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The purpose of this note is to improve the results obtained in our former
paper: Extremizations and Dirichlet integrals on Riemann surfaces, J. Math.
Soc. Japan, 28 (1976), 581-603, which we quote as $[E]$ throughout this note.
We will also quote as $[Ei]$ the reference $[i]$ in $[E]$ , and terminologies as well
as notations in $[E]$ are occasionally used without explanations. We denote
by $\mu_{D}$ and $\mu_{BD}$ the restrictions of extremization operator $\mu$ on the relative
classes $HD(W;\partial W)$ and $HBD(W;\partial W)$ . For convenience, a subregion $W$ of
an open Riemann surface $R$ will be referred to in this note as a malformed
subregion if $\mu_{BD}$ is surjective and yet $\mu_{D}$ is not. The main result in $[E]$ is
that there exists a malformed subregion $W$ of $R$ if (i) $HD(R)>HBD(R)$ (proper

inclusion), and (ii) $R$ belongs to $CU_{HD^{\sim}}$ . The primary purpose of this note is
to remark that the condition (ii) is redundant in the above assertion. There-
fore the best statement in this aspect is as follows:

THEOREM. An oPen Riemann surface $R$ contains malformed subregions if
and only if $R$ tolerates unbounded Dirichlet finite harmonic functions.

The result shows, contrary to the intuition at the first sight, that the
existence of malformed subregions is rather usual and it is exceptional that
$R$ contains no malformed subregions. The result can be restated as a kind of
subdomain criterion of degeneracies in the classification theory of Riemann
surfaces (cf. $[E7]$):

COROLLARY 1. An oPen Riemann surface $R$ belongs to the degenerate class
$\bigcup_{0\leqq n<\infty}O_{HD}^{\eta}$ if and only if $R$ does not contain any malformed subregion.

Another application of the above theorem is to the classification of densities
$P$ on $R,$ $i$ . $e$ . nonnegative H\"older continuous differentials $P(z)dxdy$ . Again just
for convenience we call a pair $(P, Q)$ of densities a bad pair on $R$ if $PBX(R)$

and $QBX(R)$ are canonically isomorphic and yet $PX(R)$ and $QX(R)$ are not
for $X=D$ and $E$ . The reaSon for we are tempted to call it bad is motivated
by the fact that $PBX(R)$ is dense in $PX(R)$ even in the lattice sense $(X=D, E)$ .
The term malformed above is also used by the same feeling: HBD is dense
in $HD$ even in the lattice sense for $R$ and $(W;\partial W)$ . We then have

COROLLARY 2. There exists a bad $pa\dot{r}r$ of densities on a Riemann surface
$R$ if and only if $R$ tolerates unbounded Dirichlet finite harmonic functions.
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Although there is no comparison in the completeness between the main
result in $[E]$ and the present theorem, the essence of the proof of the present
theorem is already all there in $[E]$ and only minor modifications are in order.
We will describe in the sequel how to modify the proof in $[E]$ to give the
proof to the present theorem.

Since the necessity of the condition in the above theorem is clear, we only

have to prove its sufficiency. The proof starts from no. 1 in $[E]$ and pro-
ceeds to no. 10 in $[E]$ without any change. Then we come to the spots

where modifications are in order: nos. 11 and 12 in $[E]$ .
11 (Revision of 11 in $[E]$ ). For a regular subregion $F$ we denote by $b(F)$

the Harnack constant of the set $\{z_{0}\}\cup\overline{F},$ $i$ . $e$ . the smallest number $\lambda$ such that
$\lambda^{-1}u(z_{1})\leqq u(z_{2})\leqq\lambda u(z_{1})$ for every pair of points $z_{1}$ and $z_{2}$ in $\{z_{0}\}\cup\overline{F}$ and for every
nonnegative harmonic function $u$ on $R$ . Here $z_{0}$ is a fixed point in $R$ . Let

$Y=\bigcup_{j=1}^{f}Y_{j}$ be a stuffed regular open subset of $R$ such that $Y_{j}(j=1, \cdots\iota)$ are
closure disjoint subregions of $R$ , and let $F$ be a regular subregion of $R$ such
that $\overline{Y}\subset F$ . The constant $a(F, Y)=b(F)c(F, Y)$ will play an important role.
We take the harmonic measure $\mu$ on $\Delta$ with its center $z_{0}$ and also the asso-
ciated harmonic kernel $P(z, \zeta^{*})$ (cf. $[E7$, p. 171]). Fix a point $z^{*}$ in $\Delta$ . We
shall prove that for any positive number $\epsilon$ there exists a stuffed normal
neighborhood $U^{*}$ of $z^{*}$ with $\overline{F}\cap\overline{U}^{*}=\emptyset$ and

(25) $\sum_{j=1}^{\prime}|\int_{-\partial Y_{j}^{*}}dw(\cdot, Y\cup X)-\int_{-\partial Y_{j}^{*}}dw(\cdot, Y)|<\epsilon+a(F, Y)\mu(z^{*})$

for every stuffed regular open subset $X$ with $XcU=U^{*}\cap R$ . In 11 of $[E]$ this
is obtained only for the case $\mu(z^{*})=0$ . Here $\mu(z^{*})>0$ may be the case. By
the same observation as in 11 in $[E]$ , we find a decreasing sequence $\{U_{n}^{*}\}$ of
stuffed normal neighborhoods $U_{n}^{*}$ of $z^{*}$ such that $\overline{U}_{n}^{*}\cap\overline{Y}=\emptyset$ and

$\lim_{n\rightarrow\infty}\mu(U_{n}^{*}\cap\Delta)=\mu(z^{*})$ .

Using the same $k_{n,m}$ defined in 11 of $[E]$ , we have

$\lim_{m\rightarrow\infty}k_{n,m}=\int_{\Delta\cap U_{n}^{\{}}P(\cdot, \zeta^{*})d\mu(\zeta^{*})$

uniformly on each compact subset of $R$ . Considering as $P(\cdot, z^{*})=0$ for $\mu(z^{*})$

$=0$, we have
$\lim_{n\rightarrow\infty}(\lim_{m\rightarrow\infty}k_{n,m})=P(\cdot, z^{*})$

again uniformly on each compact subset of $R$ . We can thus find an increas-
ing sequence $\{m(n)\}$ of positive integers such that

$\lim_{n\rightarrow\infty}k_{n}=P(\circ, z^{*})$ , $k_{n}=k_{n,m(n)}$ ,
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uniformly on each compact subset of $R$ . Then as in 11 of $[E]$

$\sum_{j=1}^{\iota}|\int_{-\partial Y_{j}^{*}}dw(\cdot, Y\cup X)-\int_{-\partial Y_{j}^{*}}dw(\cdot, Y)|\leqq c(F, Y)\sup_{\partial F}k_{n}$

for every stuffed regular open subset $X$ with $\overline{X}\subset U_{n}^{*}\cap(R-\overline{R}_{m(n)})$ . For suffici-
ently large $n$, $k_{n}\leqq\epsilon/c(F, Y)+P(\cdot, z^{*})$ on $\partial F$ and $P(\cdot, z^{*})\leqq b(F)P(z_{0}, z^{*})=$

$b(F)\mu(z^{*})$ on $\overline{F}$. We deduce (25) by taking $U^{*}$ as $U_{n}^{*}\cap(R-\overline{R}_{m(n)})$ with an
above $n$ .

12 (Revision of 12 in $[E]$ ). Since $HD(R)$ forms a lattice, the existence of
functions in $HD(R)-HBD(R)$ implies the existence of an $h$ in $HD(R)-HBD(R)$

with $h>0$ on $R$ . This function $h$ will be fixed throughout the proof. We
shall construct a sequence $\{\alpha_{n}\}$ of positive numbers $\alpha_{n}>n(n=1,2, \cdots)$ such
that $3\alpha_{n}<\alpha_{n+1}(n=1, 2, )$ and a sequence $\{X_{n}\}$ of stuffed regular open subsets
$X_{n}$ of $R$ such that $X_{n}$ does not contain any nonzero dividing cycle of $R$ ,
$\overline{X}_{n}\cap\overline{X}_{m}=\emptyset(n\neq m)$ ,

(26) $\alpha_{j}^{-2}<\int_{-}dw(\cdot,UX_{n})<2\alpha_{j}^{-2}k$ ($j=1,$ $\cdots$ , k)

for every $k=1,2,$ $\cdots$ , and

(27) $h|\overline{X}_{n}>\alpha_{n}$ $(n=1,2, \cdots)$ .
The construction goes as follows. By the maximum principle there exists a
sequence $\{\zeta_{n}^{*}\}$ of distinct points in $\Delta$ such that $\{h(\zeta_{n}^{*})\}$ is an increasing sequ-
ence of real numbers with $h(\zeta_{n}^{*})>3n(n=1,2, \cdots)$ . Observe that

$\sum_{n=1}^{\infty}\mu(\zeta_{n}^{*})\leqq\mu(\Delta)=1$ .

First let $z_{1}^{*}=\zeta_{1}^{*},$ $2\alpha_{1}=h(z_{1}^{*})$ , and $V_{1}^{*}$ be a stuffed normal open neighborhood
of $z_{1}^{*}$ such that $\alpha_{1}<h<3\alpha_{1}$ on $V_{1}^{*}$ . By (24) there exists a stuffed regular open
subset $X_{1}$ of $R$ with $\overline{X}_{1}\subset V_{1}^{*}\cap R$ such that

$\alpha_{1}^{-2}<\int_{-\partial x_{1^{*}}}dw(\cdot, X_{1})<2\alpha_{1}^{-2}$ .

Here by adding cuts in $X_{1}$ and deforming cut $X_{1}$ slightly, if necessary, we
can assume that $R-\overline{X}_{1}$ is connected. Suppose $\alpha_{1},$

$\cdots$ , $\alpha_{k}$ and $X_{1},$ $\cdots$ , $X_{k}$ have

already been chosen as required. We set $Y=\bigcup_{J=1}^{k}X_{j}$ and take a regular sub-

region $F$ with $\overline{Y}\subset F$ . Let $\delta=\min_{1\leqq J\leqq k}(\min(2\alpha_{j}^{-2}-\beta_{j}, \beta_{j}-\alpha_{j}^{-2}))$ with

$\beta_{j}=\int_{-\partial X_{j}^{*}}dw(\cdot,\bigcup_{n=1}^{k}X_{n})$ $(j=1, \cdots, k)$ .

Since $\sum_{n}\mu(\zeta_{n}^{*})\leqq 1$ and $h(\zeta_{n}^{*})>3n$, we can find a $\zeta_{n}^{*}$ such that $\mu(\zeta_{n}^{*})<\delta/2a(F, Y)$

and $h(\zeta_{n}^{*})/2>k+1,3\alpha_{k}$ . We set $z_{k+1}^{*}=\zeta_{n}^{*}$ and $\alpha_{k+1}=h(z_{k+1}^{*})/2$ . By (25) with
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$\epsilon=\delta/2$ and $z^{*}=z_{k+1}^{*}$ , we can find a stuffed normal open neighborhood $V_{k+1}^{*}$ of
$z_{k+1}^{*}$ such that $\overline{V}_{k+1}^{*}\cap\overline{F}=\emptyset$ , and $\alpha_{k+1}<h<3\alpha_{k+1}$ on $\overline{V}_{k+1}^{*}$ , and (25) with $\epsilon=\delta/2$

and $z^{*}=z_{k+1}^{*}$ is valid for every stuffed regular open subset $X$ with $\overline{X}\subset V_{n}^{*}\cap R$

so that

$\alpha_{j}^{-2}<\int_{-\partial x_{J^{*}}}dw(\cdot, (\bigcup_{n=1}^{k}X_{n})\cup X)<2\alpha_{j}^{-2}$ $(j=1, \cdots, k)$ .

By (24) in $[E]$ we can choose a stuffed regular open subset $X=X_{k+1}$ with
$\overline{X}_{k+1}\subset V_{n}^{*}$ such that

$\alpha_{k+1}^{-2}<\int_{-}dw(\cdot, (UX_{n})\cup X_{k+1})<2\alpha_{k+1}^{-2}k$

Here by deforming slightly the set $X_{k+1}$ as in the first step we can assume
that $R-\overline{X}_{k+1}$ and hence $R-(U\overline{X}_{n})\cup\overline{X}_{k+1}n=1k$ is connected. This completes the

induction for the proofs of (26) and (27).
Although the revisions are needed, after all, we obtained (26) and (27)

which are identical with those in $[E]$ . Then the rest of the proof proceeds
as nos. 13 and 14 in $[E]$ without any change. The proof of the present
theorem is thus complete.

Just a rewording the theorem gives Corollary 1. The necessity of the
condition of Corollary 2 is clear, and the proof for the sufficiency of the con-
dition of Corollary 2 proceeds as in nos. 16 to 19 in $[E]$ without any change.
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