Induced characters of some 2-groups

By Toshihiko YAMADA

(Received May 6, 1976)

Let G be a 2-group and χ a complex, irreducible character of G. The Schur index of χ with regard to the rational field Q is denoted by $m_Q(\chi)$. It is known that $m_Q(\chi)=1$ or 2, and that if $m_Q(\chi)=2$, then there exist a subgroup H of G and an irreducible character ϕ of H such that χ is induced from ϕ , i.e., $\chi=\phi^G$, $m_Q(\phi)=2$, and the factor group H/N, N=kernel of ϕ , is a generalized quaternion group (cf. (11.7) and (14.3) of [2], or [3]).

Now, let H' be a generalized quaternion group. The faithful irreducible characters of H' are algebraically conjugate to each other and their Schur indices are equal to 2, whereas any non-faithful irreducible character of H' has Schur index 1 (cf. [5, § 6]). So we ask a question: Let G be a 2-group, let H, N be subgroups of G such that $H \triangleright N$ and H/N is a generalized quaternion group, and let ϕ be a faithful irreducible character of H/N, which is also regarded as a character of H. Suppose that the induced character ϕ^G is irreducible. Is it true that the Schur index $m_{\mathbf{Q}}(\phi^G)=2$?

A simple case for the question is that $N=\{1\}$. Namely, let $G \supset H$ be 2-groups, where H is a generalized quaternion group, and let ϕ be an irreducible character of H such that $m_{\mathbf{Q}}(\phi)=2$ and ϕ^G is irreducible. Is it ture that $m_{\mathbf{Q}}(\phi^G)=2$? The purpose of the paper is to show that this is true for a class of induced characters ϕ^G , which are associated with *cyclotomic algebras*. Our result yields, as a special case, that if [G:H]=2, then the question is affirmative.

Let us briefly explain the contents of the paper. From now on, H_n denotes the generalized quaternion group of order 2^{n+1} $(n \ge 2)$, ϕ_n an irreducible character of H_n with $m_Q(\phi_n)=2$, and ζ_s a primitive s-th root of unity, where s is a natural number. In § 1, we investigate a 2-group G such that $G \supset H_n$ and that the induced character ϕ_n^G is irreducible (Theorem 1). We also determine the values of ϕ_n^G at elements x of G (Proposition 1).

In § 2, we study a cyclotomic algebra B made with the extension $Q(\zeta_{2^n})/k$, where k is a subfield of the field $Q(\zeta_{2^n})$ of 2^n -th roots of unity. It will be shown that the index of B is 1 or 2, and if B has index 2, then there exists a 2-group G, which is a finite subgroup of the multiplicative group B^{\times} such that

30 T. Yamada

 $G \supset H_n$ and ϕ_n^G is irreducible. Moreover, B is isomorphic to the simple component of the group algebra Q[G], which corresponds to ϕ_n^G . In particular, $m_Q(\phi_n^G)=2$ (Theorem 2). We will call such a group G a cyclotomic 2-group.

Let G be a cyclotomic 2-group and let F be a 2-group such that $F \supset G$, [F:G]=2, and $(\phi_n^G)^F=\phi_n^F$ is an irreducible character of F. The purpose of § 3 is to prove $m_Q(\phi_n^F)=2$ (Theorem 3). As a special case of the result, we have: If G is any 2-group such that $G \supset H_n$, $[G:H_n]=2$, and ϕ_n^G is irreducible, then $m_Q(\phi_n^G)=2$ (Corollary 1).

NOTATION. Z is the integers. If K is a Galois extension of k, then $\mathcal{Q}(K/k)$ is the Galois group of K over k. For $x \in K$ and $\sigma \in \mathcal{Q}(K/k)$, x^{σ} denotes the image of x by σ . Let χ be an irreducible character of a group G such that $K(\chi)=K$. Then χ^{σ} is the character of G defined by $\chi^{\sigma}(g)=(\chi(g))^{\sigma}$, $g\in G$. Let $N \triangleleft G$ and φ a character of G. Then $\varphi^{g}(g\in G)$ is the character of G defined by G defined by

§ 1. Induced characters.

Let $H=H_n=\langle a,b\rangle$ denote the generalized quaternion group of order 2^{n+1} $(n\geq 2)$ with relations

$$a^{2^n}=1$$
, $bab^{-1}=a$, $b^2=a^{2^{n-1}}$. (1)

We summarize known results about characters of H (cf. pp. 225-226 of [5]).

There are $2^{n-1}-1$ irreducible characters $\phi_{\nu}(1 \le \nu \le 2^{n-1}-1)$ of H, which are not one-dimensional:

$$\phi_{\nu}(a^{i}) = \zeta_{2n}^{\nu i} + \zeta_{2n}^{-\nu i}, \quad \phi_{\nu}(a^{i}b) = 0, \quad (i=0,1,\dots,2^{n}-1).$$

Each ϕ_{ν} is induced from the linear character η_{ν} of $\langle a \rangle$: $\eta_{\nu}(a^{i}) = \zeta_{2n}^{i\nu}$.

The character ϕ_{ν} is faithful, if and only if ν is odd. If ν is odd then the Schur index $m_{\mathbf{Q}}(\phi_{\nu})=2$, and if ν is even then $m_{\mathbf{Q}}(\phi_{\nu})=1$. The faithful characters ϕ_{ν} ($1 \le \nu \le 2^{n-1}-1$, $2 \nmid \nu$) are algebraically conjugate to each other and $\mathbf{Q}(\phi_{\nu})=Q(\zeta_{2^{n}}+\zeta_{2^{n}}^{-1})$.

THEOREM 1. Let G be a 2-group which contains the generalized quaternion group H of order 2^{n+1} with $[G:H]=2^r$. Let ϕ be a faithful, irreducible character of H. Suppose that the induced character $\chi=\phi^G$ is irreducible. Then $r\leq n-2$, $Q(\chi)=Q(\zeta_{2^{n-r}}+\zeta_{n^{n-r}}^{-1})$, and $[Q(\phi):Q(\chi)]=2^r=[G:H]$.

PROOF. We may assume that

$$\phi(a^j) = \zeta_{2^n}^j + \zeta_{2^n}^{-j}, \quad \phi(a^j b) = 0, \quad (j = 0, 1, \dots, 2^n - 1).$$
 (2)

We can find a sequence of subgroups G_i of G and an element u_i of G_i such that

$$H=G_0\subset G_1\subset\cdots\subset G_r=G$$

$$[G_i: G_{i-1}]=2$$
, $G_i=G_{i-1}\cup G_{i-1}u_i$, $u_i^2\in G_{i-1}$, $(i=1,\dots,r)$.

First we will prove Theorem 1 for the case n=2. Namely, suppose that H is the quaternion group of order 8. We observe that

$$\phi(1)=2$$
, $\phi(a^2)=-2$, $\phi(y)=0$ for $y \in (H-\langle a^2 \rangle)$. (3)

Assume that $r \ge 1$. Then $H \ne G_1 = H \cup Hu_1$. Since $\{1, a^2\}$ is the center of H, it follows that $u_1a^2u_1^{-1}=a^2$, so $u_1(H-\langle a^2\rangle)u_1^{-1}=H-\langle a^2\rangle$. By (3), this yields that $\phi^{u_1}=\phi$. Hence by (45.5) of [1], ϕ^{G_1} is not irreducible, contradiction. Therefore, if n=2, then r=0, proving Theorem 1 for the case n=2.

Hereafter we assume $n \ge 3$ and $[G: H] = 2^r > 1$. It is easy to see that Theorem 1 follows from the following proposition.

PROPOSITION 1. Let the notation and assumption be as above. Then $r \le n-2$, and

$$\phi^{G_i}(a^{z^iz}) = 2^i \phi(a^{z^iz}), \quad (z \in \mathbf{Z}), \quad (0 \le i \le r)$$
 (4)

$$\phi^{G_i}(y) = 0 \quad \text{for} \quad y \in (G_i - \langle a^{2^i} \rangle), \quad (0 \le i \le r)$$
 (5)

$$\sigma(\langle a^{2^i} \rangle) = \langle a^{2^i} \rangle$$
 for any $\sigma \in \text{Aut}(G_i)$, $(0 \le i \le r)$ (6)

$$u_i a^{2^{i-1}} u_i^{-1} = a^{2^{i-1}(1+2^{n-i})}$$
 for an appropriate $u_i \in G_i$, $(1 \le i \le r)$ (7)

$$x^{2^i} \in \langle a^{2^i} \rangle$$
 for any $x \in G_i$, $(1 \le i \le r)$. (8)

PROOF. We will use induction on i. The equations (4)-(6) clearly hold for i=0.

Suppose that the equations (4)-(8) hold for $i \ge 0$. We will show that they also hold for i+1. (The following argument yields that the equations (4)-(8) for i=1 follow from the equations (4)-(6) for i=0.) We assume that $i+1 \le r \le n-1$. By (6), $u_{i+1}a^{2i}u_{i+1}^{-1}=a^{2is}$ for some $s \in \mathbb{Z}$. Putting $\alpha=u_{i+1}^2 \in G_i$, we have $\alpha a^{2i}\alpha^{-1}=a^{2is^2}$. By (7), $u_ja^{2i}u_j^{-1}=a^{2i(1+2n-j)}=a^{2i}$ for $j=1,\cdots,i$. So the conjugates of a^{2i} in G_i are $\{a^{2i},a^{-2i}\}$, because $(a^zb^{z'}u_1^{21}\cdots u_i^{zi})a^{2i}(a^zb^{z'}u_1^{21}\cdots u_i^{zi})^{-1}=a^{\pm 2i}$, $(z',z_1,\cdots,z_i=0)$ or 1). Hence $2^is^2 = \pm 2^i \pmod{2^n}$, so $s^2 = \pm 1 \pmod{2^{n-i}}$. But there is no $s \in \mathbb{Z}$ such that $s^2 = -1 \pmod{2^{n-i}}$, $(n-i \ge 2)$. Hence $s^2 = 1 \pmod{2^{n-i}}$, and so $s = \pm 1, \pm 1 + 2^{n-i-1} \pmod{2^{n-i}}$. If $s = \pm 1 \pmod{2^{n-i}}$, then $u_{i+1}a^{2iz}u_{i+1}^{-1}=a^{\pm 2iz}$ $(z \in \mathbb{Z})$, so by (4),

$$(\phi^{\scriptscriptstyle G}{}^{\scriptscriptstyle i})^{u_{i+1}}\!(a^{\scriptscriptstyle 2^iz})\!\!=\!\!\phi^{\scriptscriptstyle G}{}^{\scriptscriptstyle i}(a^{\scriptscriptstyle \pm^{2^iz}})\!\!=\!\!2^i\phi(a^{\scriptscriptstyle \pm^{2^iz}})\!\!=\!\!2^i\phi(a^{\scriptscriptstyle 2^iz})\!\!=\!\!\phi^{\scriptscriptstyle G}{}^{\scriptscriptstyle i}(a^{\scriptscriptstyle 2^iz})\,.$$

Since $u_{i+1}\langle a^{2^i}\rangle u_{i+1}^{-1}=\langle a^{2^i}\rangle$, it follows that for $y\in (G_i-\langle a^{2^i}\rangle)$, $u_{i+1}yu_{i+1}^{-1}\in (G_i-\langle a^{2^i}\rangle)$, so $(\phi^{G_i})^{u_{i+1}}(y)=0=\phi^{G_i}(y)$ by (5). Hence $(\phi^{G_i})^{u_{i+1}}=\phi^{G_i}$, so $\phi^{G_{i+1}}$ is not irreducible, contradiction. Thus $s\equiv \pm 1+2^{n-i-1}\pmod{2^{n-i}}$. In particular, this implies that $r\leq n-2$. For, if $i+1=n-1\leq r$, then $2^{n-i}=4$ and $\pm 1+2^{n-i-1}\equiv \pm 1\pmod{2^{n-i}}$, so $\phi^{G_{i+1}}$ would not be irreducible.

If
$$s \equiv -1 + 2^{n-i-1} \pmod{2^{n-i}}$$
, put $v_{i+1} = bu_{i+1}$. Then
$$v_{i+1}a^{2^i}v_{i+1}^{-1} = a^{-2^i(-1+2^{n-i-1})} = a^{2^i(1+2^{n-i-1})}.$$

So we may assume $u_{i+1}a^{2i}u_{i+1}^{-1}=a^{2i(1+2n-i-1)}$, proving (7) for i+1. We also have

$$\phi^{G_{i+1}}(a^{2^{i+1}z}) = \phi^{G_i}(a^{2^{i+1}z}) + (\phi^{G_i})^{u_{i+1}}(a^{2^{i+1}z})$$

$$=2^{i}\phi(a^{2^{i+1}z})+2^{i}\phi(a^{2^{i+1}z})=2^{i+1}\phi(a^{2^{i+1}z})$$
 ,

proving (4) for i+1.

If $y \in (G_{i+1} - G_i)$, then $\phi^{G_{i+1}}(y) = 0$, because $G_{i+1} \triangleright G_i$. Since $u_{i+1} \langle a^{2^i} \rangle u_{i+1}^{-1} = \langle a^{2^i} \rangle$, it follows that for $y \in (G_i - \langle a^{2^i} \rangle)$, $u_{i+1} y u_{i+1}^{-1} \in (G_i - \langle a^{2^i} \rangle)$, and so $\phi^{G_{i+1}}(y) = \phi^{G_i}(y) + (\phi^{G_i})^{u_{i+1}}(y) = 0 + 0 = 0$ by (5). If $2 \nmid z$, then by (4),

$$\phi^{\scriptscriptstyle G_{i+1}}\!(a^{\scriptscriptstyle 2^iz})\!=\!2^i\phi(a^{\scriptscriptstyle 2^iz})\!+\!2^i\phi(a^{\scriptscriptstyle 2^iz(1+2^{n-i-1})})\!=\!2^i\phi(a^{\scriptscriptstyle 2^iz})\!-\!2^i\phi(a^{\scriptscriptstyle 2^iz})\!=\!0\,.$$

Thus the equation (5) holds for i+1.

As a special case of the argument we have proved the equations (4), (5), (7) for i=1. We will prove the equations (6), (8) for i=1. Put $u_1^2=\alpha\in G_0$. We have $\alpha a\alpha^{-1}=u_1^2au_1^{-2}=a^{(1+2^{n-1})^2}=a$, so $\alpha=a^\lambda$ for some $\lambda\in \mathbb{Z}$. Since $a^\lambda=\alpha=u_1\alpha u_1^{-1}=a^{\lambda(1+2^{n-1})}$, $2|\lambda$. Since $u_1\langle a\rangle u_1^{-1}=\langle a\rangle$, it follows that $u_1bu_1^{-1}=a^\nu b$ for some $\nu\in \mathbb{Z}$. Then $a^{2\lambda}b=a^\lambda ba^{-\lambda}=\alpha b\alpha^{-1}=u_1^2bu_1^{-2}=u_1a^\nu bu_1^{-1}=a^{\nu(1+2^{n-1})}a^\nu b$, and consequently $2\lambda\equiv 2\nu(1+2^{n-2})\pmod{2^n}$, so $2|\nu$, because $2|\lambda$. We have $(a^jbu_1)^2=a^jba^{j(1+2^{n-1})}a^\nu bu_1^2=a^{-j2^{n-1}-\nu+2^{n-1}+\lambda}\in\langle a^2\rangle$, $(a^ju_1)^2=a^{2j(1+2^{n-2})+\lambda}\in\langle a^2\rangle$, $(a^jb)^2=a^{2^{n-1}}\in\langle a^2\rangle$. Thus for any $x\in G_1$, $x^2\in\langle a^2\rangle$, so for every $\sigma\in \operatorname{Aut}(G_1)$, $\sigma(a^2)=(\sigma(a))^2\in\langle a^2\rangle$, proving (6), (8) for i=1.

We now proceed to prove the equations (6), (8) for i+1, provided that they hold for $i \ge 1$. If $x \in G_i$, then $x^{2^i} \in \langle a^{2^i} \rangle$ by (8), so $x^{2^{i+1}} \in \langle a^{2^{i+1}} \rangle$. If $x \in (G_{i+1} - G_i)$, we write $x = a^{\nu}b^{\nu'}u_1^{\nu_1}\cdots u_i^{\nu_i}u_{i+1}$, where ν' , ν_1 , \cdots , $\nu_i = 0$, 1. Since $x^2 \in G_i$, $x^{2^{i+1}} \in \langle a^{2^i} \rangle$ by (8). Put $x^{2^{i+1}} = a^{2^{i}z}$. By (7), we have $a^{2^iz} = xa^{2^iz}x^{-1} = a^{\pm 2^iz(1+2^{n-i-1})} = a^{\pm 2^iz+2^{n-1}z}$. Hence if $i < r \le n-2$, then 2|z, so $x^{2^{i+1}} \in \langle a^{2^{i+1}} \rangle$. This proves (8) for i+1. For any $\sigma \in \operatorname{Aut}(G_{i+1})$, we have $\sigma(a^{2^{i+1}}) = (\sigma(a))^{2^{i+1}} \in \langle a^{2^{i+1}} \rangle$, by what has just been proved. This proves (6) for i+1.

The proof of Proposition 1 is completed.

§ 2. Cyclotomic groups and Schur index.

Let ζ_{2^n} $(n \ge 2)$ be a primitive 2^n -th root of unity. Let k be a subfield of $Q(\zeta_{2^n})$. Let B be a *cyclotomic algebra* made with the extension $Q(\zeta_{2^n})/k$, i.e., a crossed product of the form:

$$B = (\beta, \mathbf{Q}(\zeta_{2^n})/k) = \sum_{\sigma \in \sigma} \mathbf{Q}(\zeta_b) u_{\sigma}, \qquad (9)$$

$$u_{\sigma}xu_{\sigma}^{-1}=x^{\sigma}\qquad (x\in Q(\zeta_{2^{n}})),$$
 (10)

$$u_{\sigma}u_{\tau} = \beta(\sigma, \tau)u_{\sigma\tau}, \qquad \beta(\sigma, \tau) \in \langle \zeta_{,n} \rangle$$
 (11)

for all σ , $\tau \in \mathcal{G} = \mathcal{G}(Q(\zeta_{2n})/k)$. (See Chapter 2 of [8].)

For a prime \mathfrak{p} of k, $\operatorname{inv}_{\mathfrak{p}}(B)$ denotes the Hasse invariant of B at \mathfrak{p} . Proposition 2. Let $B=(\beta, \mathbf{Q}(\zeta_{\mathfrak{p}n})/k)$ be a cyclotomic algebra defined by (9)-(11). Then the index of B equals 1 except the case that the automorphism ϵ of the extension $\mathbf{Q}(\zeta_{2^n})/\mathbf{Q}$, defined by $\zeta_{2^n}^{\epsilon} = \zeta_{2^n}^{-1}$, belongs to $\mathcal{Q}(\mathbf{Q}(\zeta_{2^n})/k)$ and $\beta(\epsilon, \epsilon) = -1$. In this case, (i) if $k \neq \mathbf{Q}$, then $\operatorname{inv}_{\mathfrak{p}}(B) = 0$ for any finite prime \mathfrak{p} of k, and $\operatorname{inv}_{\mathfrak{p}}(B) = 1/2$ for any infinite prime \mathfrak{p}_{∞} of k; (ii) if $k = \mathbf{Q}$, then $\operatorname{inv}_{\mathfrak{p}}(B) = 0$ for any rational prime $p \neq 2$, ∞ , and $\operatorname{inv}_{2}(B) = \operatorname{inv}_{\infty}(B) = 1/2$.

PROOF. Let $\mathfrak p$ be a prime of k. If $\mathfrak p \not\mid 2$, ∞ , then $\operatorname{inv}_{\mathfrak p}(B) = 0$, because $\mathfrak p$ is unramified in $Q(\zeta_{2^n})/k$ and the values of the factor set β are roots of unity. If $\mathfrak p|2$, then it follows easily from Theorems 3.1 and 4.1 of [7] that $\operatorname{inv}_{\mathfrak p}(B) = 0$ except the case k = Q and $\beta(\iota, \iota) = -1$, where $\operatorname{inv}_2(B) = 1/2$. Let $\mathfrak p_\infty$ denote an infinite prime of k. If $\iota \in \mathcal Q(Q(\zeta_{2^n})/k)$ then k is not real, so $\operatorname{inv}_{\mathfrak p_\infty}(B) = 0$. Suppose that $\iota \in \mathcal Q(Q(\zeta_{2^n})/k)$. We note that $\beta(\iota, \iota) = \pm 1$ (cf. Theorem 4.1 of [7]) and that $B \otimes_k k_{\mathfrak p_\infty} \sim (\beta(\iota, \iota), C/R, \iota)$, where C and R are the complex numbers and the real numbers, respectively. If $\beta(\iota, \iota) = -1$, then the above cyclic algebra is the ordinary quaternion algebra over R and has index 2. If $\beta(\iota, \iota) = 1$, the cyclic algebra has index 1. The assertions of Proposition 2 now follow immediately.

Suppose that in the notation of Proposition 2, $\ell \in \mathcal{Q}(\mathbf{Q}(\zeta_{2^n})/k)$ and $\beta(\ell,\ell) = -1$. Then the cyclotomic algebra B has index 2, $k = \mathbf{Q}(\zeta_{2^{n-r}} + \zeta_{2^{n-r}}^{-1})$ for some r with $0 \le r \le n-2$, and $\mathcal{Q}(\mathbf{Q}(\zeta_{2^n})/k) = \langle \ell \rangle \times \langle \tau \rangle$, where $(\zeta_{2^n})^\tau = \zeta_{2^n}^{1+2^n-r}$. We may assume that B is of the form:

$$B = (\beta, \mathbf{Q}(\zeta_{2n})/k) = \sum_{i=0}^{1} \sum_{j=0}^{z-1} \mathbf{Q}(\zeta_{2n}) u_{\varepsilon}^{i} u_{\tau}^{j}, \qquad (12)$$

$$u_{\iota}\zeta_{2n}u_{\iota}^{-1} = \zeta_{2n}^{-1}, \qquad u_{\tau}\zeta_{2n}u_{\tau}^{-1} = \zeta_{2n}^{1+2n-\tau},$$
 (13)

$$u_{\tau}^{2} = \beta(\epsilon, \epsilon) = -1$$
, $u_{\tau}^{z} = 1$, $(z=2^{r})$, $u_{\epsilon}u_{\tau} = u_{\tau}u_{\epsilon}$. (14)

In fact, since $u_{\tau}u_{\tau}^{2}u_{\tau}^{-1}=u_{\tau}^{2}$, we have $u_{\tau}^{z}=\zeta_{2^{n-r}}^{x}$ for some $x\in \mathbb{Z}$. Put $c=1+(1+2^{n-r})+\cdots+(1+2^{n-r})^{z-1}$, $(n-r\geq 2)$. It is easy to see that $c=2^{r}c'$, (2,c')=1. Let y be an integer such that $yc'+x\equiv 0\pmod{2^{n-r}}$. Then

$$(\zeta_{2n}^{y}u_{\tau})^{z} = \zeta_{2n}^{yc}u_{\tau}^{z} = \zeta_{2n-r}^{yc'+x} = 1$$
, $(\zeta_{2n}^{z^{r}} = \zeta_{2n-r})$.

So, from now on we assume $u_{\tau}^{2}=1$. Let $u_{\ell}u_{\tau}=\zeta_{2n}^{t}u_{\tau}u_{\ell}$. Then we have

$$1 = (u_{\tau}^{z})^{t-1} = (\zeta_{2n}^{t})^{1+\tau+\cdots+\tau^{z-1}} = \zeta_{2n}^{tc}$$
.

(See the equation (1.11) of [6, p. 582].) So, $2^{n-r}|t$. Putting $j=t/2^{n-r}$ and $v_{\ell}=\zeta_{2n}^{j}u_{\ell}$, we see easily that $v_{\ell}u_{\tau}=u_{\tau}v_{\ell}$ and $v_{\ell}^{2}=-1$. Hence we may assume $u_{\ell}u_{\tau}=u_{\tau}u_{\ell}$.

Now put $a=\zeta_{2^n}$, $b=u_{\ell}$, $u=u_{\tau}$. Then the cyclotomic algebra B contains the finite group G:

$$G = \langle a, b, u \rangle$$
, $a^{2^n} = 1$, $b^2 = a^{2^{n-1}}$, $u^{2^n} = 1$, (15)

$$bab^{-1}=a^{-1}$$
, $uau^{-1}=a^{1+2^{n-r}}$, $bu=ub$. (16)

The cyclotomic algebra B contains the field $Q(\zeta_{2^n})$ as a maximal subfield, and so has an absolutely irreducible, faithful representation U which is realized in $Q(\zeta_{2^n})$. Since the group G spans the algebra B with coefficients in Q, the representation U also gives an absolutely irreducible, faithful representation of G, the character χ of which is given by

$$\chi(a^{i}) = \sum_{\nu=0}^{1} \sum_{\iota=0}^{z-1} (\zeta_{2n}^{i})^{\iota^{\nu}\tau^{\mu}}, \qquad (i=0, 1, \dots, 2^{n-1})$$
(17)

$$\chi(x)=0$$
, if $x \in \langle a \rangle$. (18)

The simple component of the group algebra Q[G] which corresponds to χ is isomorphic to B, so $m_Q(\chi)=2$. The group G contains the generalized quaternion group $H_n=\langle a,b\rangle$ of order 2^{n+1} . Let η be the linear character of the cyclic group $\langle a\rangle$, given by $\eta(a^i)=\zeta_{2n}^i$. Let $\phi=\phi_n$ be the character of H_n given by (2). Then it is easy to see that $\phi=\eta^H$ and $\chi=\eta^G=\phi^G$. Thus we have

THEOREM 2. Let G be the 2-group defined by (15)-(16) and embedded in the cyclotomic algebra B with index 2. Let χ be the faithful irreducible character of G given by (17)-(18). Then χ is induced from the faithful irreducible character ϕ_n of the generalized quaternion group $H_n \subset G$, and the Schur index $m_{\mathbf{Q}}(\chi)=m_{\mathbf{Q}}(\phi_n^G)=2$.

We will call the 2-group G given by (15)-(16), the *cyclotomic* 2-group of type (n, r) and denote it by $G_{n,r}$ $(0 \le r \le n-2)$.

RRMARK 1. From Satz 12 of [4] we easily conclude that the faithful irreducible characters of $G_{n,r}$ are algebraically conjugate to each other and induced from the faithful irreducible characters of H_n .

REMARK 2. $H_n = G_{n,0}$.

In § 3, we will prove the following.

THEOREM 3. Let $G=G_{n,r}$ be the cyclotomic 2-group of type (n,r) and χ its faithful irreducible character. Let F be a 2-group such that [F: G]=2 and that χ^F is irreducible. Then the Schur index $m_{\mathbf{q}}(\chi^F)=2$.

COROLLARY 1. Let H be the generalized quaternion group of order 2^{n+1} and ϕ its faithful irreducible character. Let F be a group such that [F: H] = 2 and ϕ^F is irreducible. Then $m_{\mathbf{Q}}(\phi^F) = 2$.

PROOF. Since $H=G_{n,0}$, the assertion is clear by Theorem 3.

COROLLARY 2. Let the notation be as in Theorems 2 and 3. Then $H_n \subset G_{n,r} \subset F$. If ϕ_n^F is irreducible, then $m_{\mathbf{q}}(\phi_n^F) = 2$.

PROOF. This follows at once from Theorems 2 and 3.

§ 3. Proof of Theorem 3.

In this section we will use the notation of Theorem 3. Since [F:G]=2,

there exists an element $v \in F$ such that $v \notin G$, $v^2 \in G$. Since F contains the generalized quaternion group $H=H_n=\langle a,b\rangle$ with $[F:H]=2^{r+1}$, the equation (7) implies that $va^{2^r}v^{-1}=a^{2^r(1+2^{n-r-1})}$. From the equation $uau^{-1}=a^{1+2^{n-r}}$, it follows that $ua^{2^r}u^{-1}=a^{2^r}$, so

$$(vuv^{-1})(va^{2^{r}}v^{-1})(vuv^{-1})^{-1}=va^{2^{r}}v^{-1}=a^{2^{r}(1+2^{n-r-1})}$$
.

Writing $vuv^{-1}=a^ib^ju^e$, the left side of the above equation is equal to

$$a^{i}b^{j}u^{e}a^{2^{r}(1+2^{n-r-1})}u^{-e}b^{-j}a^{-i} = a^{(-1)^{j}2^{r}(1+2^{n-r-1})}$$
.

Hence $j\equiv 0\pmod 2$, so $vuv^{-1}=a^iu^e$. Since $u^{2^r}=1$, we have $1=(a^iu^e)^{2^r}=a^{i2^rl}$ for some $l\in \mathbb{Z}$, $2\nmid l$. Hence $2^{n-r}|i$, so we write $vuv^{-1}=a^{2^{n-r}h}u^e$. It is easy to see that elements $a^\nu u^\mu (2|\nu)$ and $a^\nu bu^\mu$ have order less than 2^n , so $vav^{-1}=a^\nu u^\mu$ for some ν , $\mu\in \mathbb{Z}$, $2\nmid \nu$. Summarizing, we have

$$vav^{-1} = a^{\nu}u^{\mu}, (2 \nmid \nu), \quad vuv^{-1} = a^{2^{n-r}h}u^{e}.$$
 (19)

LEMMA 1. Let t be a non-negative integer, and put $\gamma_t = 2^{t(n-r)}$, $\delta_t = 2^{(t+1)r-tn}$, $M_t = \langle a^{\gamma_t}, u^{\delta_t} \rangle$, $M'_t = \langle a^{\delta_t}, u^{\gamma_t} \rangle$. (I) If

$$\frac{2t-1}{2t}n < r \le \frac{2t}{2t+1}n \quad for \quad some \quad t > 0, \tag{20}$$

then $F \triangleright M_t$ and M_t is abelian.

$$(II)$$
 I_f

$$\frac{2t}{2t+1}n < r \le \frac{2(t+1)-1}{2(t+1)}n \quad for \ some \quad t \ge 0,$$
 (21)

then $F \triangleright M'_t$ and M'_t is abelian.

PROOF. First we will prove $M_t \triangleleft F$ for the case (I). It suffices to prove that the elements $va^{\tau t}v^{-1}$, $au^{\delta t}a^{-1}$, and $vu^{\delta t}v^{-1}$ belong to M_t . It follows from (20) that $\delta_t \leq \gamma_t < \delta_{t-1}$. Hence $va^{\tau t}v^{-1} = (a^{\nu}u^{\mu})^{\tau t} = a^{\tau t^{\nu l}}u^{\tau t^{\mu}} \in M_t$, $au^{\delta t}a^{-1} = (aua^{-1})^{\delta t} = (a^{-2^{n-\tau}}u)^{\delta t} = a^{-2^{n-\tau}\delta t^{\nu}}u^{\delta t} = a^{-\delta t-1^{l'}}u^{\delta t} \in M_t$, $vu^{\delta t}v^{-1} = (a^{2^{n-\tau}h}u^e)^{\delta t} = a^{\delta t-1^{hl'}}u^{e\delta t} \in M_t$, where l, l', l'' are some integers.

The proof of $M'_t \triangleleft F$ for the case (II) is similar. It follows from (21) that $\gamma_t < \delta_t \le \gamma_{t+1}$. Hence we have $va^{\delta_t}v^{-1} = (a^vu^{\mu})^{\delta_t} = a^{v\delta_t l}u^{\mu\delta_t} \in M'_t$, $au^{\gamma_t}a^{-1} = (aua^{-1})^{\gamma_t} = (a^{-2^{n-\tau}}u)^{\gamma_t} = a^{-\gamma_{t+1}l'}u^{\gamma_t} \in M'_t$, $vu^{\gamma_t}v^{-1} = (a^{2^{n-\tau}h}u^e)^{\gamma_t} = a^{\gamma_{t+1}hl'}u^{e\gamma_t} \in M'_t$, where l, l', l'' are some integers.

Let i and j are non-negative integers with i+j=r. Then $u^{2j}a^{2i}u^{-2j}=a^{2^i(1+2^{n-r})2j}=a^{2^i}$, so the group $\langle a^{2^i},u^{2^j}\rangle$ is abelian. It is easy to see that $\gamma_t,\delta_t\geq 1$ by (20), (21) and that $\gamma_t\delta_t=2^r$. Therefore, M_t and M_t' are abelian, completing the proof of Lemma 1.

We observe that there is one and only one integer t which satisfies either (20) or (21). If the integer t satisfies (20), put $M=M_t$. If the integer t satisfies (21), put $M=M_t'$. We write $M=\langle a^{2^i}, u^{2^j} \rangle$, where $2^i=\gamma_t, 2^j=\delta_t$ for M=

 M_t , and $2^i = \delta_t$, $2^j = \gamma_t$ for $M = M'_t$. Let $N = \langle a, u^{2^j} \rangle \supset M$. As before, let η be the linear character of $\langle a \rangle$ defined by $\eta(a) = \zeta_{2^n}$. So, $\chi = \eta^G = (\eta^N)^G$.

LEMMA 2. Let the notation be as above. There exists a linear character ξ of M such that $\eta^N = \xi^N$, $\xi(a^{2^i}) = \zeta^{2^i}_{\eta^n}$, $\xi(u^{2^j}) = 1$.

PROOF. By Lemma 1, $N \triangleright M$, N/M is cyclic, and M is abelian. It follows from (9.12) of [2] that $\eta^N | M = \sum_{\nu} \rho^{n\nu}$, where ρ is a linear character of M and $\{n_{\nu}\}$ is a complete system of coset representatives of $I(\rho)$ in N, $I(\rho)$ being the inertial group of ρ . We have $[N:I(\rho)] = \eta^N(1) = [N:\langle a \rangle] = 2^{r-j} = 2^i = [N:M]$. Hence $I(\rho) = M$. This implies that $\rho_{\nu}^N = \eta^N$, where $\rho_{\nu} = \rho^{a\nu}$ ($\nu = 1, \dots, 2^i$). Put $w = u^{2^j}$. Then $a^{2^i}w = wa^{2^i}$ and $w^{2^i} = 1$, so $\eta^N(a^{2^i}) = \eta(a^{2^i}) + \eta(wa^{2^i}w^{-1}) + \dots + \eta(w^{2^{i-1}}a^{2^i}w^{-(2^{i-1})}) = 2^i\eta(a^{2^i})$. On the other hand, we have $\eta^N(a^{2^i}) = \rho_{\nu}(a^{2^i}) + \rho_{\nu}(aa^{2^i}a^{-1}) + \dots + \rho_{\nu}(a^{2^{i-1}}a^{2^i}a^{-(2^{i-1})}) = 2^i\rho_{\nu}(a^{2^i})$. Hence $\rho_{\nu}(a^{2^i}) = \eta(a^{2^i}) = \zeta_{2^n}^{2^i}$, $(1 \le \nu \le 2^i)$. If $\rho_{\nu}(w) = \rho_{\nu'}(w)$, then $\rho_{\nu}(x) = \rho_{\nu'}(x)$ for all $x \in M$. Therefore, $\rho_{\nu}(w) \ne \rho_{\nu'}(w)$ for $\nu \ne \nu'$. We have $(\rho_{\nu}(w))^{2^i} = \rho_{\nu}(w^{2^i}) = \rho_{\nu}(1) = 1$. Hence $\rho_1(w), \dots, \rho_{2^i}(w)$ are distinct 2^i -th roots of unity, and so for some ν , $\rho_{\nu}(w) = 1$. Then, $\xi = \rho_{\nu}$ is the linear character of M, as is stated in the lemma.

We now proceed to prove Theorem 3. Put $\chi'=\chi^F$. Recall that $\langle a \rangle \subset N = \langle a, u^{2^j} \rangle \subset G \subset F$, $M = \langle a^{2^i}, u^{2^j} \rangle \subset N$, $\chi = \eta^G = (\eta^N)^G = (\xi^N)^G = \xi^G$. Hence $\chi' = \chi^F = \xi^F$. Put $k = \mathbf{Q}(\chi')$. Recall that χ' is induced from the character ϕ of the generalized quaternion group H and that $[F:H] = 2^{r+1}$. Hence by Theorem 1, $k = \mathbf{Q}(\zeta_{2^{n-r-1}} + \zeta_{2^{n-r-1}}^{-1})$. We also recall that $M \lhd F$ and ξ is a linear character of M. Set $E = \{g \in F; \xi^g = \xi^{r(g)} \text{ for some } \tau(g) \in \mathcal{Q}(k(\xi)/k)\}$. Then by Proposition 3.4 of [8], $k(\xi^E) = k$. Since $(\xi^E)^F = \xi^F = \chi'$, it follows from Corollary 3.9 of [8] that $m_{\mathbf{Q}}(\chi') = m_k(\chi') = m_k(\xi^E)$. By Proposition 3.5 of [8], we conclude that $m_k(\xi^E)$ is the index of a cyclotomic algebra of the form: $B = (\beta(\tau, \tau'), k(\xi)/k)$. Note that $\mathbf{Q}(\xi) = \mathbf{Q}(\zeta_{2^{n-i}}) \supset \mathbf{Q}(\zeta_{2^{n-r}}) \supset k$, so $k(\xi) = \mathbf{Q}(\xi)$. Let ℓ denote the automorphism of $\mathbf{Q}(\xi)/k$ such that $\zeta_{2^{n-i}} = \zeta_{2^{n-i}}^{-1}$. We have $ba^{2^i}b^{-1} = a^{-2^i}$, $bu^{2^j}b^{-1} = u^{2^j}$, so $\xi^b(a^{2^i}) = \xi(a^{-2^i}) = \zeta_{2^{n-i}}^{-1} = (\xi(a^{2^i}))^{\ell}, \xi^b(u^{2^j}) = \xi(u^{2^j}) = 1 = (\xi(u^{2^j}))^{\ell}$. Hence $\xi^b = \xi^c$, $\tau(b) = \ell$. This implies that $b \in E$. From construction of the cyclotomic algebra E (cf. Proposition 3.5 of [8]) it follows that E (E (E (E (E (E (E)) = E (E (E)) = E (E (E)) = E (E) = E (E). Hence by Proposition 2, the index of E equals 2, as was to be shown.

References

- [1] C.W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962.
- [2] W. Feit, Characters of finite groups, Benjamin, New York, 1967.
- [3] P. Roquette, Realisierung von Darstellungen endlicher nilpotenter Gruppen, Archiv Math., 9 (1958), 241-250.
- [4] K. Shoda, Über die monomialen Darstellungen einer endlichen Gruppe, Proc.

- Phys.-Math. Soc. Japan, (3) 15 (1933), 249-257.
- [5] T. Yamada, On the group algebras of metabelian groups over algebraic number fields, I, Osaka J. Math., 6 (1969), 211-228.
- [6] T. Yamada, The Schur subgroup of the Brauer group, I, J. Algebra, 27 (1973), 579-589.
- [7] T. Yamada, The Schur subgroup of a p-adic field, J. Algebra, 31 (1974), 480-498.
- [8] T. Yamada, The Schur subgroup of the Brauer group, Lecture Notes in Math., Vol. 397, Springer, Berlin-Heidelberg-New York, 1974.

Toshihiko YAMADA

Department of Mathematics
Tokyo Metropolitan University
Fukazawa, Setagaya-ku,
Tokyo, Japan