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Let G be a 2-group and y a complex, irreducible charactor of G. The
Schur index of y with regard to the rational field @ is denoted by mg(y). It
is known that mq(y)=1 or 2, and that if me(y)=2, then there exist a subgroup
H of G and an irreducible character ¢ of H such that y is induced from ¢,
ie., y=¢% me(¢)=2, and the factor group H/N, N=Kkernel of ¢, is a genera-
lized quaternion group (cf. (11.7) and (14.3) of [2], or [3].

Now, let H” be a generalized quaternion group. The faithful irreducible
characters of H’ are algebraically conjugate to each other and their Schur
indices are equal to 2, whereas any non-faithful irreducible character of H’
has Schur index 1 (cf. [5, §61). So we ask a question: Let G be a 2-group,
let H, N be subgroups of G such that H>N and H/N is a generalized qua-
ternion group, and let ¢ be a faithful irreducible character of H/N, which is
also regarded as a character of H. Suppose that the induced character ¢¢ is
irreducible. Is it true that the Schur index mgo(¢%)=2?

A simple case for the question is that N={1}. Namely, let GDH be 2-
groups, where H is a generalized quaternion group, and let ¢ be an irreducible
charater of H such that me(¢)=2 and ¢ is irreducible. Is it ture that
me(¢%)=2? The purpose of the paper is to show that this is true for a
class of induced characters ¢% which are associated with cyclotomic algebras.
Our result yields, as a special case, that if [G: H1=2, then the question is
affirmative.

Let us briefly explain the contents of the paper. From now on, H, denotes
the generalized quaternion group of order 2"*! (n=2), ¢, an irreducible character
of H, with mg(¢,)=2, and {; a primitive s-th root of unity, where s is a
natural number. In §1, we investigate a 2-group G such that GDOH, and that
the induced character ¢§ is irreducible (Theorem 1). We also determine the
values of ¢% at elements x of G (Proposition 1.

In § 2, we study a cyclotomic algebra B made with the extension @({,,)/%,
where % is a subfield of the field @({,,) of 2"-th roots of unity. It will be
shown that the index of B is 1 or 2, and if B has index 2, then there exists a
2-group G, which is a finite subgroup of the multiplicative group B* such that
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GDH, and ¢§ is irreducible. Moreover, B is isomorphic to the simple com-
ponent of the group algebra Q[GJ], which corresponds to ¢4. In particular,
me(¢$)=2 (Theorem 2). We will call such a group G a cyclotomic 2-group.

Let G be a cyclotomic 2-group and let F be a 2-group such that FDG,
LF: G]=2, and (¢$)F=¢% is an irreducible character of F. The purpose of §3
is to prove mq(¢%)=2 (Theorem 3). As a special case of the result, we have:
If G is any 2-group such that GDH,, [G: H,]=2, and ¢§ is irreducible, then
ma(§9)=2 (Corollary 1.

NOTATION. Z is the integers. If K is a Galois extension of k, then @(K/k)
is the Galois group of K over k. For x€K and o=g@(K/k), x° denotes the
image of x by o. Let y be an irreducible character of a group G such that
K(y)=K. Then y° is the character of G defined by %°(g)=(y(g))’, g€G. Let
NG and ¢ a character of N. Then ¢* (g=G) is the character of N defined
by ¢*(x)=¢(gxg™"), x€N. {a, b, ---)> is the group generated by a, b, ---.

§1. Induced characters.

Let H=H,=<{a,b) denote the generalized quaternion group of order
2"+ (n=2) with relations

a®=1,  bab‘=a, b*=a" . (1)

We summarize known results about characters of H (cf. pp. 225-226 of [5]).
There are 277'—1 irreducible characters ¢, (1=y<2""'—1) of H, which are
not one-dimensional :

o(a)=Ch+Ct,  ua’h)=0,  (=0,1,-,2"—1).

Each ¢, is induced from the linear character 7z, of <{a>: n.(a®)=Cix

The character ¢, is faithful, if and only if v is odd. If v is odd then the
Schur index mgq(¢,)=2, and if v is even then mq(¢,)=1. The faithful characters
¢, (1=v=2""'—1, 2/ v) are algebraically conjugate to each other and Q(¢,)=
QU +C50.

THEOREM 1. Let G be a 2-group which contains the generalized quaternion
group H of order 2" with [G: H]=2". Let ¢ be a faithful, irreducible
character of H. Suppose that the induced character y=q¢% is irreducible. Then
r=n—2, Q)=Q&,n-r+L;-r), and [Q(¢): Q(Y)]1=2"=[G: H].

ProoF. We may assume that
#a)=ChL+C,  #(a’b)=0, (j=0,1,-,2"—1). (2)

We can find a sequence of subgroups G; of G and an element u; of G; such
that

H=G,CG,C--CG,=G,
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[Gi: Gi-1=2, Gi=Gi- \\IVGiyu;, Gy, (i=1, "‘,7’)-

First we will prove for the case n=2. Namely, suppose that
H is the quaternion group of order 8. We observe that

¢(D=2, ¢@)=-2, ¢(3)=0 for ye(H—-{a*?). 3

Assume that r=1. Then H+G,=H\UHu,. Since {1, a? is the center of H, it
follows that u,a’ui'=a? so u,(H—{a®»)u;i'=H—<a*». By (3), this yields that
¢“1=¢. Hence by (45.5) of [1], ¢° is not irreducible, contradiction. Therefore,
if n=2, then r=0, proving for the case n=2.

Hereafter we assume n=3 and [G: H1=2">1. It is easy to see that
follows from the following proposition.

PROPOSITION 1. Let the notation and assumpiion be as above. Then r=
n—2, and

¢hi(@)=2'g(a"), (2€Z), (0Zi=r) (4)

¢%i(0N=0 for ye(Gi—<a*H), (0=i=r) (5)
o({a®»)=<a*> for any o=Aut(Gy), (0<i<r) (6)

w0 Ut =a? I o an appropriate w,€G;,  (1=<iZr) (7)
x'ea®  for any x€Gy, (1=isr). 8)

Proor. We will use induction on i. The equations (4)-(6) clearly hold
for 1=0.

Suppose that the equations (4)-(8) hold for i=0. We will show that they also
hold for i+1. (The following argument yields that the equations (4)-(8) for i=1
follow from the equations (4)-(6) for 1=0.) We assume that i+1=r<n—1. By
(6), usria®uil,=a** for some s€Z. Putting a=ul,;=G;, we have aa”a '=a"""
By (7), u;a®uj'=a*"**"""»=¢* for j=1,-- 4. So the conjugates of a* in G,
are {a%, a™*"}, because (a?b% ut---uf)a* (a®b® upt--u¥) '=a**, (2/, z,, -+, ;=0 or 1).
Hence 2is*=-+2" (mod 2"), so s’==+1 (mod 2""%). But there is no s€Z such that
s’=—1 (mod 2"%), (n—i=2). Hence s’=1 (mod 2*°%), and so s==+1, +14-2"7*"*
(mod 279). If s=+1 (mod2"%), then u;,a* uihi=a**" (z€Z), so by (4),

(¢Gi)ui+1<a2iz):¢Gi(a:1:2iz):2i¢(ai2iz):2i¢(a2iz)____¢G’i(a2iz> .
Since uiy:{a?duzli=<{a®, it follows that for y&(G;—<{a®™), us yuih €(G;—<a®™),
so (@G iri(y)=0=¢%(y) by (5). Hence (¢§°)*i+1=¢%, so ¢%+! is not irredu-
cible, contradiction. Thus s=+1+2""*"* (mod 2"7%). In particular, this implies
that r<n—2. For, if i+1=n—1=<r, then 2" *=4 and +1+2"*"'=+1 (mod 2"7%),
so ¢%+ would not be irreducible.

If s=—1-+27"%1 (mod 2"°%), put v;;;=busy,. Then

2l 1 . —2fc—142n-i-1y__ o2l(14+an-i-1)
Vit1@" Vi1=2a =a .
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So we may assume u;.,a’uil=a* " ""Y proving (7) for i+1. We also have
Bo(a )= GO ) (O ()
=2'¢(a* )+ 2 (0> =2 ),
proving (4) for i+1.
If y&(Gis1—Gy), then ¢Ci+1(y)=0, because G;.;1>G,. Since u;,{a®dusy=

(a®y, it follows that for y&(G,—(a™), usuiyuih€(Gi—<a®), and so ¢°+1(y)

=@%(y)+(PF)¥i+1(y)=040=0 by (5). If 2/ z, then by (4),
¢Gi+1(a2iz):2i¢(a2iz)+2i¢(a2iz<1+zn~i-1)):2i¢(a2iz)_2i¢(a2iz):0 .

Thus the equation (5) holds for i+1.

As a special case of the argument we have proved the equations (4), (5), (7)
for i=1. We will prove the equations (6), (8) for i=1. Put uj=a<=G,. We have
aca '=ulaur?=a"**" =3, so a=a’ for some A€Z. Since d'=a=uau;'=
a*a+2m=b 212 Since uladui'=<a), it follows that u,bui'=a*b for some veZ.
Then a*?*b=dad*ba " *=aba '=uibur*=u,a*bu;'=a***""")a*h, and consequently 21=
2u(1+2""2) (mod 2"), so 2|y, because 2|1. We have (a/bu,)*=a’ba’***" Da*bui=
q IR e (g2 (gIy,)P=a2OT O e (g (afh)?=a?""'e<{a?). Thus for
any x=G,, x*’{a*, so for every o= Aut(G,), o(a®)=(o(a))*<a?), proving (6),
(8) for i=1.

We now proceed to prove the equations (6), (8) for i+1, provided that they
hold for i=1. If xG,, then x*’€{a*") by (8), so x**""'e<a®*"). If x&(Gi1,—Gy),
we write x=a*b" w{l---utu;,,, where ', vy, ---,»;=0, 1. Since 2*€G,, ¥ e
by (8). Put x**'=a*%. By (7), we have a??=xa¥?x 1=q=2 21+ )= gaelatan=lz
 Hence if i<r=<n—2, then 2|z, so x*'e<a®™">. This proves (8) for i+1. For
any o€ Aut (Gy,,), we have o(a® ) =(0(a))* " €(a®*"), by what has just been
proved. This proves (6) for i+1.

The proof of is completed.

§2. Cyclotomic groups and Schur index.

Let {,, (n=2) be a primitive 2"-th root of unity. Let 2 be a subfield of
Q(,.). Let B be a cyclotomic algebra made with the extension Q,n)/k, ie.,
a crossed product of the form:

B=(8, Q,n)/0)=Z Qlous, 9)
usxuz'=x" (x€Q(L,), (10)
U= (0, Der,  Plo, 1), (1)

for all 0, 7€9=8(Q((,.)/k). (See Chapter 2 of [8].)
For a prime p of &, inv,(B) denotes the Hasse invariant of B at .
PropPOSITION 2. Let B=(B, Q(,.)/k) be a cyclotomic algebra defined by
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(9)-(11). Then the index of B equals 1 except the case that the automorphism ¢
of the extension Q({,.)/Q, defined by {=(z}, belongs to @(Q(L,.)/k) and B¢, )=
—1. In this case, (i) if k#Q, then invy(B)=0 for any finite prime 9 of k, and
invyo(B)=1/2 for any infinite prime .. of k; (i) if k=@, then inv,(B)=0 for
any rational prime p+2, oo, and inv,(B)=inv.(B)=1/2.

PrOOF. Let p be a prime of k. If v} 2, co, then invy(B)=0, because p is
unramified in Q(,,)/k and the values of the factor set B are roots of unity.
If p|2, then it follows easily from Theorems 3.1 and 4.1 of [7] that invy(B)=0
except the case k=Q and J(¢,()=—1, where inv,(B)=1/2. Let p. denote an
infinite prime of k. If ¢ @(Q(L,,)/k) then k is not real, so invy(B)=0. Suppose
that (€2(Q(C,.)/k). We note that (¢, )==+1 (cf. Theorem 4.1 of [7]) and that
BRkp~(B(¢, 0), C/R, ¢), where C and R are the complex numbers and the
real numbers, respectively. If S(¢,)=—1, then the above cyclic algebra is
the ordinary quaternion algebra over R and has index 2. If B(c,¢)=1, the
cyclic algebra has index 1. The assertions of Proposition 2 now follow im-
mediately.

Suppose that in the notation of Proposition 2, c€ 2(Q({,,)/k) and B(¢, £)=—1.
Then the cyclotomic algebra B has index 2, k:Q(CZn_T+C;,},,) for some r with
0=r=n—2, and 2(Q(C,)/k)={>x{z), where ({,J=L4*""". We may assume
that B is of the form:

B=(8, QC,)/0)=2 5 Q¢ utud, (12)
Ul =00, ulus =0T, (13)
ui=p(¢, )=—1, ui=1, (z=27), UM =UU; . (14)

In fact, since uuiuz'=u%, we have ui=_{7%,_, for some x=Z. Put c=1+(1+2""")
4 (1277 (n—r=2). It is easy to see that ¢=27¢’, (2,¢’)=1. Lety be
an integer such that y¢’+x=0 (mod 2"~ 7). Then

’ r
(Chuy=Chui=C%2r=1,  ({5=Cp-r).

So, from now on we assume ui=1. Let u.u.={,uu. Then we have
L= () = (G T =L

(See the equation (1.11) of [6, p. 582].) So, 2" T|t. Putting j=t/2"" and
ve=C,u., we see easily that v.u.,=u.v. and v?=—1. Hence we may assume
UUhe=UUe.

Now put a={,,, b=u,, u=u.. Then the cyclotomic algebra B contains the
finite group G:

G=<(a,b,uy, a"=1, b*=a*", w'=1, (15)
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bab'=a"', wuau'=a'**""", bu=ub. (16)

The cyclotomic algebra B contains the field Q({,,) as a maximal subfield, and
so has an absolutely irreducible, faithful representation U which is realized in
Q(,,). Since the group G spans the algebra B with coefficients in @, the
representation U also gives an absolutely irreducible, faithful representation of
G, the character y of which is given by

@)=, TE™, (=01, -, 2" (17)
x(x)=0, if xelay. (18)

The simple component of the group algebra Q[G] which corresponds to y is
isomorphic to B, so me(y)=2. The group G contains the generalized quaternion
group H,=<a, b) of order 2"*1. Let » be the linear character of the cyclic
group <ay, given by n(a*)={i,. Let ¢=¢, be the character of H, given by
(2). Then it is easy to see that ¢=75" and y=7°=¢% Thus we have

THEOREM 2. Let G be the 2-group defined by (15)~(16) and embedded in the
cyclotomic algebra B with index 2. Let y be the faithful irreducible character
of G given by (17)-(18). Then yx is induced from the faithful irreducible
character ¢, of the generalized quaternion group H,CG, and the Schur index
me(x)=mqe(@5)=2.

We will call the 2-group G given by [I5)}-(16), the cyclotomic 2-group of
type (n,r) and denote it by G,,, (0=r=n—2).

RrRMARK 1. From Satz 12 of we easily conclude that the faithful
irreducible characters of G,, are algebraically conjugate to each other and
induced from the faithful irreducible characters of H,.

REMARK 2. H,=G,,.

In § 3, we will prove the following.

THEOREM 3. Let G=G,,, be the cyclotomic 2-group of type (n,r) and y its
Faithful irreducible character. Let F be a 2-group such that [F: G]=2 and
that x¥ is irreducible. Then the Schur index me(y™)=2.

COROLLARY 1. Let H be the generalized quaternion group of order 2"*
and ¢ its faithful irreducible character. Let F be a group such that [F: H]=
2 and @7 is irreducible. Then me(g¢™)=2.

PrOOF. Since H=G,,, the assertion is clear by [Theorem 3.

COROLLARY 2. Let the notation be as in Theorems 2 and 3. Then H,C
G, CF. If ¢f is irreducible, then mqe(¢h)=2.

ProOOF. This follows at once from Theorems 2 and 3.

§3. Proof of Theorem 3.

In this section we will use the notation of Theorem 3. Since [F: G]=2,



Induced characters 35

there exists an element v&F such that v&G, v*’eG. Since F contains the
generalized quaternion group H=H,={q, by with [F: H]=2"*!, the equation
on—T

(7) implies that va®v™'=a¥**"7""b  From the equation wuau '=a'**""", it
follows that ua® u *=a*", so

(vur (e v ) (vur~ ) rt=pa v i=g ¥ TH
Writing vuv™'=a’b’u’, the left side of the above equation is equal to
aibjueazf(uzn-f-l)u—eb-ja—i:a(—l)jzf(nzn—r—l) .

Hence j=0 (mod 2), so vuv '=a*u’. Since u*" =1, we have 1=(a*u®)* =a*"* for
some [€Z, 2 /1. Hence 2" 7|i, so we write vuvr~'=a®" "™, It is easy to see
that elements a*u” (2|v) and a”bu* have order less than 2%, so vav '=a*u” for

some vy, u<=2Z, 2 fv. Summarizing, we have
vav=a*u”, (2)v), vuvl=a® "My, (19)

LEMMA 1. Let t be a non-negative integer, and put y,=24""7, §,=204+Dr-tn

M,=<a', u®ty, M;=<{a’, u't). D If
th—tl n<r= Ztit-l n  for some t>0, (20)
then FD>M, and M, is abelian. (an Ir
Zt?lfl n<r§%n for some t=0, (21)

then F>>M[ and M} is abelian.
Proor. First we will prove M,<F for the case (I). It suffices to prove
that the elements va™v™!, au’ta™?, and vu’tv™' belong to M,. It follows from

that '6,<y,<0,.,. Hence va'tw '=(a*u*)t=a"u*cM, au’ta '=(aua™?)%
= (g 2" T)0t = g2 P = PV it = M, pulty = (@ )0t = gdt-1hlyite M,
where [, I/, 7 are some integers.

The proof of M/<F for the case (II) is similar. It follows from that
7:<0;<7.+1. Hence we have va’w i=(au")’t=a"t"u"tc M], au'ta™*=(aua™")"
=(g " Tu)t=qa eyt e My, puityTr=(a?" " "Mul)t=qglt+ 1yt = M, where [, 1, 1"
are some integers.

Let i and j are non-negative integers with i+j=7. Then u¥a?u %=
arare M= g2 g0 the group <a?, u*’) is abelian. It is easy to see that 7, §,=1
by [(20), (21) and that 7,6,=27. Therefore, M, and M, are abelian, completing
the proof of Lemma 1l

We observe that there is one and only one integer ¢ which satisfies either
or If the integer f satisfies put M=M,. If the integer ¢
satisfies put M=M,. We write M=<{a?, u¥’), where 2i=y,,2'=0, for M=
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M,, and 2'=9¢,, 2’=y, for M=M;. Let N={a, u?yDOM. As before, let 7 be the
linear character of <{a) defined by 7(a)=C,,. So, x=7%=(y")%

LEMMA 2. Let the notation be as above. There exists a linear character &
of M such that p¥=&Y, &(a*)=(Z, &(u*’)=1.

Proor. By Lemma 1, N>>M, N/M is cyclic, and M is abelian. It follows
from (9.12) of that 7" | M=3 p™, where p is a linear character of M and

{n,} is a complete system of coset representatives of I(p) in N, I(p) being the
inertial group of p. We have [N: I(p)1=7"(1)=[N: {a)]=2""7=2'=[N: M.
Hence I(p)=M. This implies that p¥=x%, where p,=p% (v=1,-,2%). Put
w=u¥. Then a*w=wa® and w¥=1, so 7"(a)=n(a*)+ypwa’w )+ -+
p(wzi‘lain"zi‘”):2i7;(a2i). On the other hand, we have
7¥(a*)=p,(a*) +p,(aa¥a )+ -+ pa¥ 1a¥a0)=2p,(a*). Hence p,(a¥)=
p(azi):C‘;’i, (1=v=2Y). If p(w)=p,(w), then p,(x)=p,(x) for all x&€ M. There-
fore, p,(w)#p,(w) for v#y'. We have (p,(w))*=p,(w*)=p,(1)=1. Hence
p:1(w), -+, p,«(w) are distinct 2'-th roots of unity, and so for some v, o, (w)=1.
Then, §=p, is the linear character of M, as is stated in the lemma.

We now proceed to prove Put y'=yF. Recall that (a)CN=
(a, YT GCF, M=(a®, u’yCN, y=7°=(y")°=(&¥)=¢% Hence 7y =yF=&".
Put 2=@Q(y’). Recall that 3’ is induced from the character ¢ of the generalized
quaternion group H and that [F: H]=2"*'. Hence by [Theorem 1, k=Q({,n-r-1
+Cr—). We also recall that M<F and & is a linear character of M. Set
E={geF; £2=£"® for some r(g)=g@(k(£)/k)}. Then by Proposition 3.4 of [§],
k(§¥)=F. Since (§¥)F=&T=y’, it follows from Corollary 3.9 of that me(y’)
=m(y)=mw(éF). By Proposition 3.5 of [8], we conclude that m,(¢¥) is the
index of a cyclotomic algebra of the form: B=(p(z,z’), k(§)/k). Note that
Q) =Q(L,n-)2Q(,n-+) Dk, so k(§)=Q(§). Let ¢ denote the automorphism of
Q(&)/k such that £, ;=C3l,. We have ba*b'=a"¥, bub '=u¥, so &(a*)=
E(a ) =Ll i=(&(a™)), &w)=Eu¥)=1=(éw¥)y. Hence &'=¢&, z(b)=c. This
implies that b€ E. From construction of the cyclotomic algebra B (cf. Proposi-
tion 3.5 of [8]) it follows that B(c, ()=E(b*)=E&(a*""")=—1. Hence by Proposi-
tion 2, the index of B equals 2, as was to be shown.
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