to $\mathfrak{a}$ is over all the integral ideals of $k$

which are prime to $\mathfrak{f}$

For a normal extension $K$ of $k,$ $Ga1(K/k)$ denotes the Galois group of $K$

with respect to $k$ .
The gamma function is denoted by $\Gamma(s)$ and the m-th Bernoulli Polynomial

is denoted by $B_{m}(j\mathfrak{r})$ .

\S 1.

1. For real numbers $u,$ $v$ and for a complex number $z$ with positive ima-
ginary part, set
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$\Phi_{0}(\left(\begin{array}{l}v\\u\end{array}\right),$ $z)=\exp\{-i\pi u(v-uz)\}\frac{\theta_{1}(v-uz,z)}{\eta(z)}$ ,

where

$\theta_{1}(w, z)=-i\sum_{n\in Z}(-1)^{n}\exp\{i\pi z(n+\frac{1}{2})^{2}+2\pi iw(n+\frac{1}{2}$)}
and

$\eta(z)=\exp(\frac{\pi iz}{12})\prod_{n=1}^{\infty}(1-e^{2n\tau^{\sim}iz})$ .

It is known that for any integral unimodular matrix $M=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in SL_{2}(Z),$ $\Phi_{0}$

satisfies the following transformation formula:

(1) $\Phi_{0}(\left(\begin{array}{l}av+bu\\cv+du\end{array}\right),$ $\frac{az+b}{cz+d})=\epsilon(M)^{2}\Phi_{0}(\left(\begin{array}{l}v\\u\end{array}\right),$ $z)$ ,

where $\epsilon(M)^{2}$ is a twelfth root of unity which depends only on $M$. It is easy
to see that

$\Phi_{0}(\left(\begin{array}{l}v+1\\u\end{array}\right),$ $z)=-e^{-i\pi u}\Phi_{0}(\left(\begin{array}{l}v\\u\end{array}\right),$ $z)$ and

(2)

$\Phi_{0}(\left(\begin{array}{l}v\\u+1\end{array}\right),$ $z)=-e^{i\pi v}\Phi_{0}(\left(\begin{array}{l}v\\u\end{array}\right),$ $z)$ .

For details, see 3 of [5].

Let $k$ be the imaginary quadratic field with discriminant $d_{k}$ . Let $t$ be an
integral ideal of $k$ . For each $c\in H_{k}(\mathfrak{f})$ , the group of ideal classes modulo $t$ of
$k$, we are going to associate ray class invariants $\Phi_{f}(c)$ and $Z_{f}(c)$ following
Ramachandra [5]. At first, assume $\mathfrak{f}\neq \mathfrak{Q}_{k}$ . For an integral ideal $\mathfrak{b}$ in $c^{-1}$ ,
choose $\mu\in \mathfrak{b}$ with the congruence property $\mu\equiv 1(mod. t)$ . Let $\{\beta_{1}, \beta_{2}\}$ be a Z-
basis of the ideal $(\mathfrak{b}\mathfrak{f}\mathfrak{d}_{k})^{-1}$ such that ${\rm Im}(\beta_{2}/\beta_{1})>0$ . Let $f$ be the smallest positive
integer contained in $\mathfrak{f}$ . Set

(3) $\Phi_{f}(c)=\Phi_{0}((ttrr((\mu\mu\beta_{2}\beta_{1}))),$
$\beta_{2}/\beta_{1})^{12f}$

and

(4) $Z_{i}(c)=|\Phi_{f}(c)|^{1/6f}$ ,

where tr means the trace over the rational number field $Q$ . We note that
$tr(\mu\beta_{1})$ and $tr(\mu\beta_{2})$ are not simultaneously equal to rational integers if $\mathfrak{f}\neq \mathfrak{O}_{k}$ .
Hence $Z_{f}(c)\neq 0$ . It follows easily from equalities (1) and (2) that $\Phi_{f}(c)$ is inde-
pendent of the choice of $\mathfrak{b},$

$\mu,$
$\beta_{1}$ and $\beta_{2}$ . In fact, $\Phi_{f}(c)$ coincides with the

invariant $\Phi_{f.\mathfrak{g}}(c)$ for $\mathfrak{g}=\mathfrak{O}_{k}$ which was introduced by Ramachandra [5]. Next,
assume $\mathfrak{f}=\mathfrak{O}_{k}$ . Then the group $H_{k}(t)$ is the group of absolute ideal classes of
$k$ . For each $c\in H_{k}(t)$ , take an integral ideal $\mathfrak{b}$ in $c^{-1}$ and let $\{\beta_{1}, \beta_{2}\}$ be a Z-
basis for $(\mathfrak{b}\mathfrak{d}_{k})^{-1}$ , where ${\rm Im}(\beta_{2}/\beta_{1})>0$ . Let $h$ be the class-number of $k$ . Set
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$(\mathfrak{b}\mathfrak{d}_{k})^{h}=(\alpha)$ $(\alpha\in \mathfrak{Q}_{k})$ ,

(5) $\Phi_{f}(c)=(\beta_{1}^{12h}\alpha^{12})^{-1}\eta(\beta_{2}/\beta_{1})^{24h}$

and

(6) $Z_{f}(c)=|(\beta\frac{9}{1}N(\mathfrak{b}\mathfrak{d}_{k}))^{-1}\eta(\beta_{2}/\beta_{1})^{4}|=|\Phi_{f}(c)|^{1/6h}$ .

The Ramachandra invariant $\Phi_{f.\mathfrak{t}}(c)$ for $\mathfrak{g}=\mathfrak{Q}_{k}$ coincides with $|\Phi_{f}(c)|^{1fh}$ .
For each integral ideal $\mathfrak{f}$ of $k$ , we denote by $K_{k}(\mathfrak{f})$ the ray class field over $k$

with conductor $\mathfrak{f}$ . We denote by $\sigma_{k,f}$ the Artin canonical isomorphism from
$H_{k}(\mathfrak{f})$ onto Gal $(K_{k}(t)/k)$ . If no confusion is likely, we simply write $\sigma_{k}$ instead
of $\sigma_{k,\uparrow}$ .

Now we quote the following results on the arithmetic nature of the invari-
ant $\Phi_{f}(c)$ .

LEMMA 1. (i) If $\mathfrak{f}\neq \mathfrak{O}_{k},$ $\Phi_{f}(c)\in K_{k}(\overline{t})$ for any $c\in H_{k}(\mathfrak{f})$ , where $\overline{\mathfrak{f}}$ is the ideal
conjugate to $\mathfrak{f}$ Moreover $\Phi_{f}(c_{1})/\Phi_{f}(c_{2})$ is a unit for any $c_{1},$

$c_{2}\in H_{k}(\mathfrak{f})$ . Further-
more, $\{\Phi_{f}(c)\}^{\sigma_{k}}.\overline{\mathfrak{s}}^{(\overline{c}_{0})}=\Phi_{f}(cc_{0})$ for any $c,$ $c_{0}\in H_{k}(\mathfrak{f})$ .

(ii) If $\mathfrak{f}=\mathfrak{Q}_{k},$ $\Phi_{f}(c_{1})/\Phi_{f}(c_{2})$ is a unit in $K_{k}(t)$ for any $c_{1},$
$c_{2}\in H_{k}(\mathfrak{f})$ . More-

over, $\{\Phi_{f}(c_{1})/\Phi_{f}(c_{2})\}^{\sigma_{k}},\uparrow^{(c_{0)}}=\Phi_{f}(c_{1}c_{0}^{-1})/\Phi_{f}(c_{2}c_{0}^{-1})(c_{1}, c_{2}, c_{0}\in H_{k}(\mathfrak{f}))$ .
The first part of Lemma 1 follows immediately from Theorem 5 and Theo-

rem 7 of [5]. For the proof of the second part of Lemma 1, we refer to [4]
(13 and 20 in particular) and \S 2 of Chap. 2 of [9].

2. For $c\in H_{k}(t)$ , put $\zeta_{k}(s, c)=\sum N(\mathfrak{a})^{-s}$, where the summation with respect
to $\mathfrak{a}$ is over all integral ideals of $k$ which are prime to $f$ and are in the class
$c$ modulo $\mathfrak{f}$ It is well known that the Dirichlet series $\zeta_{k}(s, c)$ is absolutely con-
vergent for ${\rm Re} s>1$ and is extended to an analytic function in $C$ which is holo-
morphic except for a simple pole at $s=1$ . Denote by $\omega(t)$ the cardinality of
the group of units of $k$ which are congruent to 1 modulo $\mathfrak{f}$ The following
Proposition is a version of the Kronecker limit formula.

PROPOSITION 1. The notation being as above,

(i) $\omega(\mathfrak{f})\zeta_{k}(0, c)=\{$

$0$ if $\mathfrak{f}\neq \mathfrak{O}_{k}$ ,

$-1$ if $\mathfrak{f}=\mathfrak{O}_{k}$ .

(ii) $\omega(\mathfrak{f})\zeta_{k}^{\prime}(0, c)=\{$

$-\log Z_{f}(c)$ if $\mathfrak{f}\neq \mathfrak{O}_{k}$ ,

$-\log Z_{f}(c)$ –log4z2 if $\mathfrak{f}=\mathfrak{O}_{k}$ ,

(for notation, see (4) or (6)).

PROOF. Take an integral ideal $\mathfrak{b}$ in the ray class $c^{-1}$ . It follows easily
from the definition of $\zeta_{k}(s, c)$ that $\omega(f)N(\mathfrak{b})^{-s}\zeta_{k}(s, c)=\sum_{x}N(x)^{-s}$, where the sum-
mation with respect to $x$ is over all non-zero elements of $\mathfrak{b}$ with the congruence
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Property $x\equiv 1(mod \mathfrak{f})$ . Take a $\mu\in \mathfrak{b}$ such that $\mu\equiv 1(mod \mathfrak{f})$ . Since $\mathfrak{b}$ and $\mathfrak{f}$ are
mutually prime,

$\{x\in \mathfrak{b};x-1\in \mathfrak{f}\}=\{\mu+y;y\in \mathfrak{b}^{\mathfrak{k}}\}$ .
Thus, we have

$\omega(\mathfrak{f})N(\mathfrak{b})^{-s}\zeta_{k}(s, c)=\sum_{y\in bf}|\mu+y|^{-2s}$ .

APplying the Poisson summation formula, we obtain the following functional
equation for $\zeta_{k}(s, c)$ . For ${\rm Re} s<0$,

(7) $\omega(\mathfrak{f})N(\mathfrak{b})^{-s}\pi^{-s}\Gamma(s)\zeta_{k}(s, c)$

$=2N(\mathfrak{b}t)^{-1}\sqrt{|d_{k}|}^{-1}(4\pi)^{s- 1}\Gamma(1-s)\sum_{0\neq y\in(bfb_{k})^{-1}}N(y)^{s-1}$ exp ( $-2\pi i$ tr $(\mu y)$).

If $\mathfrak{f}\neq \mathfrak{O}_{k}$ , there exists a $y\in(\mathfrak{b}_{f}^{\vee}- \mathfrak{d}_{k})^{-1}$ such that tr $(\mu y)\not\in Z$. Hence, the second
Kronecker limit formula (see (6) of [5]) implies that the right side of (7) is
holomorphic at $s=0$ and is equal to

$\frac{-2|\beta_{1}|^{-2}}{N(\mathfrak{b}f)\sqrt{|d_{k}|}}(2{\rm Im}(\beta_{2}/\beta_{1}))^{-1}\log|\Phi_{0}(\left(\begin{array}{l}tr(\mu\beta_{2})\\tr(\mu\beta_{1})\end{array}\right),$ $\beta_{2}/\beta_{1})|$ ,

where $\{\beta_{1}, \beta_{2}\}$ is a Z-basis for $(\mathfrak{b}\mathfrak{f}_{1}\mathfrak{d}_{k})^{-1}$ such that ${\rm Im}(\beta_{2}/\beta_{1})>0$ .
Since 2Im $(\beta_{2}/\beta_{1})=\sqrt{|d_{k}|}N(\mathfrak{b}|\mathfrak{d}_{k})^{-1}|\beta_{1}|^{-2}$, we have $\zeta_{k}(0, c)=0$ and

$\omega(t)\zeta_{k}^{\prime}(0, c)=-2\log|\Phi_{0}(\left(\begin{array}{l}tr(\mu\beta_{2})\\tr(\mu\beta_{1})\end{array}\right),$ $\beta_{2}/\beta_{1})|=-\log Z_{f}(c)$ .

If $\mathfrak{f}=\mathfrak{Q}_{k}$ , tr $(\mu y)\in Z$ for any $y\in(\mathfrak{b}\mathfrak{d}_{k}t)^{-1}$ . Hence we have

$\omega(\mathfrak{f})\zeta_{k}(s, c)$

$=2(4\pi)^{s- 1}\pi^{s}\sqrt{|d_{k}|}^{-S}\frac{\Gamma(1-s)}{\Gamma(s)}\sum_{c\neq(m.n)\in Z}\{2{\rm Im}(\beta_{2}/\beta_{1})|m+n\beta_{2}/\beta_{1}|^{-2}\}^{1- s}$ .

Thus, the first Kronecker limit formula (see (5) of [5]) implies that

$\omega(\mathfrak{f})\zeta_{k}(0, c)=-1$

and
$\omega(t)\zeta_{k}^{\prime}(0, c)=-$ ( $2$ log $\pi+\log 4-\log\sqrt{|d_{k}|}+2\gamma$ )

$+2\gamma-4$ log $\{(2{\rm Im}(\beta_{2}/\beta_{1}))^{1/4}|\eta(\beta_{2}/\beta_{1})|\}$

$=-\log 4\pi^{2}-\log\{|\beta_{1}|^{-2}N(\mathfrak{b}\mathfrak{d}_{k})^{-1}|\eta(\beta_{2}/\beta_{1})|^{4}\}$

$=-\log Z_{f}(c)-\log 4\pi^{2}$,

where $\gamma$ is the Euler constant.
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COROLLARY TO PROPOSITION 1. For any non-Principal character $\xi$ of the
grouP $H_{k}(\mathfrak{f})$ ,

$(\frac{d}{ds}L_{k}(s, \xi))_{s=0c}=-\frac{1}{\omega(\mathfrak{f})}\sum_{R_{k}(\uparrow)}\xi(c)$ log $\{Z_{f}(c)\}$ ,

and
$L_{k}(0, \xi)=0$ .

3. We are going to introduce another invariant $W_{f}(c)(c\in H_{k}(\mathfrak{f}))$ which is
closely related to the invariant $Z_{f}(c)$ . Denote by $\mathfrak{P}(t)$ the set of prime divisors
of $\mathfrak{f}$ For each subset $S$ of $\mathfrak{P}(\mathfrak{f})$ , denote by $\mathfrak{f}(S)$ the intersection of all the
divisors of $t$ which are prime to any $\mathfrak{p}\in \mathfrak{P}(t)-S$ . In other words, if $t=\prod_{\mathfrak{p}\in \mathfrak{P}(f)}\mathfrak{p}^{\nu(\mathfrak{p})}$

( $\nu(\mathfrak{p})$ is a positive integer), $\mathfrak{f}(S)$ is given by $\mathfrak{f}(S)=\prod_{\mathfrak{p}\in S}\mathfrak{p}^{\nu(\mathfrak{p})}$ . Further, put

(8) $n(S)=\omega(\mathfrak{f}(S))|H_{k}(\mathfrak{f})|/|H_{k}(\mathfrak{f}(S))|$

and

(9) $W_{f}(c)=\prod_{s}Z_{f(S)}(\tilde{c}\prod_{\mathfrak{p}\in \mathfrak{P}(|)-S}(\tilde{\mathfrak{p}})^{-1})^{1/n(S)}$ ,

where the product is over all subsets $S$ of $\mathfrak{P}(\mathfrak{f})$ . In (9), for each $S,$ $ c\sim$ (resp. $\tilde{\mathfrak{p}}$ )

means the ray class modulo $\mathfrak{f}(S)$ represented by $c$ (resp. $\mathfrak{p}$ ). For each character
$\xi$ of the group $H_{k}(\mathfrak{f})$ , we denote by $\mathfrak{f}_{\xi}$ the conductor of $\xi$ and by $\xi$ the primi-
tive character of the group $H_{k}(\mathfrak{f}_{\xi})$ which corresponds to $\xi$ in a natural manner.

PROPOSITION 2. The notation being as above, for each non-Principal character
$\xi$ of the group $H_{k}(\mathfrak{f})$ ,

(10) $L_{k}^{\prime}(0,\tilde{\xi})=-\sum_{c\in H_{k}(f)}\xi(c)$ log $W_{f}(c)$ .

PROOF. It follows from (9) that the right side of (10) is equal to

(11) $-\sum_{S}\frac{1}{n(S)}A(S, \xi)$ ,

where we put

$A(S, \xi)=\sum_{c\in H_{k}(f)}\xi(c)$
log

$\{Z_{f(S)}(\tilde{c}\prod_{r\in \mathfrak{P}(\mathfrak{f})-S}\tilde{\mathfrak{p}}^{-1})\}$ .

In (11), the summation with respect to $S$ is over all subsets of $\mathfrak{P}(\mathfrak{f})$ . Denote
by $\mathfrak{P}(\xi)$ the set of prime divisors of $\mathfrak{f}_{\xi}$ . Assume $\mathfrak{P}(\xi)$ is not a subset of S.
Then the restriction of the character $\xi$ to the kernel of the natural homomor-
phism from $H_{k}(\mathfrak{f})$ onto $H_{k}(T(S))$ is non trivial. Thus $A(S, \xi)=0$ .

Now assume $s\supset \mathfrak{P}(\xi)$ and denote by $\xi_{S}$ the character of $H_{k}(\mathfrak{f}(S))$ which
corresponds to $\xi$ in a natural manner. In view of (8),

$\frac{A(S,\xi)}{n(S)}=\frac{1}{\omega(\mathfrak{f}(S))}\xi_{S}(\prod_{t\in \mathfrak{P}(f)-S}\tilde{\mathfrak{p}})\sum_{c\in H_{k}(f(S))}\xi_{S}(c)$ log $\{Z_{f(S)}(c)\}$ .
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On the other hand, it is easy to see that

$L_{k}(s, \xi)=L_{k}(s, \xi)\prod_{\mathfrak{p}\in \mathfrak{P}(f)-\mathfrak{P}(\xi)}(1-\frac{\tilde{\xi}(\mathfrak{p})}{N(\mathfrak{p})^{s}})^{-1}$

Furthermore, for each subset $S$ of $\mathfrak{P}(\mathfrak{f})$ which contains $\mathfrak{P}(\xi)$ ,

$L_{k}(s, \xi_{S})=L_{k}(s, \xi)\prod_{\mathfrak{p}\in \mathfrak{P}(|)-S}(1-\frac{\xi_{S}(\mathfrak{p})}{N(\mathfrak{p})^{s}})^{-1}$

Recall the following identity:

$ 1+\sum_{i=1}^{n}\frac{X_{i}}{1-x_{i}}+_{1\leqq i}\ovalbox{\tt\small REJECT}_{j\leqq n}\frac{X_{i}X_{j}}{(1-x_{i})(1-x_{j})}+\cdots$

$+\frac{x_{1}\cdot.\cdot.\cdot x_{n}}{(1-x_{1})\cdot(1-x_{n})}=\frac{1}{(1-x_{1})\cdots(1-x_{n})}$ .

In view of the identity, it is now easy to see that

$L_{k}(s, \xi)=\sum_{3}$ $\{ \prod_{\mathfrak{p}\in \mathfrak{P}(f)-S}\xi_{S}(\mathfrak{p})N(\mathfrak{p})^{-s}\}L_{k}(\xi_{S}, k)$ ,

where the summation with respect to $S$ is over all subsets of $\mathfrak{P}(\mathfrak{f})$ which con-
tains $\mathfrak{P}(\xi)$ . Since $\xi$ is non-principal, it follows from Corollary to Proposition 1
that

$L_{k}^{\prime}(0, \xi)=\sum_{s}\frac{-1}{\omega(\mathfrak{f}(s))}$ $\{ \prod_{\mathfrak{p}\in \mathfrak{P}(f)-S}\xi_{S}(\mathfrak{p})\}\times\sum_{c\in H_{k}(f(S))}\xi_{S}(c)$ log $\{Z_{f(S)}(c)\}$ ,

where the summation with respect to $S$ is over all subsets of $\mathfrak{P}(\mathfrak{f})$ which contain
$\mathfrak{P}(\xi)$ . Thus, the Proposition follows.

\S 2.

1. For a pair $\omega=(\omega_{1}, \omega_{2})$ of positive numbers and a positive number $z$, let
$\zeta_{2}(s, \omega, z)$ be the double zeta function given by

$\zeta_{2}(s, \omega, z)=\sum_{n.m=0}^{\infty}(z+m\omega_{1}+n\omega_{2})^{-s}$ .

It is known that $\zeta_{2}(s, \omega, z)$ is absolutely convergent for ${\rm Re} s>2$ and is extended
to a meromorphic function of $s$ in $C$ which is holomorphic except for simple
poles at $s=2$ and $s=1$ . Furthermore, there uniquely exists a meromorphic
function $\Gamma_{2}(z, \omega)$ of $z$, positive on the positive real axis which satisfies the fol-
lowing equalities:

$\{\frac{d}{ds}\zeta_{2}(s, \omega, z)\}_{s=0}=\log\{\frac{\Gamma_{2}(z,\omega)}{\rho_{2}(\omega)}\}$ ,
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where $\rho_{2}(\omega)$ is a positive constant independent of $z$ ,

$(z\Gamma_{2}(z, \omega))_{z=0}=1$ .

It satisfies the following difference equations.

$\Gamma_{2}(z+\omega_{1}, \omega)=\sqrt{2\pi}\Gamma(\frac{z}{\omega_{2}})^{-1}\Gamma_{2}(z, \omega)$ exp $\{(\frac{1z}{2\omega_{2}})$ log $\omega_{2}\}$

(12)

$\Gamma_{2}(z+\omega_{2}, \omega)=\sqrt{2\pi}\Gamma(\frac{z}{\omega_{1}})^{-1}\Gamma_{2}(z, \omega)$ exp $\{(\frac{1z}{2\omega_{1}})$ log $\omega_{1}\}$ .
Set $F(z, \omega)=\Gamma_{2}(z, \omega)/\Gamma_{2}(\omega_{1}+\omega_{2}-z)$ (cf. Proposition 5 of [7]). It follows easily

from (12) that $F$ satisfies difference equations (0-1). If $\omega_{2}/\omega_{1}$ is irrational, zeros
(resp. poles) of $F(z, \omega)$ are all simple and are situated at $z=m\omega_{1}+n\omega_{2}(m,$ $n=$

$1,$ 2, ) (resp. $z=-(m\omega_{1}+n\omega_{2}),$ $m,$ $n=0,1,$ 2, ).

2. Let $F$ be a real quadratic field embedded in the real field $R$ . For each
$x\in F,$ $x^{\prime}$ is the conjugate of $x$ . Let $\mathfrak{f}$ be an integral ideal of F. We always
assume that $t$ satisfies the condition (0-3).

Let $\chi$ be a character of the group $H_{F}(\mathfrak{f})$ . Then, for an integral principal
ideal $(\mu)$ of $F,$ $\chi((\mu))$ is given by one of the following four formulas:

$\chi((\mu))=x_{0}(\mu)$ ,

(13) $\chi((\mu))=x_{0}(\mu)$ sgn $(\mu)$ ,

(14) $\chi((\mu))=x_{0}(\mu)$ sgn $(\mu^{\prime})$ ,

$\chi((\mu))=x_{0}(\mu)$ sgn $(\mu\mu^{\prime})$ ,

where $\chi_{0}$ is a character of the group of invertible residue classes modulo $\mathfrak{f}$ .
The condition (0-3) for the ideal $\mathfrak{f}$ is equivalent to the following:

(15) The group $H_{F}(\mathfrak{f})$ has a character of type (13) or (14).

Take a totally positive integer $\nu$ of $F$ such that $\nu\equiv-1$ mod $t$ . Denote by $\nu(t)$

the ray class modulo $\mathfrak{f}$ represented by the integral principal ideal (v). The
condition (0-3) implies that $\nu(\mathfrak{f})$ is an element of order 2 of the group $H_{F}(\mathfrak{f})$ .
If there is no fear of confusion we write simply $\nu$ instead of $\nu(\mathfrak{f})$ . Let $\epsilon>1$ be
the fundamental totally positive unit of $F$. Choose integral ideals $\mathfrak{a}_{1},$ $\mathfrak{a}_{h_{0}}$

of $F$ so that they form a complete set of representatives for narrow ideal classes
of $F$. For each $c\in H_{F}(t_{1})$ , we define $X_{f}(c)$ by (0-5). We are now ready to prove
Theorem 1.

Proof of Theorem 1. Take the index $j$ such that $\mathfrak{a}_{j}\mathfrak{f}$ is in the same n,ar-
row ideal class as $c$ . Let $E_{+}(F)$ be the group of totally positive units of $F$
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and let $Z_{+}$ be the set of non-negative rational integers. Then it is easy to see
that the mapping:

$(z, m, n, u)-u(z+m+n\epsilon)$

establishes a bijection from the set $R(\epsilon, c)\times Z_{+}\times Z_{+}\times E_{+}(F)$ (for the definition
of $R(\epsilon, c)$ , see (0-4)) onto the set

$\{x\in(\mathfrak{a}_{j}\mathfrak{f})^{-1} ; x, x^{\prime}>0, (x)\mathfrak{a}_{j}\mathfrak{f}=c\}$ .
Thus, we have

$\zeta_{F}(s, c)=N(\mathfrak{a}_{j}t)^{-s}\sum_{z\in R(\epsilon c)},\sum_{m,n=0}^{\infty}N(z+m+n\epsilon)^{-s}$ .

It follows from Corollary to Proposition 1 of [6] that

(16) $\zeta_{F}(0, c)=\sum_{l}\{\frac{1}{4}(\epsilon+\epsilon^{\prime})B_{2}(x)+B_{1}(x)B_{1}(y)+\frac{1}{4}(\epsilon+\epsilon^{\prime})B_{2}(y)\}$

where the summation is over all $z=x+y\epsilon(x, y\in Q)$ of $R(\epsilon, c)$ . Furthermore,
Proposition 3 of [71 implies that

(17) $\{\frac{d}{ds}\zeta_{F}(s, c)\}_{s=0}$

$=\sum_{z=x+y\epsilon\in R(\epsilon,c)}[\log\{\frac{\Gamma_{2}(z,\epsilon)\Gamma_{2}(z^{\prime},\epsilon^{\prime})}{\rho_{2}(\epsilon)\rho_{2}(\underline{\epsilon})}\}+\frac{\epsilon-\epsilon^{\prime}}{4}$ log $(\frac{\epsilon^{\prime}}{\epsilon})B_{2}(x)]$

where we put $\epsilon=(1, \epsilon)$ and $\epsilon^{\prime}=(1, \epsilon^{\prime})$ .
For $z=x+y\epsilon\in R(\epsilon, c)$ , set

$\overline{-z}=\left\{\begin{array}{l}1-x+(1-y)\epsilon\\ 1-x\\1+(1-y)\epsilon\end{array}\right.$

$-\zeta_{F}(0, c)$ log $\{N(\mathfrak{a}_{j}\mathfrak{f})\}$ ,

if $0<x,$ $y<1$ ,

if $y=0,0<x<1$ ,

if $x=1,0<y<1$ .
It is easy to see that the mapping $z-\overline{-z}$ establishes a bijection from $R(\epsilon, c)$

onto $R(\epsilon, c\nu)$ . Furthermore the mapping $ x->1+x\epsilon$ establishes a bijection from
the set $\{x\in R(\epsilon, c);x\in Q, 0<x<1\}$ onto the set $\{(1+y\epsilon)\in R(\epsilon, c);y\in Q, 0<y<1\}$ .
If follows now easily from (16) and (17) that $\zeta_{F}(0, c)=\zeta_{F}(0, c\nu)$ and that

$\{\frac{d}{ds}\zeta_{F}(s, c)-\frac{d}{ds}\zeta_{F}(s, c\nu)\}_{s=0}$

$=\sum_{z\in R(\epsilon,C)}$ log $\{\frac{\Gamma_{2}(z,\epsilon)\Gamma_{2}(z^{\prime},\epsilon^{\prime})}{\Gamma_{2}(\overline{-z,}\underline{\epsilon})\Gamma_{2}((\overline{-z})^{\prime},\epsilon^{\prime})}\}$ .
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If $z=x+\epsilon y\in R(\epsilon, c)$ and $0<x,$ $y<1(x, y\in Q)$ ,

$\frac{\Gamma_{2}(z,\underline{\epsilon})\Gamma_{2}(z^{\prime},\epsilon^{\prime})}{\Gamma_{2}(\overline{-z},\epsilon)\Gamma_{2}(\overline{(-z})^{\prime},\epsilon^{\prime})}=F(z, \underline{\epsilon})F(z^{\prime}, \epsilon^{\prime})$ .

If $z=x\in R(\epsilon, c)$ and $0<x<1(x\in Q)$ , the difference equations (12) for $\Gamma_{2}$ imply
that

$\frac{\Gamma_{2}(x,\epsilon)\Gamma_{2}(x,\epsilon^{\prime})\Gamma_{2}(1+\epsilon x,\epsilon)\Gamma_{2}(1+\epsilon^{\prime}x,\epsilon^{\prime})}{\Gamma_{2}(1-x,\underline{\epsilon})\Gamma_{2}(1-x,\epsilon^{\prime})\Gamma_{2}(1+\epsilon(1-x),\underline{\epsilon})\Gamma_{2}(1+\epsilon(1-x),\epsilon^{\prime})}$

$=F(x, \underline{\epsilon})F(x, \underline{\epsilon}^{\prime})F(1+\epsilon x,-\epsilon-)F(1+\epsilon^{\prime}x, \epsilon^{\prime})$

(cf. the proof of Corollary 2 to Theorem 1 of [7]). The proof of Theorem 1
is now complete.

COROLLARIES TO THEOREM 1.
(i) $X_{t}(c\nu)=X_{f}(c)^{-1}$ .

(ii) If $\mathfrak{f}^{\prime}$ is the conjugate of $\mathfrak{f}$ and $c^{\prime}$ is the conjugate of $c$,

$X_{f}(c)=X_{f^{\prime}}(c^{\prime})$ .
3. We are going to introduce another invariant $Y_{f}(c)$ for $c\in H_{F}(\mathfrak{f})$ . As in

2, we assume that the integral ideal $\mathfrak{f}$ of $F$ satisfies the condition (0-3). Denote
by $\mathfrak{P}(\mathfrak{f})$ the set of prime divisors of $\mathfrak{f}$ For each subset $S$ of $\mathfrak{P}(\mathfrak{f})$ , denote by
$\mathfrak{f}(S)$ the intersection of all the divisors of $\mathfrak{f}$ which are prime to $\prod_{|\in \mathfrak{P}(f)-S}\mathfrak{p}$ . Further
put $n(S)=|H_{F}(\mathfrak{f})|/|H_{F}(\mathfrak{f}(S))|$ . For each $c\in H_{F}(\mathfrak{f})$ , set

(18) $Y_{f}(c)=\prod_{s}X_{\mathfrak{f}(S)}(\delta\prod_{f\in \mathfrak{P}(f)-S}(\mathfrak{p}\sim)^{-1})^{1/n(S)}$ ,

where the product is over all subsets of $\mathfrak{P}(\mathfrak{f})$ such that $\mathfrak{f}(S)$ satisfies the condi-
tion (0-3). In (18), for each $S,$ $ c\sim$ (resP. $\sim \mathfrak{p}$ ) is the ray class modulo $\mathfrak{f}(S)$ repre-
sented by $c$ (resp. $\mathfrak{p}$). For each character $\chi$ of the group $H_{F}(\mathfrak{f})$ , we denote by
$\mathfrak{f}_{\chi}$ the conductor of $\chi$ and by $\tilde{\chi}$ the primitive character of the group $H_{F}(\mathfrak{f}_{x})$

which corresponds to $\chi$ in a natural manner. The first half of the next pro-
position is an immediate consequence of Theorem 1. The proof of the second
half is quite similar to that of Proposition 2.

PROPOSITION 3. The notation being as above, let $\chi$ be a character of the
group $H_{F}(\mathfrak{f})$ such that $\chi(\nu)=-1^{(*)}$

(i) $\{\frac{d}{ds}L_{F}(s, \chi)\}_{s=0}=\sum_{c\in H_{F}(f)/<\nu>}\chi(c)$ log $X_{f}(c)$ ,

$\{\frac{d}{ds}L_{F}(s,\tilde{x})\}_{s=0}=\sum_{c\in H_{F}(fJ/<\nu>}\chi(c)$ log $Y_{f}(c)$ ,

$(*)$ In other words, $\chi$ is of type(13) or (14).
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where $\langle\nu\rangle$ is the subgroup of $H_{F}(\mathfrak{f})$ generated by $\nu$ .
COROLLARY TO PROPOSITION 3. Let $\mathfrak{f}_{0}$ be a divisor of $\mathfrak{f}$ which satisfies the

condition (0-3). Then for each $c\in H_{F}(\mathfrak{f}_{0}),$
$Y_{f_{0}}(c)=\prod_{x}Y_{f}(x)$ , where the product is

over all $x\in H_{F}(t)$ whose image under the natural homomorphism from $H_{F}(t)$ onto
$H_{F}(f_{0})$ coincides with $c$ .

4. In this paragraph, we assume that the group $H_{F}(\mathfrak{f})(f$ is an integral
ideal of $F$ ) has a character of type (14).

It is easy to see that $H_{F}(t)$ has a character of type (14) if and only if it
satisPes the condition (0-3) and the condition (0-6).

Take an integer $\mu$ of $F$ such that $\mu<0,$ $\mu^{\prime}>0$ and $\mu\equiv 1$ mod $\mathfrak{f}$ We denote
by $\mu(\mathfrak{f})$ the element of $H_{F}(t)$ represented by the principal ideal $(\mu)$ . Then $\mu(t)$

is an element of order at most 2 of the group $H_{F}(t)$ . When there is no fear
of confusion, we write simply $\mu$ instead of $\mu(\mathfrak{f})$ . Let $G$ be a subgroup of $H_{F}(t)$

which contains $\mu$ but does not contain $\nu$ . For each $c\in H_{F}(\mathfrak{f})$ , set

(19) $X_{f}(c, G)=\prod_{q\in G}X_{f}(cg)$ . (cf. (0-5))

Then $X_{f}(c, G)$ is an invariant for $c\in H_{F}(t)/G$ . We also set

(20) $Y_{f}(c, G)=\prod_{g\in G}Y_{f}(cg)$ . (cf. (18))

Let $\mathfrak{f}_{0}$ be a divisor of $\mathfrak{f}$ which satisfies conditions (C-3) and (0-6). Let $\tilde{G}$ be
the image of $G$ under the natural homomorphism from $H_{F}(\mathfrak{f})$ onto $H_{F}(\mathfrak{f}_{0})$ .
Corollary to Proposition 3 implies the following:

LEMMA 2. The notation being as above, for any $c_{0}\in H_{F}(\mathfrak{f}_{0})/\tilde{G}$ ,

$Y_{f_{0}}(c_{0},\tilde{G})=\prod_{c}Y_{f}(c, G)$ ,

where the product with respect to $c$ is over all $c\in H_{F}(t)/G$, whose image under
the natural homomorphism from $H_{F}(\mathfrak{f})/G$ onto $H_{F}(\mathfrak{f}_{0})/\tilde{G}$ coincides with $c_{0}$ .

We note that the Stark invariant $\epsilon_{m}(c)$ introduced in [10] is given by the
following formula:

(21) $\epsilon_{m}(c)=\{$

$X_{t}(c)^{m}X_{t}(c\mu)^{m}$ if $\mu\neq 1$ ,

$X_{f}(c)^{m}$ if $\mu=1$ .

5. The remaining part of the present paper is devoted to the proof of
Theorem 2 stated in the introduction. We use the notation given there without
further comment. We assume that $\mathfrak{f}$ is a self conjugate integral ideal of $F$

which satisPes the condition (0-3). Then $\mathfrak{f}$ satisfies also the condition (0-6).
Moreover $\mu=\mu(\mathfrak{f})$ is an element of order 2 of the group $H_{F}(\mathfrak{f})$ . We denote by
$\iota$ the non-trivial automorphism of the real quadratic field $F$ given by $\iota(x)=x^{\prime}$ .
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Then $\iota$ operates naturally on the group $H_{F}(\mathfrak{f})$ as an automorphism of order 2.
We put $\iota(c)=c^{\prime}$ for any $c\in H_{F}(t)$ .

LEMMA 3. If $\mathfrak{f}^{\prime}=\iota(\mathfrak{f})=\mathfrak{f},$ $\mu\mu^{\prime}=\nu$ .
PROOF. The ray class $\mu$ is represented by an integral principal ideal $(\mu_{0})$

generated by an integer $\mu_{0}$ such that $\mu_{0}<0,$ $\mu_{0}^{\prime}>0$ and $\mu_{0}-1\in f$ Then $-\mu_{0}\mu_{0}^{\prime}$

is a totally positive integer and $-\mu_{0}\mu_{0}^{\prime}\equiv-1$ mod $\mathfrak{f}$ . Thus, the ray class repre-
sented by the principal ideal generated by $-\mu_{0}\mu_{0}^{\prime}$ is $\nu$ . Thus $\mu\mu^{\prime}=\nu$ .

Assumptions on Thheorem 2 implies the existence of a subgroup $G_{1}$ of $G$ which
is invariant under $\iota$ and satisfies the following conditions (i) and (ii) (cf. $(0-9^{\prime})$ .

(i) The group $G$ is generated by $\mu$ and $G_{1}$ .
(ii) $[H_{F}(t)/G_{1} ; (H_{F}(\mathfrak{f})/G_{1})_{0}]=2$ .

To simplify the notation, we put $K=K_{F}(\mathfrak{f}, G_{1})$ , where $K_{F}(\mathfrak{f}, G_{1})$ is the subPeld
of $\sigma(G_{1})- fixed$ element9 of $K_{F}(\mathfrak{f})$ . Then the Artin map $\sigma$ establishes an isomor-
phism from $H_{F}(\mathfrak{f})/G_{1}$ onto Gal $(K/F)$ . Let $L$ be the subfield of $\sigma((H_{F}(\mathfrak{f})/G_{1})_{0})-$

fixed elements of $K$. It follows from the assumption (ii) of Theorem 2 that $L$

is a quadratic extension of $F$ .
LEMMA 4. The notation and assumptions being as above, $L$ is a composition

of $F$ with a suitable imaginary quadratic field $k$ . Moreover, $K$ is an abelian
extension of $k$ .

PROOF. Since $\mathfrak{f}$ and $G_{1}$ are invariant under the non-trivial automorphism $\iota$

of $F,$ $K$ is normal over the rational number field $Q$ . Furthermore, since
( $(H_{F}(\mathfrak{f})/G_{1})_{0}$ is an $\iota$-invariant subgroup of $H_{F}(\mathfrak{f})/G_{1},$ $L$ is also normal over $Q$ .
Thus, the group Gal $(L/Q)$ is either isomorphic to a cyclic group of order 4 or
to a direct product of cyclic groups of order 2. If Gal $(L/Q)$ were cyclic, there
would exist a rational prime $P$ which remains to be a prime ideal in $L$ . Then
$(p)$ is a prime ideal of $F$ which is invariant under $\iota$ . Thus $(p)\in(H_{F}(\mathfrak{f})/G_{1})_{0}$ .
Hence $(p)$ splits in $L$ . Contradiction ! Thus, $L$ is a composition of $F$ with a
suitable quadratic field $k$ . Since $\mu\not\in(H_{F}(\mathfrak{f})/G_{1})_{0},$ $L$ is not a totally real quadratic
extension of $F$ . Hence $k$ is an imaginary quadratic field. The field $K$, being
normal over $Q$ , is also normal over $k$ . The group Gal $(K/L)$ is an abelian
normal subgroup of index 2 of the group Gal $(K/k)$ . Take an element $\lambda$ of
Gal $(K/k)$ which is not in Gal $(K/L)$ . Then Gal $(K/k)$ is generated by $\lambda$ and
Gal $(K/L)$ . To prove that Gal $(K/k)$ is abelian it is sufficient to prove that $\lambda$

commutes with each element of Gal $(K/L)$ . Since $\lambda$ induces a non-trivial auto-
morphism on $L$ which is generated by $k$ and $F$ over $Q,$ $\lambda$ induces the non-
trivial automorphism $\iota$ on $F$. Take $\gamma\in Ga1(K/L)$ . Then there exists a $c\in H_{F}(\mathfrak{f})$

such that $\gamma=\sigma(c)$ . Then $\lambda\gamma\lambda^{-1}=\sigma(c^{\prime})$ . Since $c\in(H_{F}(t)/G_{1})_{0},$ $c^{\prime}c^{-1}\in G_{1}$ . Thus
$\sigma(c^{\prime})=\sigma(c)$ in Gal $(K/k)$ . Hence $\lambda\gamma\lambda^{-1}=\gamma$ and $\lambda$ commutes with $\gamma$ .

LEMMA 5. Let $\tau_{0}$ be an embedding of $K$ into $C$ which extends the prescribed
embedding of $F$ into R. Then for any $x\in K,\overline{\tau_{0}(x)}=\tau_{0}(x^{\sigma(\mu)})$ , where

–

denotes
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the complex conjugation.
PROOF. The field $K$ is a quadratic extension of the field $K_{F}(\mathfrak{f}, G)$ . The

Peld $K_{F}(t, G)$ is the subfield of $\sigma(\mu)- fixed$ elements of $K$. Set $\lambda(x)=\tau_{0}^{-1}(\overline{\tau_{0}(x)})$ .
Since $K$ is totally imaginary, $\lambda$ is an element of order 2 of Gal $(K/F)$ . On the
other hand, as an abelian extension of $F,$ $K_{F}(\mathfrak{f}, G)$ is unramified at the Archi-
medean prime which the prescribed embedding of $F$ into $R$ determines. Thus,
$\lambda$ induces the trivial automorphism on $K_{F}(\mathfrak{f}, G)$ . Hence $\sigma(\mu)=\lambda$ .

Since $K$ is abelian over $k$ , there exists an integral ideal $\mathfrak{c}$ of $k$ such that $K$

is a class field over $k$ with conductor $\mathfrak{c}$ . Let $H_{1}$ be the subgroup of $H_{k}(\mathfrak{c})$ to
which $K$ corresponds. Since $K$ is normal over $Q$, both $c$ and $H_{1}$ are invariant
under the non-trivial automorphism $\kappa$ of $k$ . Set

$(H_{k}(c)/H_{1})_{0}=\{c\in H_{k}(\mathfrak{c})/H_{1}, \kappa(c)=c\}$ .
Denote by $\sigma_{k}$ the Artin canonical isomorphism from $H_{k}(\mathfrak{c})/H_{1}$ onto Gal $(K/k)$ .

LEMMA 6. The notation being as above, the subfield of $\sigma_{k}(H_{k}(\mathfrak{c})/H_{1})_{0^{-}}fixed$

elements of $K$ coincides with $L$ .
PROOF. Denote by $H$ the subgroup of $H_{k}(\mathfrak{c})$ which corresponds to $L$ . Then

$H\supset H_{1}$ and $H/H_{1}$ is a subgroup of index 2 of the group $H_{k}(c)/H_{1}$ . For each
$c\in H,$ $\sigma_{k}(c)$ , which is in Gal $(K/L)\subset Ga1(K/F)$ , commutes with $\sigma(\mu)$ . Since $\sigma(\mu)$

induces the non-trivial automorphism on $k,$ $\sigma_{k}(\kappa c)=\sigma(\mu)\sigma_{k}(c)\sigma(\mu)^{-1}=\sigma_{k}(c)$ . Thus
$(\kappa c)c^{-1}\in H_{1}$ and $c\in(H_{k}(c)/H_{1})_{0}$ . Hence $(H_{k}(c)/H_{1})_{0}\supset H/H_{1}$ . Since $K$ is not abelian
over $Q,$ $(H_{k}(c)/H_{1})_{0}\neq H_{k}(c)/H_{1}$ . Hence $(H_{k}(c)/H_{1})_{0}=H/H_{1}$ and the Lemma follows.

Lemma 6 implies that $\sigma_{k}^{-1}\sigma$ induces an isomorphic mapping from the group
$(H_{F}(\mathfrak{f})/G_{1})_{0}$ onto the group $(H_{k}(c)/H_{1})_{0}$ . For each $c\in(H_{F}(t)/G_{1})_{0}$ , we put

(22) $\dot{c}=\sigma_{k}^{-1}\sigma(c)$ .
LEMMA 7. For $c\in H_{k}(c)/H_{1},$ $c^{-1}\kappa(c)=1$ or $\dot{\nu}$ according as $c\in(H_{k}(\mathfrak{c})/H_{1})_{0}$ or

not.
PROOF. In view of Lemma 3 and the assumption (ii) of Theorem 2, a

system of generators for the commutator subgroup of Gal $(K/Q)$ is given by

$\{\sigma(c\iota(c)^{-1});c\in H_{F}(\mathfrak{f})/G_{1}\}=\{1, \sigma(\nu)\}$ .
It is also given by $\{\sigma_{k}(c\kappa(c)^{-1}):c\in H_{k}(\mathfrak{c})/H_{1}\}$ . Thus $\sigma_{k}(c\kappa(c)^{-1})=1$ or $\sigma(\nu)$ accord-
ing as $c\in(H_{k}(c)/H_{1})_{0}$ or not.

In the remaining part of the proof of Theorem 2, the following situation
(23) should be always kept in mind.

(23) The Peld $K$ is the class field over $F$ with conductor $\mathfrak{f}$ which cor-
responds to the subgroup $G_{1}$ of $H_{F}(\mathfrak{f})$ . At the same time, $K$ is
the class field over $k$ with conductor $c$ which corresponds to the
subgroup $H_{1}$ of $H_{k}(c)$ .
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The following proposition plays a key role in the proof of Theorem 2.
PROPOSITION 4. For each $c\in(H_{F}(\mathfrak{f})/G_{1})_{0}$,

$Y_{f}(c, G)=\prod_{h\in B_{1}}(W_{c}(\dot{c}\dot{\nu}h)/W_{c}(\dot{c}h))$

(for notation see (9), (18) and (20)).

PROOF. Recall that the integral ideal $\mathfrak{f}$ of $F$ satisfies the conditions (0-3)

and (0-6), and that the subgroup $G$ of $H_{F}(\mathfrak{f})$ contains $\mu$ but does not contain $\nu$ .
Thus, the group $H_{F}(\mathfrak{f})/G$ has a character $\chi$ of type (14). Then $\chi(\nu)=-1$ .
Denote by $\mathfrak{f}_{x}$ the conductor of $\chi$ and by $\tilde{\chi}$ the primitive character of the group
$H_{k}(\mathfrak{f}_{x})$ which corresponds to $\chi$ in a natural manner. Then Proposition 3 implies
that

$\{\frac{d}{ds}L_{F}(s,\tilde{x})\}_{s=0}=\sum_{c\in H_{F}(\mathfrak{f})/<\nu>}\chi(c)$ log $Y_{f}(c)$

$=\sum_{c\in H_{F}(f)/<G,\nu>}\chi(c)$
log

$\{ \prod_{g\in G}Y_{f}(cg)\}$

$=\sum_{\backslash c\in H_{F}(f)/0,\nu>}\chi(c)$
log $\{Y_{f}(c, G)\}$ ,

where $\langle G, \nu\rangle$ is the subgroup of $H_{F}(\mathfrak{f})$ generated by $G$ and $\nu$ . Recall that $G$ is
generated by $G_{1}$ and $\mu$ and that $(H_{F}(\mathfrak{f})/G_{1})_{0}$ is a subgroup of index 2 of $H_{F}(t)/G_{1}$

such that $\nu\in(H(\mathfrak{f})/G_{1})_{0}$ and $\mu\not\in(H(\mathfrak{f})/G_{1})_{0}$ . Thus, $ H_{F}(\mathfrak{f})/\langle G, \nu\rangle$ is naturally iden-
tified with $(H_{F}(\mathfrak{f})/G_{1})_{0}/\langle\nu\rangle$ and

(24) $\{\frac{d}{ds}L_{F}(s,\tilde{x})\}_{s=0}=\sum_{1C0}\chi(c)\in(H_{F}(f)’(f)/<\nu>$ log $\{Y_{\mathfrak{f}}(c, G)\}$ .

Denote by $x^{\prime}$ the character of $H_{F}(t)$ given by $x^{\prime}(c)=x(c^{\prime})=x(\iota(c))$ . Since $\chi(\nu)=$

$\chi(\mu(\mu^{\prime})^{-1})=-1$ ,

(25) $\chi\neq\chi$ ’

Via the Artin canonical isomorphism $\sigma$, identify $\chi$ with a character of Gal $(K/F)$

and denote by $\psi_{\chi}$ the character of Gal $(K/Q)$ induced from $\chi$ . Then (25) implies
that $\psi_{\chi}$ is irreducible and of degree 2. Denote by $L(s, \psi_{\chi}, K/Q)$ the Artin L-
function of $K$ associated with character $\psi_{\chi}$ . Then a well-known result in the
theory of Artin L-function implies

(26) $L(s, \psi_{x}, K/Q)=L_{F}(s,\tilde{x})$ .
The group Gal $(K/k)$ is an abelian subgroup of index 2 of Gal $(K/Q)$ . Since $\psi_{\chi}$

is irreducible and of degree 2, the restriction of $\psi_{\chi}$ to Gal $(K/k)$ is a direct sum
of two distinct non-trivial one dimensional characters $\xi_{\chi}$ and $\xi_{\chi}^{\prime}$ of Gal $(K/k)$ .
Furthermore the character of Gal $(K/Q)$ induced from $\xi_{\chi}$ coincides with $\psi_{\chi}$ .
We note that
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(27) $x=x^{\prime}=\xi_{\chi}=\xi_{\chi}^{\prime}$ on Gal $(K/L)$ .
Identify $\xi_{\chi}$ and $\xi_{\chi}^{\prime}$ with characters of the group $H_{k}(c)$ via the Artin canonical
isomorphism $\sigma_{k}$ . Then

(28) $\xi_{\chi}^{\prime}(c)=\xi_{\chi}(\kappa(c))$ $(c\in H_{k}(\mathfrak{c}))$ ,

where $\kappa$ is the non-trivial automorphism of $k$ . Lemma 6, Lemma 7 and equalities
(27) and (28) imply the following:

(29) $\xi_{\chi}(c)=\xi_{\chi}^{\prime}(c)$ $(\forall c\in(H_{k}(\mathfrak{c})/H_{1})_{0})$

$\xi_{\chi}(c)=-\xi_{\chi}^{\prime}(c)$ $(\forall c\in H_{k}(\mathfrak{c})/H_{1}-(H_{k}(c)/H_{1})_{0})$ .

Denote by $c_{/\vee}$ (resp. $c_{\chi\prime}$ ) the conductor of $\xi_{\chi}$ (resp. $\xi_{\chi}^{\prime}$) and let $\tilde{\xi}_{\chi}$ (resp. $\xi_{\chi}^{\prime}$ ) be
the primitive character of the group $H_{k}(\mathfrak{c}_{\chi})$ (resp. $H_{k}(c_{\chi/})$) which corresponds to
$\xi_{\chi}$ (resp. $\xi_{\gamma}^{\prime}.$ ) in a nutural manner. Then

(30) $L(s, \psi_{\chi}, K/Q)=L_{k}(s, \xi_{\chi})=L_{k}(s, \xi_{x}^{\prime})$ .

Proposition 2 implies that

(31) $\{\frac{d}{ds}L_{k}(s, \xi_{\chi})\}_{s=0}=-\sum_{c\in H_{k}(c)}\xi_{\chi}(c)$ log $W_{c}(c)$

$=-\sum_{c\in H_{k}(\mathfrak{c})/H_{1}}\xi_{\chi}(c)$ log $\{\prod_{h\in H_{1}}W_{c}(ch)\}$

$=\{\frac{d}{ds}L_{k}(s,\tilde{\xi}_{x}^{\prime})\}_{s=0}$

$=-\sum_{c\in H_{k}(c)/H_{1}}\xi_{x}^{\prime}(c)$ log $\{\prod_{h\in H_{1}}W_{c}(ch)\}$ .

The equalities (29) and (31) now imply that

$\{\frac{d}{ds}L_{k}(s, \xi_{\chi})\}_{s=0}=-\sum_{c\in(H_{k}(c)/H_{1})_{0}}\xi_{\chi}(c)$ log $\{\prod_{h\in H_{1}}W_{c}(ch)\}$ .

The mapping $\sigma_{k}^{-1}\sigma$ induces an isomorphism: $c-\dot{c}$ from $(H_{F}(\mathfrak{f})/G_{1})_{0}$ onto
$(H_{k}(\mathfrak{c})/H_{1})_{0}$ such that $\xi_{\chi}(\dot{c})=x(c)$ . It follows from the above equality and
equalities (24), (26) and (30) that

(32)
$\sum_{c\in(H_{F}(f)/0_{1})_{0}/<\nu>}\chi(c)$ log $Y_{f}(c, G)$

$=-\sum_{c\in(H_{F}(\uparrow)/G_{1})_{0}}\chi(c)$ log $\{\prod_{h\in H_{1}}W_{c}(\dot{c}h)\}$

$=\sum_{c\in(H_{F}(f)/0_{1})_{0}/<\nu>}\chi(c)$
log $\{\prod_{h\in H_{1}}\frac{W_{c}(\dot{c}\dot{\nu}h)}{W_{l}(\dot{c}h)}\}$ .

The equality (32) holds for any character $\chi$ of $H_{F}(\mathfrak{f})/G$ of type (14). Now let
$\chi_{1}$ be a character of $H_{F}(\mathfrak{f})/G$ of type (14). Then the mapping: $\eta-\chi_{1\eta}$ esta-
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blishes a bijection from the set of characters of $ H_{F}(\mathfrak{f})/\langle G, \nu\rangle$ onto the set of
characters of $H_{F}(\mathfrak{f})/G$ of type (14). It is easy to see that the group $ H_{F}(\mathfrak{f})/\langle G, \nu\rangle$

is isomorphic to the group $(H_{F}(\mathfrak{f})/G_{1})_{0}/\langle\nu\rangle$ . Thus the equality (32) now implies

$Y_{f}(c, G)=\prod_{h\in H_{1}}\frac{W_{\mathfrak{c}}(\dot{c}\dot{\nu}h)}{W_{c}(\dot{c}h)}$ for any $c\in(H_{F}(\mathfrak{f})/G_{1})_{0}$ .

The proof of Proposition 4 is now complete.
PROPOSITION 5. For a suitable positive rational integer $m$ , the following

assertions (i), (ii) and (iii) hold.
(i) $Y_{f}(c, G)^{m}(c\in H_{F}(\mathfrak{f})/G)$ is a unit in $K_{F}(\mathfrak{f}, G)$ and generates $K_{F}(\mathfrak{f}, G)$ over $F$.

(ii) $\{Y_{i}(c, G)^{m}\}^{\sigma_{F}(c_{0})}=Y_{f}(cc_{0}, G)^{m}(\forall c_{0}\in H_{F}(\mathfrak{f}))$ .
(iii) Let $\tau$ be an embedding of $K_{F}(\mathfrak{f}, G)$ into $C$ inducing the non-trivial

automorphism on $F$, then $\tau(Y_{f}(c, G)^{m})$ is a complex number of modulus 1.
PROOF. Recall that $(H_{F}(\mathfrak{f})/G_{1})_{0}$ is a complete set of representatives for

$H_{F}(t)/G$ . Hence it is sufficient to prove Proposition assuming $c,$ $c_{0}\in(H_{F}(t)/G_{1})_{0}$ .
For $t\in H_{k}(c)$ and for a divisor $\mathfrak{c}_{0}$ of $c$ , set

(33) $\psi(t, H_{1}, c_{0})=\prod_{n\in H_{1}}\frac{\Phi_{\mathfrak{c}_{0}}(th\dot{\nu})\sim}{\Phi_{\mathfrak{c}_{0}}(th)\sim}$

(for notation, see (3) and (5)),

where $\tilde{t}$ is the image of $t$ under the natural homomorphism from $H_{k}(c)$ onto
$H_{k}(\mathfrak{c}_{0})$ . Since both $\mathfrak{c}$ and $H_{1}$ are invariant under the non-trivial automorphism
$\kappa$ of $k$ , Lemma 1 implies that

(34) $\psi(t, H_{1}, c_{0})\in K_{k}(\mathfrak{c}, H_{1})$ and that

(35) $\{\psi(t, H_{1}, c_{0})\}^{\sigma_{k^{(i^{\prime})}}}=\psi(t\kappa(t^{\prime}), H_{1}, \mathfrak{c}_{0})$ $(\forall t^{\prime}\in H_{k}(\mathfrak{c}))$ .
In particular if $t^{\prime}\in(H_{k}(c)/H_{1})_{0}$ ,

(36) $\psi(t, H_{1}, \mathfrak{c}_{0})^{\sigma_{k}(t’)}=\psi(tt^{\prime}, H_{1}, \mathfrak{c}_{0})$ .
For an element $\alpha=\sum m_{i}t_{i}(m_{i}\in Z, t_{i}\in H_{k}(c))$ of the group ring $Z[H_{k}(c)]$ of $H_{k}(c)$

with rational integral coefficients, we put

(37) $(\alpha\psi_{c_{0}})(t)=\prod_{i}\psi(tt_{i}, H_{1}, c_{0})^{m_{i}}$ .

It follows from Proposition 4 and equalities (9), (6) and (4) that for a suitable
choice of a positive integer $m$ and suitable choices of $\alpha(c_{0})\in Z[H_{k}(c)]$ for each
divisor $\mathfrak{c}_{0}$ of $\mathfrak{c}$ , the following equality holds for any $c\in(H_{F}(f)/G_{1})_{0}$ :

$Y_{f}(c, G)^{m}=\prod_{c_{0}}(\alpha(\mathfrak{c}_{0})\psi_{\mathfrak{c}_{0}})(\dot{c})(\overline{\alpha(\mathfrak{c}_{0})\psi_{c_{0}})(\dot{c})}$ ,

where $denotes$ the complex conjugation and the product with respect to
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$\mathfrak{c}_{0}$ is over all the divisors of $c$ . It follows now immediately from Lemma 1 that
$Y\uparrow(\mathfrak{c}, G)^{m}$ is a unit in $K=K_{k}(\mathfrak{c}, H_{1})=K_{F}(\mathfrak{f}, G_{1})$ . Lemma 5 together with equality
(34) shows that $\alpha(c_{0})\psi_{c_{0}}(\dot{c})$ is in $K$ and that $(\alpha(c_{0})\psi_{\mathfrak{c}_{0}})(\dot{c})=(\alpha(\mathfrak{c}_{0})\psi_{\mathfrak{c}_{0}})(\dot{c}))^{\sigma()}\mu$ . Thus,
$Y_{f}(c, G)^{m}$ is $\sigma(\mu)$ -invariant. Since $G$ is generated by $\mu$ and $G_{1},$ $Y_{f}(c, G)^{m}\in K_{F}(\mathfrak{f}, G)$ .
For $c^{\prime}\in(H_{F}(\mathfrak{f})/G_{1})_{0}$ , it follows from (22), and (36) that

$\{\alpha(c_{0})\psi_{c_{0}}(\dot{c})\overline{\alpha(\mathfrak{c}_{0})\psi_{c_{0}}(\dot{c})\}}^{\sigma(c^{t})}=\{\alpha(\mathfrak{c}_{0})\psi_{c_{0}}(\dot{c})\overline{\alpha(c_{0})\psi_{\mathfrak{c}_{0}}(c})\}^{\sigma_{k}(c^{})}$

$=\{\alpha(c_{0})\psi_{c_{0}}(\dot{c}c^{\prime})\overline{\alpha(c_{0})\psi_{c_{0}}(\dot{c}\dot{c}^{\prime})}\}$ .

Thus, $\{Y_{f}(c, G)^{m}\}^{\sigma(C^{\prime})}=Y_{f}(cc^{\prime}, G)^{m}$ . Hence,

$\{Y_{f}(c, G)^{m} ; c\in H_{F}(\mathfrak{f})/G\}$

is a system of units of $K_{F}(\mathfrak{f}, G)$ which are mutually conjugate over $F$ . Set

$\Gamma_{c}=\{c_{0}\in H_{F}(\mathfrak{f})/G;Y_{f}(cc_{0}, G)^{m}=Y_{f}(c, G)^{m}\}$ .

Then $\Gamma_{c}$ is a subgroup of $H_{F}(\mathfrak{f})/G$ which is independent of $c$ . Assume $\nu\in\Gamma_{c}$ ,
then Corollary to Theorem 1 implies that $Y_{f}(c, G)=1$ for any $c\in H_{F}(\mathfrak{f})/G$ .
Hence, it follows from Proposition3 that $\{\frac{d}{ds}L_{F}(s,\tilde{x})\}_{s=0}=0$ for any character

$\chi$ of $H_{F}(t)/G$ of tyPe (14).
If $\Gamma_{c}\neq\{1\}$ and if $\nu\not\in\Gamma_{c}$ , there would exist a character $\chi$ of the group

$H_{F}(t)/G$ of type (14) which is non-trivial on $\Gamma_{c}$ . Then it follows from Proposi-
tion 3 that

$m\{\frac{d}{ds}L_{F}(s,\tilde{x})\}_{s=0}=\sum_{c\in H_{F}(f)/<G,\nu>}\chi(c)$ log $Y_{f}(c, G)^{m}=0$ .

However it follows immediately from the functional equation for $L_{F}(s,\tilde{x})$ and

the inequality $L_{F}(1,\tilde{\chi})\neq 0$ that $\{\frac{d}{ds}L_{F}(s,\tilde{\chi})\}_{s=0}\neq 0$ for any primitive character
$\tilde{\chi}$ of type (14). Hence $\Gamma_{c}=\{1\}$ . Thus $Y_{f}(c, G)^{m}genera[esK_{F}(\mathfrak{f}, G)$ over $F$.

To prove (iii), we may put

$\tau=\sigma_{k}(c^{\prime})$ $(c^{\prime}\in H_{k}(c)/H_{1}-(H_{k}(\mathfrak{c})/H_{1})_{0})$ .

Then it follows from Lemma 7 and (35) that

$\tau(\alpha(c_{0})\psi_{c_{0}}(\dot{c})\overline{\alpha(c_{0})\psi_{\mathfrak{c}_{0}}(c))}=\overline{\alpha(c_{0})\psi_{\mathfrak{c}_{0}}(\dot{c}c^{\prime}})\alpha(\mathfrak{c}_{0})\psi_{c_{0}}(\dot{c}c^{\prime}\dot{\nu})$ .

In view of (33) it is easy to see that $|(\alpha(c_{0})\psi_{c_{0}}(c)\alpha(c_{0})\psi_{c_{0}}(c\dot{\nu})|=1$ . Thus,

$|\tau(Y_{f}(c, G)^{m})|=1$ .
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Proof of Theorem 2. Let $\mathfrak{f}_{0}$ be a divisor of $f$ which satisfies the condi-
tions (0-3) and (0-6). Let $G_{f_{0}}$ be the image of $G$ under the natural homomor-
phism from the group $H_{F}(t)$ onto $H_{F}(\mathfrak{f}_{0})$ . For each $\alpha=\sum m_{i}c_{i}(m_{i}\in Z, c_{i}\in H_{F}(\mathfrak{f}_{0}))$ ,
we put

$(\alpha Y_{f_{0}})(c, G_{f_{0}})=\prod_{t}Y_{i_{0}}(cc_{i}, G_{f_{0}})^{m_{i}}$ .

In view of Proposition 5 and Lemma 2, to prove Theorem 2, it is sufficient to
prove the following Lemma 8:

LEMMA 8. Take a suitable positive integer $m^{\prime}$ . Furtherrnore, for each divisor
$\mathfrak{f}_{1}$ of $\mathfrak{f}_{0}$ with conditions (0-3) and (0-6), choose suitable $\alpha(\mathfrak{f}_{1})\in Z[H_{F}(\mathfrak{f}_{1})]$ . Then

$X_{f_{0}}(c, G_{f_{0}})^{m^{\prime}}=\prod_{f_{1}}(\alpha(\mathfrak{f}_{1})Y_{f_{1}})(c, G_{f_{1}})^{m}$ , $(\forall c\in H_{F}(\mathfrak{f}_{0}))$ ,

where the product is over all divisors $\mathfrak{f}_{1}$ of $\mathfrak{f}_{0}$ with conditions (0-3) and (0-6) (for

notation see (20), (19) and (18)).

PROOF. Apply the induction with respect to the number of divisors of $\mathfrak{f}_{0}$

with properties (0-3) and (0-6).

REMARK. 1. For the following pairs of $F$ and $\mathfrak{f}$, assumptions of Theorem
2 are all satisfied if one puts $G=\langle\mu\rangle,$ $G_{1}=\{1\}$ :

$F=Q(\sqrt{5})$ , $\mathfrak{f}=(11)$ ; $F=Q(\sqrt{5})$ , $\mathfrak{f}=(3\sqrt 5)$ ;

$F=Q(\sqrt{17})$ , $\mathfrak{f}=(4\sqrt{17})$ ; $F=Q(\sqrt{21})$ , $\mathfrak{f}=(\sqrt{21})$ ;

$F=Q(\sqrt{10})$ , $\mathfrak{f}=(3)$ .

2. A coincidence of an L-series of a real quadratic field with an L-series
of an imaginary quadratic field was first observed by Hecke in [14].

\S 3.

In this section we discuss a few numerical examples. We use previously
introduced notation without further comment.

1. Set $F=Q(\sqrt{5}),$ $\mathfrak{f}=(4)$ . The class number (in a narrow sense) of $F$ is
1. We may Put $\nu=(3)$ and $\mu=(3-2\sqrt{5})$ . Set $\epsilon_{0}=(1+\sqrt{5})/2$ and $\epsilon=(3+\sqrt{5})/2$ .
Then $\epsilon_{0}$ (resp. $\epsilon$ ) is a fundamental (resp. fundamental totally positive) unit of
$F$. It is easy to see that the group $H_{F}(\mathfrak{f})$ is an abelian group of type $(2, 2)$

generated by $\mu$ and $\nu$ . Furthermore,

$H_{F}(\mathfrak{f})_{0}=\{c\in H_{F}(\mathfrak{f});c^{\prime}=c\}=\{1, \nu\}$ .
Thus, $[H_{F}(\mathfrak{f}), H_{F}(\mathfrak{f})_{0}]=2$ . We may put $\mathfrak{a}_{1}=\mathfrak{Q}_{F}$ as a representative for the nar-
row ideal class of $F$. By a simple computation, we have
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$ X_{i}(1)=F(1/4, (1, \epsilon))F(1+\epsilon/4, (1, \epsilon))F((3+3\epsilon)/4, (1, \epsilon))\times$

$\times F(1/4,$ $(1,\hat{\circ}())F(1+\epsilon^{\prime}/4, (1. \epsilon^{\prime}))F((3+3\epsilon^{\prime})/4, (1, \epsilon^{\prime}))$

$=F(1/4, (1, \epsilon))^{2}F(1+\epsilon/4, (1, \epsilon))^{2}F((3+3\epsilon)/4, (1, \epsilon))^{2}$

$=F(1/4, (1, \epsilon^{\prime}))^{2}F(1+\epsilon^{f}/4, (1, \epsilon^{\prime}))^{2}F((3+3\epsilon^{\prime})/4, (1, \epsilon^{\prime}))^{2}$

(see \S 3.1 of [7]).

Since $\mu^{\prime}=\mu\nu$ , Corollary to Theorem 1 and the equality $\zeta_{F}(s, \mu)=\zeta_{F}(s, \mu^{\prime})$

imply that $X_{f}(\mu)=1$ . Set $G=\{1, \mu\}$ . Then $G$ is a subgroup of order 2 of $H_{F}(t)$ .
We have

$X_{f}(1, G)=X_{\mathfrak{f}}(1)$ and $X_{f}(\nu, G)=X_{f}(1, G)^{-1}$ .

Since there is no proper divisor of $\mathfrak{f}$ with the property(0-3),

$Y_{f}(1, G)=X_{f}(1, G)=X_{f}(1)$ .

It is easy to see that the ray class field $K_{F}(f)$ is given by $K=F(\sqrt{\epsilon_{0}}, \sqrt{\epsilon_{0}^{\prime}})$ .
The subfield of $\sigma_{F}(H_{F}(\mathfrak{f})_{0})$-fixed elements of $K$ is given by $L=F(\sqrt{-5})$ . Set
$k=Q(\sqrt{-5})$ . Then $K$ is the ray class field with conductor $c=(2)$ over $k$ . The
group $H_{k}(\mathfrak{c})$ is a cyclic group of order 4 generated by $c_{0}=[3,2+\sqrt{-5}]$ . Fur-
thermore,

$H_{k}(\mathfrak{c})_{0}=\{c\in H_{k}(c);\overline{c}=c\}=\{(1), (2+\sqrt{-5})\}$ .

By a simple computation, we have

$Z_{c}((1))=|\frac{\theta_{2}(\sqrt{-5})}{\eta(\sqrt{-5})}|^{2}$ and $Z_{c}((2+\sqrt{-5}))=|\frac{\theta_{0}(\sqrt{-5})}{\eta(\sqrt{-5})}|^{2}$ (cf. (4)), where

$\theta_{0}(\tau)=\sum_{n\in Z}(-1)^{n}q^{n^{2}}$ , $\theta_{2}(\tau)=\sum_{n\in Z}q^{(n+1/2)^{2}}$ ,

$\theta_{3}(\tau)=\sum_{n\in Z}q^{n^{2}}$
$(q=e^{\pi i\tau})$ .

Since $\omega_{\mathfrak{c}}=2$,

$\frac{W_{c}((2+\sqrt{-5}))}{W_{c}((1))}=\{\frac{Z_{c}((2+\sqrt{-5}))}{Z_{\mathfrak{c}}((1))}\}^{1/2}=\sqrt{\frac{k^{\prime}}{k}}$ (cf. (9)),

where $k=\theta_{2}^{2}(\sqrt{-5})/\theta_{3}^{2}(\sqrt{-5})$ and $k^{\prime}=\theta_{0}^{2}(\sqrt{-5})/\theta_{8}^{2}(\sqrt{-5})$ .
It is known (see Tabelle 6 of [13]) that $4/kk^{\prime}=(1+\sqrt{5})^{3}$ .
Since $k^{2}+k^{\prime 2}=1$ and $k^{\prime}>k>0$ ,

$k^{\prime 2}=1/2+1/\sqrt{\epsilon_{0}^{3}}$ and $k^{2}=1/2-1/\sqrt{\epsilon_{0}^{3}}$ .
Thus, Proposition 4 and the equality $\sqrt{\epsilon_{0}^{3}}=\sqrt{\epsilon_{0}}+\sqrt{\epsilon_{0}^{-1}}$ imply that

$Y_{\mathfrak{f}}(1, G)=X_{f}(1)=\sqrt{k^{\prime}}/k=\sqrt{\epsilon_{0}}(1+\sqrt{\epsilon_{0}})$ .
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The equality is consistent with the result of \S 3.1 of [7].

2. In the remaining part of this section we discuss two numerical exam-
ples of conjecture (0-7) for which Theorem 2 is not applicable. We show that
numerical computations based on (0-5) provide encouraging evidences which
support the conjecture (0-7). We note that, by (C-5), the numerical computa-
tions of the invariants $X_{f}(c)$ are reduced to those of log $\Gamma_{2}(z, (1, \epsilon^{\prime}))$ for $z$

sufficiently large and positive. Then, the asymptotic series for log $\Gamma_{2}$ given in
Proposition 4 of [7] is effectively applied. For numerical computations, we
made use of HITAC 8700/8800 in the Computer Centre of University of Tokyo.
It worked internally with an accuracy of about 33 decimal places. In $[10]-[12]$ ,
Stark presented several numerical evidences for his conjecture. Our method
of computation of the invariant $X_{f}(c)$ is different from Stark’s. Basic to num-
erical experiments is the following observation of Stark (see [10] and [11]):

Conjecture (0-7) implies the following:
If $\tau$ is an imbedding of the field $K_{F}(\mathfrak{f}, G)$ into $C$ inducing the non-trivial

isomorphism of $F$, then $\tau(X_{f}(c, G)^{m})$ is a complex number of modulus 1.
Set $F=Q(\sqrt{29})$ and $\mathfrak{f}=((3-\sqrt{29})/2)$ . Set $\epsilon_{0}=(5+\sqrt{29})/2$ and $\epsilon=$

$(27+5\sqrt{29})/2$ . Then $\epsilon_{0}$ (resp. $\epsilon$ ) is a fundamental (resp. fundamental totally
positive) unit of $F$. We note that $\epsilon_{0}^{\prime}\equiv\epsilon\equiv 1mod.\mathfrak{f}$ . The number of (narrow)

ideal classes of $F$ is 1. The group $H_{F}(\mathfrak{f})$ is isomorphic to a cyclic group of
order 4 generated by the ray class $c=(2)$ . It is easy to see that $\nu=c^{2}$ and
that $\mu=1$ . Since no imaginary quadratic field is contained in the normal closure
of the field $K_{F}(\mathfrak{f})$ , Theorem 2 is not applicable for this example. We may
put $\mathfrak{a}_{1}=\mathfrak{O}_{F}$ as a representative for the narrow ideal class of $F$. By a simple
computation, we have

(38) $R(\epsilon, 1)=\{\frac{6+24\epsilon}{25},$ $\frac{1+4\epsilon}{25}\frac{21+9\epsilon}{25}\frac{16+14\epsilon}{25}\frac{11+19\epsilon}{25}\}$ ,

(39) $R(\epsilon, c)=\{\frac{12+23\epsilon}{25},$ $\frac{2+8\epsilon}{25}$ $\frac{17+18\epsilon}{25}\frac{7+3\epsilon}{25}\frac{22+13\epsilon}{25}\}$ ,

(for notation, see (0-4)).

To simplify the notation, set

$F(z)=F(z, (1, \epsilon^{\prime}))$ .

Then it follows from Corollary to Proposition 2 of [7] that

(40) $F(z, (1, \epsilon))=F(\epsilon^{\prime}z, (1, \epsilon^{\prime}))=F(\epsilon^{\prime}z)$ .
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Set
$A_{1}=\prod_{z\in R(\epsilon 1)}.F(\epsilon^{\prime}z)$ ,

(41)
$A_{2}=\prod_{z\in R(\epsilon c)},F(\epsilon^{\prime}z)$ ,

$B_{1}=\prod_{z\in R(\epsilon 1)},F(z^{\prime})$ ,

$B_{2}=\prod_{z\in R(\epsilon c)}.F(z^{\prime})$ .

Then it follows from (0-5) and (41) that

$X_{f}(1)=A_{1}B_{1}$ , $X_{f}(c^{2})=X_{f}(1)^{-1}$ , $X_{f}(c)=A_{2}B_{2}$ , $X_{f}(c^{3})=X_{f}(c)^{-1}$ .

Set $Y_{m}=\sum_{i=0}^{3}X_{f}(c^{i})^{m}$ $(m=1, 2, )$ .
If the conjecture (0-7) is true for this example for $G=\{1\},$ $Y_{m}$ would be an
integer of $F$ whose conjugate is in the interval $(-4,4)$ . Thus, there would
exist rational integers $\alpha$ and $\beta$ such that

$ Y_{m}=\alpha+\beta\omega$ and $|\alpha+\beta\omega^{\prime}|<4$ ,

where we put $\omega=(1+\sqrt{\angle 9})/2$ .
Set $Y_{m}^{\prime}=\alpha+\beta\omega^{\prime}$ . Then $\beta=(Y_{m}-Y_{m}^{\prime})/\sqrt{29}$.
Since $|Y_{n\iota}^{f}|<4,$ $|\beta-[Y_{m}/\sqrt{29}]|<2$ where $[Y_{m}/\sqrt{\angle 9}]$ denotes the integral

part of $Y_{m}/\sqrt{29}$ . Hence, the fractional part of $Y_{m}-\omega[Y_{m}/\sqrt{29}]$ must coincide
with the fractional part of $-\omega$ or $0$ or $\omega$ . Now a numerical computation shows
that

(42) $ X_{f}(1)=4.6242866\cdots$ , $ X_{f}(c)=1.7949175\cdots$ ,

and that

$[Y_{1}/\sqrt{29}]=1$ , $[Y_{2}/\sqrt{29}]=4$ , $[Y_{3}/\sqrt{29}]=19$ , $[Y_{4}/\sqrt{\angle 9}]=86$ ,

$ Y_{1}-\omega=4-(10)^{-26}\times 2.249\cdots$ ,

$ Y_{2}-4\omega=9+\omega-(10)^{-25}\times 1.783\cdots$ ,

$ Y_{3}-19\omega=41+\omega-(10)^{-24}\times 1.088\cdots$ ,

$ Y_{4}-86\omega=190+\omega-(10)^{-24}\times 6.312\cdots$ .
Thus, it is quite probable that the conjecture would be true for $m=1$ and that
$X_{f}(1),$ $X_{f}(c),$ $X_{f}(c^{2}),$ $X_{f}(c^{3})$ are roots of the following quartic equation:

$x^{4}-x^{3}(9+\sqrt{29})/2+x^{2}(8+\sqrt{29})-x(9+\sqrt{29})/2+1=0$ .
Set $t=x+x^{-1}$ , then $t$ satisPes the following quadratic equation:

$t^{2}-t(9+\sqrt{29})/2+6+\sqrt{29}=0$ .
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Two roots $t_{1},$ $t_{2}$ of the equation are given as follows:

$t_{1}=\{(9+\sqrt{29})/2+\sqrt{(7+\sqrt{29})/2}\}/2$ ,

$t_{2}=\{(9+\sqrt{29})/2-\overline{(}7+\sqrt{29})/2\}/2$ .
Taking the equality (42) into account, we infer that the validity of the follow-
ing equalities is quite probable.

$X_{f}(1)=(t_{1}+\sqrt{t_{1}^{2}-4})/2$ , $X_{f}(c)=(t_{2}+\sqrt{t_{2}^{2}-4})/2$ ,
(43)

$X_{f}(c^{2})=(t_{1}-\sqrt{t_{1}^{2}-4})/2$ , $X_{f}(c^{3})=(t_{2}-\sqrt{t_{2}^{2}-4})/2$ .

In the following we assume the validity of (43). Incidentally, numerical com-
putations show that

log $B_{1}=(10)^{-27}\times(-1.829\cdots)$ and

log $B_{2}=(10)^{-27}\times(-0.918\cdots)$ (cf. (41)).

It is quite probable that $B_{1}=B_{2}=1$ .
Since $(7+\sqrt{29})/2=-\epsilon_{0}(3-\sqrt{29})/2$ and $(7+\sqrt{29})/2\equiv\{(9+\sqrt{29})/2\}^{2}mod$ . $4$,

$t_{1}$ and $t_{2}$ are in the subfield of $\sigma(\{1, c^{2}\})$-Pxed elements of $K_{F}(\mathfrak{f})$ .
Note that

(44) $(t_{1}^{2}-4)(t_{2}^{2}-4)=19+2\sqrt{29}=(7+\sqrt{29})(\sqrt{29}-1)^{2}/8$ .

Set $x=X_{f}(1)$ . Then (43) and (44) show that

(45) $2X_{f}(c)=(9+\sqrt{29})/2-(x+x^{-1})$

$+2^{-1}(\sqrt{29}-1)(x-x^{-1})^{-1}\{2(x+x^{-1})-(9+\sqrt{29})/2\}$ ,

$X_{f}(c^{2})=x^{-1}$ , $X_{f}(c^{3})=X_{f}(c)^{-1}$ .
Thus, we see that the field $K=F(X_{f}(1), X_{f}(c))$ is a quartic normal extension of
$F$. Hence, $K$ is abelian over $F$ . Set $L=F(t_{1})$ . We have seen that $L$ is the class
field over $F$ with conductor $\mathfrak{f}$ which corresponds to the subgroup $\{1, c^{2}\}$ of
$K_{F}(t)$ . We denote by $\tau$ the non-trivial element of $Ga1(L/K)$ . Since $(\sqrt{29}-1)/2$

$\equiv 1mod$ . $\mathfrak{f}$, the prime ideal $((\sqrt{29}-1)/2)$ in $F$ splits in $L$ into a product of two
different ideals $\mathfrak{p}$ and $\mathfrak{p}^{\tau}$ . On the other hand, the prime ideal $((7+\sqrt{29})/2)$ in
$F$ ramifies to a square of a prime ideal $q$ in $L(q^{\tau}=q)$ . We note that $(t_{1}^{2}-4)^{\tau}$

$=(t_{2}^{2}-4)$ and that $(t_{1}^{2}-4)$ and $(t_{2}^{2}-4)$ are different ideals in $L$ (since $(t_{1}-2)(t_{2}-2)$

$=1$ , it is sufficient to check that $(t_{1}+2)/(t_{2}+2)$ is not an algebraic integer).
Thus, the equality (44) implies that

$(t_{1}^{2}-4)=\mathfrak{p}^{2}q$ , $(t_{2}^{2}-4)=(\mathfrak{p}^{\tau})^{2}q$ .
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Since $t_{1}^{2}-4\equiv t_{1}^{2}mod$ . $4$ in $L$, the field $K=L(\sqrt{t_{1}^{2}-4})$ ramifies only at $q$ . Hence,
the conductor of $K$ with respect to $F$ is a power of $\mathfrak{f}$ Since 4 is prime to $\mathfrak{f}$ ,
the conductor coincides with $\mathfrak{f}$ Thus $K=K_{F}(\mathfrak{f})$ .

The ray class $c=(2)$ of $H_{F}(\mathfrak{f})$ is represented by a prime ideal

$\uparrow^{\prime}=(\epsilon_{0}(3+\sqrt{29})/2)$ .
The quotient field $\mathfrak{Q}_{F}/\mathfrak{f}^{\prime}\cong Z/(5)$ is the finite field with Pve elements. Set $\sigma$

$=\sigma(c)$ . In $\mathfrak{Q}_{K}/\mathfrak{f}^{\prime},$ $\sigma$ induces the Frobenius automorphism: $a\rightarrow a^{5}$ . In $\mathfrak{O}_{K}/\mathfrak{f}^{\prime}$ ,
$x=X_{f}(1)$ satisfies the equation $x^{4}-3x^{3}-3x+1=0$ with coefficients in $Z/(5)$ . Thus
$\sigma(x)=4x^{3}+3x^{2}+3x+2$ in $\mathfrak{Q}_{K}/\mathfrak{f}^{\prime}$ After some computations, we derive from (45)

the equality $X_{f}(c)=4x^{3}+3x^{2}+3x+2$ in $\mathfrak{Q}_{K}/\mathfrak{f}^{\prime}$ Hence $X_{f}(1)^{\sigma(c)}=X_{f}(c)$ in $K$. For
this example, numerical experiment is consistent with the conjecture (0-7).

3. Set $F=Q(\sqrt{11})$ and $\mathfrak{f}=(3)$ . The fundamental unit $\epsilon$ of $F$ is given by
$\epsilon=10+3\sqrt{11}$. The class number of $F$ is 1. Set $c_{0}=(4+\sqrt{11})$ . We may Put
$\nu=c_{0}^{4}$ and $\mu=(1-3\sqrt{11})$ . It is easy to see that the group $H_{F}(\mathfrak{f})$ is isomorphic
to a direct product of a cyclic group of order 8 generated by $c_{0}$ and a cyclic
group of order 2 generated by $\mu$ :

$ H_{F}(\mathfrak{f})\cong\langle c_{0}\rangle\times\langle\mu\rangle$ .

Since $c_{0}^{\prime}=c_{0}^{3}$ and $\mu^{\prime}=\mu c_{0}^{4}$ in $H_{F}(t)$ , we see
$H_{F}(\mathfrak{f})_{0}=\{c\in H_{F}(\mathfrak{f}) ; c^{\prime}=c\}=\{1, \mu c_{0}^{2}, c_{0}^{4}, \mu c_{0}^{6}\}$ .

Thus, $[H_{F}(\mathfrak{f}), H_{F}(\mathfrak{f})_{0}]=4$ . Theorem 2 is not applicable for this example.

Set $\mathfrak{a}_{1}=\mathfrak{O}_{F},$ $\mathfrak{a}_{2}=(3+\sqrt{11})$ . Then $\{\mathfrak{a}_{1}, \mathfrak{a}_{2}\}$ is a complete set of representatives
for the narrow ideal classes of $F$. After some computations, we see that

$R(\epsilon, 1)=\{1+\epsilon/3, (2+2\epsilon)/3,1/3\}$ ,

$R(\epsilon, c_{0})=\{(2+\epsilon)/9, (8+4\epsilon)/9, (5+7\epsilon)/9\}$ ,

$R(\epsilon, c_{0}^{2})=\{(7+2\epsilon)/9, (4+5\epsilon)/9, (1+8\epsilon)/9\}$ ,

$R(\epsilon, c_{0}^{3})=\{(1+2\epsilon)/9, (7+5\epsilon)/9, (4+8\epsilon)/9\}$ ,

$R(\epsilon, \mu)=\{(8+\epsilon)/9,$ $(13+5\epsilon)/18,$ $(5+4\epsilon)/9,$ $(1+17\epsilon)/18$,

$(7+11\epsilon)/18,$ $(2+7\epsilon)/9$},

$R(\epsilon, c_{0}\mu)=\{(5+\epsilon)/9,$ $(8+7\epsilon)/9,$ $(2+4\epsilon)/9$,

$(7+5\epsilon)/18,$ $(13+17\epsilon)/18,$ $(1+11\epsilon)/18$},
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$R(\epsilon, c_{0}^{2}\mu)=\{(1+\epsilon)/6,$ $(5+3\epsilon)/6,$ $(3+5\epsilon)/6$,

$1+\epsilon/3,$ $(2+2\epsilon)/3,1/3$ } ,

$R(\epsilon, c_{0}^{3}\mu)=\{(2+\epsilon)/9,$ $(8+4\epsilon)/9,$ $(5+7\epsilon)/9$,

$(1+5\epsilon)/18,$ $(13+11\epsilon)/18,$ $(7+17\epsilon)/18$},
(cf. (0-4)).

To simplify the notation, set $F(z)=F(z, (1, \epsilon))$ . Further, set

$S=F(1+\epsilon/3)^{2}F((2+2\epsilon)/3)^{2}F(1/3)^{2}$ ,

$T=F((2+\epsilon)/9)F((8+4\epsilon)/9)F((5+7\epsilon)/9)$

$\times F((1+2\epsilon)/9)F((4+8\epsilon)/9)F((7+5\epsilon)/9)$ ,

$U=F((7+5\epsilon)/18)F((13+17\epsilon)/18)F((1+11\epsilon)/18)$

$\times F((5+7\epsilon)/18)F((17+13\epsilon)/18)F((11+\epsilon)/18)$ ,

$V=F((1+\epsilon)/6)^{2}F((5+3\epsilon)/6)^{2}F((3+5\epsilon)/6)^{2}$ .
Set $ G=\langle\mu\rangle$ . Then it follows easily from (0-5), (19) and (40) that

$X_{f}(1, G)=S$ , $X_{f}(c_{0}, G)=U$ , $X_{f}(c_{0}^{2}, G)=SV$ , $X_{f}(c_{0}^{3}, G)=T^{2}U^{-1}$ ,

$X_{t}(c_{0}^{l+4}, G)=X_{f}(c_{0}^{t}, G)^{-1}$ $(i=0,1,2,3)$ .
Set $R_{t}=X_{f}(c_{0}^{i-1}, G)+X_{f}(c_{0}^{t+3}, G)$ $(i=1, 2, 4)$ and

$Y_{m}=\sum_{i=0}^{7}X_{f}(c_{0}^{i}, G)^{m}$ $(m=1, 2, )$ .

If the conjecture (0-7) is true, then $Y_{m}$ would be an integer of $F$ whose con-
jugate is in the interval $(-8,8)$ .

Now a numerical computation shows that

$ X_{f}(1, G)=3.564315896\cdots$ , $ X_{f}(c_{0}, G)=0.519601027\cdots$ ,

$ X_{f}(c_{0}^{2}, G)=5.8^{\underline{\eta}}4396333\cdots$ , $ X_{f}(c_{0}^{3}, G)=5.482353802\cdots$ ,
(46)

$ R_{1}=3.8M874642\cdots$ , $ R_{2}=2.444154574\cdots$ ,

$ R_{3}=5.996087946\cdots$ , $ R_{4}=5.664757207\cdots$ ,

$[Y_{1}/2\sqrt{11}]=2$ , $[Y_{2}/2\sqrt{11}]=12$ , $[Y_{3}/2\sqrt{11}]=62$ ,

$[Y_{4}/2\sqrt{11}]=336$ ,

$ Y_{1}-2\sqrt{11}=8+\sqrt{11}+(10)^{-27}\times 8.281\cdots$ ,
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$ Y_{2}-12\sqrt{11}=41+(10)^{-25}\times 1.154\cdots$ ,

$Y_{3}-62$ Vfl $=206+\sqrt{11}+(10)^{-24}\times 1.087\cdots$ ,

$ Y_{4}-336\sqrt{11}=1115+(10)^{-24}\times 8.723\cdots$ .
Thus, it is quite probable that the conjecture would be true for $m=1$ and that
$R_{1},$ $R_{2},$ $R_{3}$ and $R_{4}$ would be the four roots of the following quartic equation:

(47) $X^{4}-p_{1}X^{3}+p_{2}X^{2}-p_{3}X+p_{4}=0$ , where $p_{1}=8+3\sqrt{11}$ ,

$p_{2}=57+18\sqrt{11}$ , $p_{3}=164+48\sqrt{11}$ , $p_{4}=160+48\sqrt{11}$ .
Denote by $r_{1},$ $r_{2},$ $r_{3},$ $r_{4}$ roots of the equation (47) and set

$y_{1}=r_{1}r_{2}+r_{3}r_{4}$ , $y_{2}=r_{1}r_{3}+r_{2}r_{4}$ , $y_{3}=r_{1}r_{4}+r_{2}r_{3}$

and
$e_{t}=(p_{2}/3-y_{i})/4$ $(i=1,2,3)$ .

Then $e_{1},$ $e_{2}$ and $e_{3}$ are roots of the following cubic equation:

$4e^{3}-15e/4+11/8=4(e-1/2)(e^{2}+e/2-11/16)=0$ .
Thus, permuting $r_{1},$ $r_{2},$ $r_{3},$ $r_{4}$ in a suitable manner if necessary, we have

$y_{2}=r_{1}r_{3}+r_{2}r_{4}=17+6\sqrt{11}$ ,

$y_{1}+y_{3}=(r_{1}+r_{3})(r_{2}+r_{4})=40+12$ Vfl.

Since $r_{1}r_{2}r_{3}r_{4}=160+48\sqrt{11}$ and $r_{1}+r_{2}+r_{3}+r_{4}=8+3\sqrt{11}$ we have

$(r_{1}+r_{3}-r_{2}-r_{4})^{2}=3$ and $(r_{1}r_{3}-r_{2}r_{4})^{2}=3(2+\sqrt{11})^{2}$ .

Taking (46) into account, we infer that the following equalities are quite
probable:

$R_{1}=((8+3\sqrt{11}+\sqrt{3})/2-\sqrt{(15-\sqrt 33)/2})/2$ ,

$R_{2}=((8+3\sqrt{11}-\sqrt{3})/2-\sqrt{(15+\sqrt{33})/2})/2$ ,

$R_{3}=((8+3\sqrt{11}+\sqrt{3})/2+\sqrt{(15-\sqrt{33})/2})/2$ ,

(48) $R_{4}=((8+3\sqrt{1}1-\sqrt{3})/2+\sqrt{(15+\sqrt{33})/2})/2$ ,

$X_{\mathfrak{f}}(1, G)=(R_{1}+\sqrt{R_{1}^{2}-4})/2$ , $X_{f}(c_{0}, G)=(R_{2}-\sqrt{R_{2}^{2}-4})/2$ ,

$X_{f}(c_{0}^{2}, G)=(R_{3}+\sqrt{R_{3}^{2}-4})/2$ , $X_{\mathfrak{f}}(c_{0}^{3}, G)=(R_{4}+\sqrt{R_{4}^{2}-4})/2$ .

We assume the validity of the equalities (48).
Set

$K=F(R_{1}, R_{2}, R_{2}. R_{4})$ .
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It is now easy to see that $K=F(\sqrt{(15+\sqrt{33})/2})$ is a cyclic quartic extension
of $F$ . The field $K$ is a quadratic extension of the field $F(\sqrt{3})$ . Since $ 3\equiv$

$(\sqrt{11})^{2}mod$ . $4,$ $F(\sqrt{3})$ is the class field over $F$ with conductor $\mathfrak{f}$ which corres-
ponds to the subgroup $\langle\mu, c_{0}^{2}\rangle$ of $H_{F}(\mathfrak{f})$ . We note the following identity:

$(12+3\sqrt{11}+17\sqrt{3}+4\sqrt{33})^{2}(15+\sqrt{33})/2$

$=(8\sqrt{3})^{2}(81+24\sqrt{\perp 1}+40\sqrt{3}+12\sqrt{33})$ .

Since $81+24\sqrt{11}+40\sqrt{3}+12\sqrt{33}\equiv 1mod$ . $4$ in $\mathfrak{O}_{L}(L=F(\sqrt{3}))$ , the prime ideal’
$d$

$(3+\sqrt{11})$ of $F$ is unramiPed in $K$. Thus, as an abelian extension of $F,$ $K$

ramifies only at (3). Hence $K$ is the class field over $F$ with conductor $\mathfrak{f}$ which
corresponds to the subgroup $\{1. \mu, c_{0}^{4}, c_{0}^{4}\mu\}$ .

By direct computations, we see that

$(R_{1}^{2}-4)(R_{2}^{2}-4)=(\delta-\sqrt{\alpha+\beta})^{2}$ ,

$(R_{2}^{2}-4)(R_{3}^{2}-4)=(-\delta+\sqrt{\alpha-\beta})^{2}$ ,

$(R_{3}^{2}-4)(R_{4}^{2}-4)=(\delta+\sqrt{\alpha+\beta})^{2}$ ,

$(R_{4}^{2}-4)(R_{1}^{2}-4)=(\delta+\sqrt{\alpha-\beta})^{2}$ ,

where we put

$\alpha=81+24\sqrt{11}$ , $\beta=40\sqrt{3}+12\sqrt{33}$ , $\delta=\sqrt{3}(4+\sqrt{11})$ .
Thus, $K(X_{1}, X_{2}, X_{3}, X_{4})=K(X_{1})=F(X_{1})$ (cf. (48)) where $X_{i}=X_{f}(c^{i-1}, G)$ . Further-
more, $F(X_{1})$ is an abelian extension of $F$ . We note that the prime ideal $(3+\sqrt{11})$

of $F$ splits in $K$ into a product of two different prime ideals. There exists a prime

ideal $q$ of $K$ such that $(3+\sqrt{11})=qq^{\tau}$, where $\tau$ is a generator of $Ga1(K/F)$ . Note
that $R_{1},$ $R_{2},$ $R_{3},$ $R_{4}$ are mutually conjugate over $F$ and that $R_{1}+R_{2}+R_{3}+R_{4}=$

$8+3$ VI1 is odd. Hence we may assume that $R_{1}$ is prime to $q$ . Then $R_{1}^{2}-4\equiv R_{1}^{2}$

$mod$ . $q^{4}$ in $\mathfrak{O}_{K}$ . Hence, as a quadratic extension of $K,$ $F(X_{1})=K(\sqrt{R_{1}^{2}-4})$ is
unramified at $q$ . Since $K$ is abelian over $F$, $F(X_{1})$ is unramified at
$(3+\sqrt{11})$ . The equality $(R_{1}^{2}-4)(R_{2}^{2}-4)(R_{3}^{2}-4)(R_{4}^{2}-4)=48\epsilon^{2}$ now implies that $K(X_{1})$

(as an abelian extension of $F$ ) ramifies only at (3). Since $[F(X_{1}), F]=8,$ $F(X_{1})$

is the class field of $F$ with conductor $t$ which corresponds to the subgroup $\langle\mu\rangle$

of $H_{F}(t)$ .

References

[1] E. W. Barnes, The genesis of the double gamma functions, Proc. London Math.
Soc., 31 (1899), 358-381.

[2] E. W. Barnes, The theory of the double gamma function, Philosophical Transac-
tions of the Royal Society (A), 196 (1901), 265-388.



Ray class invariants of real quadratic fields 167

[3] E. W. Barnes, On the theory of the multiple gamma function, Tran. Cambridge
Philos. Soc., 19 (1904), 374-425.

[4] M. Deuring, Die Klassenk\"orper der komplexen Multiplikation, Enzykl. der math.
Wiss., Bd I. 2, 23, Teubner, 1958.

[5] K. Ramachandra, Some applications of Kronecker’s limit formulas, Ann. of Math.,
80 (1964), 104-148.

[6] T. Shintani, On evalution of zeta functions of totally real algebraic number fields
at non-positive integers, J. Fac. Sci. Univ. Tokyo, Sec. IA, 23 (1976), 393-417.

[7] T. Shintani, On a Kronecker limit formula for real quadratic fields, ibid. 24
(1977), 167-199.

[8] T. Shintani, On certain ray class invariants of real quadratic fields, Proc. Japan
Acad., 53 (1977), 128-131.

[9] C. L. Siegel, Lectures on Advanced Analytic Number Theory, Tata Institute of
Fundamental Research, Bombay, 1961.

[10] H. M. Stark, $L$-Functions at $s=1$ . III. Totally real fields and Hilbert’s Twelfth
Problem, Advances in Math., 22 (1976), 64-84.

[11] H. M. Stark, Class fields for real quadratic fields and $L$ series at 1, Proc. Dur-
ham Conference (1977), 355-374.

[12] H. M. Stark, Hilbert’s twelfth problem and $L$ -series (preprint).
[13] H. Weber, Lehrbuch der Algebra III.
[14] E. Hecke, Zur Theorie der elliptische Modul Funktionen, Werke, 428-460.

Takuro SHINTANI
Department of Mathematics
Faculty of Science
University of Tokyo
Hongo, Bunkyo-ku
Japan


	Introduction.
	THEOREM 1. ...
	THEOREM 2. ...

	\S 1.
	\S 2.
	\S 3.
	References

