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Introduction.

In the present paper we consider only Riemannian submersions 7 : (1\71, 2)
—(B, Bg) such that fibers F are complete and connected and imbedded in (M, )
regularly as totally geodesic submanifolds.

There are many examples of Riemannian manifolds (1\71, g) any of which
admits such a submersion and at the same time g is a critical Riemannian
metric on M. But it is in general not true that 2¢ is a critical Riemannian
metric on B although g is a critical Riemannian metric on M. Nevertheless
there exist some cases in which £ and Zg are critical Riemannian metrics on
M and B simultaneously. A Sasakian manifold (M, g, €) admits a Riemannian
submersion (Sasakian submersion) =« : (1\71, g, &)—(B, Bg) such that, if g is an
Einstein metric satisfying a subsidiary condition, § and Zg are simultaneously
critical Riemannian metrics or not. If N is a certain integer an N-dimensional
sphere (S¥,g,) with the standard Riemannian metric g, admits one or more
Riemannian submersions 7 : (SV, g,)—(B, g) [2] and ®g is always a critical
Riemannian metric on B.

On any C* complete manifold M there can exist various Riemannian
metrics g Among them a critical Riemannian metric is defined as follows if
M is compact orientable. Let (M) be the space of C* Riemannian metrics
g on M satisfying

jMdVg:1

where dV, is the volume element measured by g. Consider a point g M(M).
Let f(K) be a scalar field on M determined by g as the contraction of a tensor
product of the curvature tensor. Then

Fulg)=[ f(K)dV,

defines a mapping F: M(M)—R. A critical point of F is denoted by gr and
is called a critical Riemannian metric with respect to the field f(K) or the
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integral Fy[g]. Thus, following M. Berger [1] we have four kinds of critical
Riemannian metrics g4, g5, &¢ and g, as the most prominent ones. The cor-
responding integrals are

Aulgl=| Kdv,, Bulgl=[ KdV,,

CM[g]:jMKjinidVg, DM[g]:fMKkjithjindVg

where K is the scalar curvature, K;; is the Ricci tensor and K,;;;, is the cur-
vature tensor expressed in components. The equations of the critical Rieman-
nian metrics were obtained by M. Berger which we can write in the following
form in tensor notations,

Aj=ca85 Bji=cpg;s

’ Jji B&jt s

(0.1)

Cji:ccgjiy Di=cpgji,
where ¢y, cp, c¢, ¢p are undetermined constants and Aj;, Bj;, C;;, Dj; are given
by

_71_

(0.2A) Aj=—Kj;+ 9 Kgj;,
(0.2B) B, =2 ,9,K—29,V'Kg,;—2KK ;;+ —%—Kzgﬁ ,
(0.2C) AN AD S AU

—2K K5 KWK gy,

(0.21)) D]l = ZVjViK—llV,VtKjri—llKﬁKit
—"4KjtsiK”_2cheriwr

+ —%*Ktsrth"qgji .

REMARK. V means covariant differentiation with respect to the Riemannian
connection induced by g. When T and S are tensor fields, VTS means in the
present paper (YT)®S.

Although critical Riemannian metrics were first defined on a compact
manifold, it is easy to generalize the definition when M is not compact. We
only need to consider variations of the Riemannian metric with compact sup-
port. The resulting equations are the same as the foregoing ones and (0.1)
and (0.2) are valid.

We get for example following results.
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Let 7: (}\71, 8, £)—(B, 2g) be a Sasakian submersion. If § and 3g are cri-
tical Riemannian metrics gp on M and B respectively, then the scalar curvature
K is constant and (B, 2g) is an Einstein manifold satisfying

BK gepa K40 = 6(11+2)P K —2(3+2)(7°—1)

where the first member is the square of the curvature tensor of (B, 2g), 2K
the scalar curvature and i=dim M. Conversely let us consider the case where
(B, 2g) is an Einstein manifold satisfying the above equation. If one of £ and
Bg is a critical Riemannian metric gp, then the other is also a critical Rieman-
nian metric gp.

The standard Riemannian metrics on CP(n) and QP(n) are critical Rieman-
nian metrics in the sense A, B, C, D.

§1 is devoted to a summary of known results concerning general properties
of Riemannian submersions with totally geodesic fibers. In §2 a Sasakian
manifold (M, g, &) is studied when g turns out to be a critical Riemannian
metric. In §3 we study a Riemannian submersion 7: (M, 3, £)—(B, Bg) where
(M, & & is a Sasakian manifold for the purpose of finding the cases where Z
and Zg become critical Riemannian metrics simultaneously. §4 is devoted to
the study of Riemannian submersions 7 : (S¥, g,)—(B, 2g) for the purpose of
proving that Bg is a critical Riemannian metric.

§1. Riemannian submersions with totally geodesic fibers.

Riemannian submersions were extensively studied by the authors R. H.
Escobales [2], S. Ishihara [3], S. Ishihara and M. Konishi [4], Y. Muto [5],
T. Nagano [8], B.O'Neill [9], K. Yano and S. Ishihara [11], and others.

Riemannian submersions considered in the present paper are limited to
those with totally geodesic fibers only, and this means that the tensor T of B.
O’Neill vanishes [9] Tensors in the total manifold M, in the base manifold
B or in the fiber F are written in such letters as S, 2S, or ¥S. Thus the
Riemannian metrics on A7I, B and F are denoted respectively by g, 2g and Fg.
B Let W be any vector field on M, E any horizontal vector field on M and
X any vertical vector field on M. Then, for example, from any (1, 1)-tensor
field S on J\7I, we get four (1, 1)-tensor fields S;”, Sy¥, Sy¥, Sy¥ such that

S=Su"+Su"+SyH+S,7,
S X=S"X=S,2E=8,E=0,
#SLW, X)
E(Sy"W, E)

P2

I

0, BSAHAW, X)=0,

I

0, HS, W, E)=0.
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It is easy to see that such a decomposition of Sis unique. Similarly, ifSisa
(1, 2)-tensor field, we have a unique decomposition

(1-1) §: SHHH+SHHV+SHVI{+SHVV
+Sya®+Syu” + Sy +Spy” .

The (0, 2)-tensor field and the (2, 0)-tensor field associated with the Riemannian
metric 2 are decomposed into gnnz+gyy and g#%+g"" respectively since gyy
and g”" vanish.

We define a tensor field B with the following property.

R has only one non-vanishing part, namely,

(12) ﬁ:RHHV .

Let A be the tensor field A in O'Neill's paper [9]. Let £ and F be any hori-
zontal vector fields and X any vertical vector field. Then R satisfies

(1.3)

Such a vector field R also appears in
We can cover M by a set {V} of coordinate neighborhoods with the follow-
ing property. wV is a coordinate neighborhood of B and for any point PV

we have local coordinates P& (x%, .-+, x™, 3%, .-+, y™)=(x!, -+, x7, x™*, o0, X"
such that 7P & (x', x™). If we use the natural 'frame attached to such a
coordinate nelghborhood V, the components (X1 s X’", )?"“, e, )?””") of a
vertical vector X satisfy X*=0 where h=1, -, n.

Now we use indices in the following ranges:

a, b, ¢, "'7h’ ir j; :1; e, n

b b

«, 187 7y K /29 My o :n‘\Ll, feey, n-+m R
A B, C ---,R S T, ---=1,--,n+tm,

Then the covariant componets of the Riemannian metric § are g.5 or sepa-
rately, i, &2, 8ui, 8 where Z;;=4g;;. If g, are the covariant components
of the Riemannian metric “g on the fiber, it is easy to see that Fg,;=g,,. The
inverse matrix of (fg,;) is denoted by (Fg"*) where 7g* are the contravariant
components of 7g.

Now we define I'f by

K _F kTN
I'i=%g"g;.



Critical Riemannian metrics 497

For any vector W we have the decomposition formula W=wHE+W". If
W4, namely W"* and W*, are the components of W and the components of
WH and WV are denoted by (W)4 and (W")4 respectively, then we have

Wip=w*,  (Why=-TW°,

14
( ) (WV)h:O , (WV):c: Wx_}_l";ch ,

as it is easy to see from F(W¥, W")=0.
For any covariant vector U we have U=Uy+U,. As we have Ugx(X)
=0, Uy(E)=0 for any vertical vector X and any horizontal vector E, we get

(UH)h:ﬁh—F;iﬁry (UH)lr:Or
(1.5) . N
(UV)h = F;‘LUE ’ (UV);: = UIC .

We observe from (1.4) and (1.5) that (WH)*, (WV)*, (Ug), and (Uy). are
the leading components of W¥, W¥, Uy and Uy, respectively.

Using such local coordinates and natural frames we can deduce that B
has components

ﬁjiE:(RHHV)jix:Djrf—DiF';
where
Di:ai_pgaay ai:a/axiv aarl:a/aya-

All other components of B vanish and we shall write R;* for the sake of
convenience instead of R;.*.
For the Riemannian metric #g on the base manifold B we have

B — 5 Iy Bjt . Nt
gji—gji—rﬁ"rzgyh glt=g'".

We have observed that a tensor of M is decomposed into several parts as in
(1.1). If we take any one part, indices can be raised and lowered with the
use of Zg¥, Fg#* and g, Fg,. Thus we can define new tensors from R,
especially Ry”" and Ryyy whose leading components are R;**=R,* Bg"* and
R;ix=R;"Tga. 1t is easy to see that (gun);i="8i, (8vv)u="8us (§7")/'=2g"
=g, (8" yi=rgri=gi I Tig".

Relations between the curvature tensor I?DCBA of (1\71, g), the curvature
tensor 2K,;, of (B, ®g) and the curvature tensor YK, of the fiber (F, Fg)
have been obtained by B. O’'Neill [9]. In our terminology they are

(1.6) (Kgunmejin="2Kjin— —4L (R;"Rina—Rpi"R jne)

+’%—RkjaRiha ,
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.7 (Kyﬂyv)kjix:"%“Rim ’

(18) (v v )i = Roants— 5~ R uRose
(19) Ky e =0,

(1.10) (Kvvvv)spae ="Ky

where R;j;, = Riji*FGu» R,ujix = Ryjia Fg.. and
Rkjix: ((’3"1’%1{11’1*11’)1;;;"C ’ RyjiK: ((ﬁﬁ%’lﬂlv)pji’c

¥ denoting covariant differentiation in (M, #) with the use of Christoffel’s
symbols. Then, as we have (Kgvay)iuie= (Kuvav)icrs We get R pi—Reip,=0,
hence

(111) R/ljiX+Riny:O'

REMARK. Though R has only the part Ry,", VR has several parts, namely,
VR=R) uun +(VR) uun” + R uuy” +(TR)uyn” +(VR)yxr”. Hence the vanish-
ing of (ﬁﬁ)HHHV and (YR),uu” does not mean that R is parallel in (M, o).
But, if (ﬁﬁ)mm” vanishes, we get R,*,R;*=0 and moreover R=0 from
R;“R’*",=0. Similarly, if (VR)yxv" vanishes, we get R,";R;*=0 and moreover
R=0 (Escobales [2]).

We have some other formulas such as

(KHHHH)kji/c =0,
(KHHHV)kjih: (KHHHV)kjiaFﬁ ’
(KHHVV>kjbc - (KHVIIV)k,Zj:c_(KHVHV)kle

and so on. These are direct consequences of the decomposition K =Kuyynn
+Kpyuv+ -+ +Kyyyy and the formulas similar to (1.5), or the well-known
Bianchi identity.

For the Ricci tensors Ric, Ric and FRic of (1\71, 2), (B, Bg) and (F,¥g) we
have

(1L12) (Knm)si="K ji— 5 R;Russ,
(1.13) (KHV)jz:’%“gtschsz
(1.14) (Kyv)a ="K+ =R, Rus
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where Ric=Kyy+Kur+Kyu+Kyy and 2K;; and FK,, are respectively com-
ponents of BRic and FRic. For the scalar curvatures K, 2K and K we have

(1.15) R=3K1rK— %R‘“’RM.

Fundamental formulas of covariant differentiation have been obtained by
B. O’Neill [9]. They are also given in [4]. The following is only a transla-
tion into our terminology, where W is a vector field and U a 1-form.

S{7\ H\ b s DL W\ e 1 n (fifa afift
(VW)= DT { [ J T4y R AWt e W),
(TOVam)si= DO IO )" { LY O —T20 ) +-L- Ry
HH/ji — j i i Ya ji t t aTZ ji ar
(T = D (W TEW 10, LW Te W) —5 R, W,

(T o= D,0,— 8,50 —5 R (0, —T20 ),

2
(T, "), = 0,7+ R, W,

(@) =0,0— 0 )= R LT —T0),
(FW)"e= 0, (Wt LW+ { (Wt T
Vv Jeg — Y h ) {/,t?,' t )r

@)= 3,0,~ {33} O

Formulas for covariant differentiation of tensor fields are easily deduced from
the above formulas.

§2. A Sasakian manifold where the Riemannian metric is a critical
Riemannian metric.

We can consider a Sasakian manifold (M, g, &) as a~Riemannian manifold
(M, g) with a unit Killing vector field £ satisfying

szihEt:gjiEn_éia’;-
Hence in a Sasakian manifold (M, g, £) we have
K &t =(n—1)¢",

vjvigh :gjhft—‘gjifh ’



500 Y. MuTtd
V= —(n—1)&",
K8+ KV 8 =0,
V&N =g;—86:.

We show that, if the Riemannian metric g is a critical Riemannian metric
gp, then the scalar curvature K is constant.

First we get from (0.1) and
2.1) 28N N K—4EN K, +4&' K, K,°
48K, KT — 28K, KT
- KuurK 98 = e
But we have
EN N K=&V K=V ,(EV,K)-V &N, K

=V, KV%,,
EVVK, = VSVS(E”K”)—(VSVSE‘)K”——ZVSE‘VSKH
=(n—1)V,V°&,+VN¢K,; —2V(V°E'K,;)
= —2(n—1)*6;—2V(K*'V £;)
=—2(n—1)*6;,—V'KV, &, —2K*"V V&,
=—2(n—1)6;—V'KV.§;—2K" (g6, —8aE:)
=2{K—n(n—1)}§,—V'KV.&;,
§'K K" =(n—1)°¢",
'Ky KT = {K—(n—1)}&,,

Ethsrin”q — 2(71—1)51 .
Hence we get

(2.2) —12K+4(n—1)(3n— 1)—[—_%#K£STQK!3TQ — )
and
23) VKV =0.

From and &'V, K=0 we get K=const as we have V,6,V'6,=g,,—&,&,.
From (2.2) we get K,;,/K**"?=const.
By a similar argument we get
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K =const
and

— 4K+ 5 K K+ 2n—1)(n+1) = ¢

if g is a critical Riemannian metric g¢, and similarly

K =const
and
—2(n—DK+4K*=cy
if g is a critical Riemannian metric gs. On the other hand it is well-known
that in an Einstein manifold K=const.
Thus we have proved the following theorem.

THEOREM 2.1. If g is a critical Riemannian wmetric g4, g5, &c O Sp in a
Sasakian manifold (M, g, &), then the scalar curvature is constant.

§ 3. Sasakian submersions and critical Riemannian metrics.

Let (M, &, &) be a Sasakian manifold where dim M=7#. Let the indices
A,B,C -+ ,R,S, T, -+ run the range {1, -, #} and the indices q, b, c, -+ ,h, 1, j,
-+, 7,5, t, - the range {1,---,n} where n=#—1. Then we have

(3.1) RrpoptET = gopé4—E 5ot

and

Rpt&r =18+,
ﬁCﬁBgA:‘g-CAéB_gCBEA ’
(3.2)
KorV 8T+ K5V 67 =0,
ETGTKZO .

A Sasakian manifold (1\71, g, €) admits a Riemannian submersion where the
unit Killing vector € is a vertical vector and the fibers are geodesics tangent
to £. Let us call such a Riemannian submersion a Sasakian submersion. For
the existence of such a submersion see K. Yano and S. Ishihara [11], [12].

One of our purposes is to find the condition for a Sasakian submersion
(A7I, g, €)—(B, Bg) that & and Bg are critical Riemannian metrics simultaneously
in M and B respectively. We also study some related problems.

To that end we take local coordinates introduced in §1. But, as dim F
=1 in the present case, Greek indices can take only one number #. Hence we
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can replace all Greek indices by 0. Thus, for example, the components of the
unit Killing vector € are £ and &°. As & is a vertical vector, we have

(33) =0, é&=1,

for we take g,,=1 as the Riemannian metric on the one dimensional fiber.
The index 0 can be dropped if there is no possibility of confusion. For
example, we can write I"; for I'} which was written ™5 in § 1. Thus we get

szgjozgjoéoznggT:éj ’
and B =14+1,I 3.

The non-vanishing components of the tensor R are R;,° which we write Rj;.
From we get Ry;°=0. As ¢ is a Killing vector field, we have

écachA +§CBaA§C+§CAaB§C =0.

From this and we get 0,85, =0 and especially 9,5:,=0, 3,£;=0, namely,

(3.4) 0,I";=0.
We also get
(3.5) Rji:ajgi_aiéj .

(3.1) is equivalent to
(3-6) ]?TCBAET = gcsé,q_guéz; .

As the pure horizontal part of the right hand member vanishes, we get Kyyuy
=0. Hence we get R;;=0 from [1.7). On the other hand we have [3.4)
Applying the fundamental formulas of covariant differentiation in §1 to the

tensor field R we get
BviRkj =0,

which means that R;; considered as a tensor field of the base manifold (B, 2g)
is covariantly constant.
From [3.6) we get Kyyuy = guu, that is,

(Kvuuv)ejio="8; .

On the other hand, as we have R,;;,=0, we get from

(KVHHV)ojiO :—i—RjLR‘it .
Hence we have

jll—RjLRit:ngi .
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As Rj; is a skew tensor and satisfies ®V,R;;=0, we can conclude that F*
defined by

Ff=—3Rj=5 R, "

represents a complex structure J such that (J, g) is a Kédhler structure on B.
Let us decompose the Ricci tensor of (M, g &) into the sum Kun+Kur
+Kyug+Kyy. Then we get from the above results

(Kun)j="K;—22g;i,
(3.7) (Kav)jo=0,
(Kyv)o=0—1,
for the one dimensional fiber is flat. For the scalar curvatures we have
(3.8) KR=2K—(7n—1).

Thus, the scalar curvatures are constant if any one of them is constant. The
Ricci tensor of (M, g, &) has the following components,

I%ji =PK;i—2%g;+A—1I";[;,
(3.9) K,,=m—-1T;,
K,,=7n—1.

We have defined tensors A, B, C, D by (0.2) in a Riemannian manifold
(M, g) Correspondmg tensors of a Sasaklan manifold (M, 2, &) will be denoted
by A, B C D and their components by ABA, BBA, CBA, Dg4, while those of
the base manifold (B, 2g) by 2A, 2B, C, 2D and their components by %A,
BB, BCji, 2Dy In order to find the relation between, for example, D and 5D,
we need the following identities,

VoVTK,, =2V, 5V BK ;, — 2 BK ,,+-2(7+1) Bg}
—2I ,F*8Y, 8K, —2 ,F** 8V, B[,
+2{BK—(A—1)(A+D} T,

VTR, = —2F BY, 3K, +-2 (PK — (i— )G+ 1)} s
Vo VTR, =2 BK—(—1)(#+1)} ,
K RT=3K, BK,'—4 8K ,+4 Bg,.+(i— 1), T,
K KT =@m—17T;,
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K KT =m—1),
Kps KT =3I, BK 5 BK .+ (i+5) Bg,4
+{BK—2A—1)}[;T;,
K5 K75 = (BK—2(i—1)} T, ,
RorsoKTS=BK—2(7i—1),

~

RpspK"s2=5K ;,,, PK, 57— 12 2K ;;+(67+2) Bg,;
+2m—1)I",T;,
KopseK®=2(a—1)T;
RorspRi™=2(7—1),
Ryop KPOBA=BK, | BRda_19 BK 1237+ 2)(7i—1)
Ry sRTS = 3K, B 5 — 4 K- (i—1)(4-3)

where BV denotes covariant differentiation with respect to the metric %g.
These identities are obtained from the fundamental formulas by straightforward

calculation.
If the scalar curvature K is constant, we have F* 2V, 2K,.=(0 because of

PO 5T, K = P ,(F ¥ K, ) =T (K F)
=~ Lo,k
2 1 3 *

Then we get from the above identities

(3.10) ﬁji =8D;;+36 2K ;; +[—6 BK+(371+2)(%1—9) ] Bg;s

+ [ "Kacra KO~ 18 2K +5(3+ 2)(— 1) | T, T,

(3.11) D= [ 22K auna K4~ 185K+ 530+ 2) (i~ T,

(3.12) By = é—Bch,,a BICdcia 18 B | 5(374+2)(fi—1) .

First, let us assume that & is a critical Riemannian metric g, on M and
at the same time 3g is a critical Riemannian metric g, on B. Then K is con-
stant and [3.10), [(311), [3:12) are valid. Substituting J,,=¢,§;; and 2D,;=%c, Bg;,
into [(3.10) we get
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ED(ngr}'FjFJ:BCD ngi+36 BKji
+[—6BK+3a+2)(#—9)] ngi

[ K aosa K18 K+ 5304 2)(—1) [T,

and substituting ﬁOO:ED§00:€D into ((3.12) we get

(3.13) o= ; BK yepa PEO— 18 BK 45374 2)(i—1) .
Hence we have
[Pep—Cp—6 PK+(37+2)(%—9)] ®g;:+36 BKji:_O

and, consequently,

B
(3.14) K = Kl g1,
(3.15) 2ep—ept@i+2)—9)— P syrg.

Substituting [(3.13) and

BCD - -1“,I:—£TBD]1 Bgfi el <..%_.__ ﬁ_z__l ) Bchba, Bch.')a

into we get
(3.16) BEK 4opa PK¥0 = 6(7i+2) BK—2(3%+2)(A—1) .

Secondly, let us assume that K is constant and [3.14) and [3.16) are satis-
fied. If moreover g is a critical Riemannian metric gp on M we have Dj 4
=Cpgs4, hence

(3.17) ﬁji:5D<ngi+FjFi>v Dy =¢
Then we get from and
36

2D =[er— 2 PK+6 2K —(3i+2)(i— -9)]%¢;

which proves that ®g is a critical Riemannian metric g, on B.
Thirdly, let us assume that A is constant and [(3.14) and [3.16) are satisfied.
If moreover g is a critical Riemannian metric g, on B, we have

(3.18) BDji =%, ngi

and
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1

(319) BCD: P BDji ngi

— ﬁi-]_ ( ﬁgl __2) Bchba Bchba.
Substituting into we get
(3.20) pep= 2D s (7 5)(30+2)(R+1).

From [(3.10), [(3.14), [3.18) and [3.20) we get

Dji=@—4)[3 BK—(3i+2)(i—1)1%g;
+[F*EKacra K2~ 18 PK+5(30+2) (A1) | T, ;.

But, as we have
P K e KO 18 K 45(342) (1)
. =#—4)[38K—(3n+2)(i—1)]
from (3.16), we get
D;;=vg;
where
v=(—4)[3EK—(3n+2)(ni—1)].

At the same time we get, from [3.11) and [3.12), Dos=»I"; and Dy=v, which
proves that g is a critical Riemannian metric gp on M.

Thus we have proved the following theorem.

THEOREM 3.1. Let w: (1\71, g, &—(B, Bg) be a Sasakian submersion. If g
and Bg are critical Riemannian metrics gp on M and B respectively, then the
scalar curvature K is constant and (B, g) is an FEinstein manifold satisfying
(3.16). Conversely, let us consider the case where (B, 8g) is an Einstein manifold
satisfying (3.16). If one of § and Bg is a critical Riemannian metric gp, then
the other is also a critical Riemannian metric gp.

For 53‘4 and 5C;; we get following identities if K is constant,

(3.21) Clu=2CouH12 2K | —2 K- (a3)~9)] Py
+[ 7K P 6 Ko=)+ )| T,
(3.22) Coo=[ 5" Ku "K"—6"K+--(i—1)a+3) |y,

(3.23) & = «é—BKw BRts_gBCL %(ﬁ— 1)(7+3).
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If & and Bg are critical Riemannian metrics g;, we get
2o+ T T ) =0 "2, +12 P Kot [ —2 PK+-2- (74 3)(—9) | %y
+[ 3P KW K6 2K+ (A= 1)(+3) [T,
(3.24) Co=5PK, "K" 6P+ (i—1)(+3)

from [(3.21) and [[3.23). Hence 2g is an Einstein metric and

(3.25) to="Peo—2 AT PK+ S (+3)(—9).
On the other hand we get from

Bcczfn}_l BCJL g - 2(~ 51) BKtsBK”

which becomes

Feo=- 2(n 1)2
From and we get
(3.27) BK)y—2(n—1)(#+2) BK+(7+1)(#+3)(#7—1)*=0

(3.26) (PK)®.

whose solution is
BK=n*—1 or (#—1)(#+3).

It is also easy to prove, following almost the same process as in the case of
gp, that, in a Sasakian submersion with Einsteinian (B, 2g) satisfying [3.27),
if one of 2 and Zg is a critical Riemannian metric g;, then the other is also
a critical Riemannian metric g¢.

Thus we have proved the following theorem.

THEOREM 3.2. Let 7: (1\71, 8, £)—(B, Bg) be a Sasakian submersion. If §
and Bg are critical Riemannian metrics go on M and B respectively, then the
scalar curvature K is constant and (B, Bg) is an Einstein manifold satisfying
(3.27). Conversely, consider the case where (B, 2g) is an Einstein manifold satis-
fyving (3.27). If one of @ and Bg is a critical Riemannian metric g, then the
other is also a critical Riemannian metric ge.

For EEBA and ®B;; we get the following identities if K is constant.

B,=?B,+2(7i—1)2K +[ (7i—5) BK—4(7i— 1)+ (—1)*] %g;q

+[ 5 CEY=3G—1) *K+5-(a—L12 | T, 1,
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Bu=[4 CKP—3(i—1) "+ 5 (117 ] T,

Buw=5 CK)—3(i—1) "K+ 3 (h—1).

By an argument similar to the foregoing one we get the following theorem.
THEOREM 3.3. Let n: (M, § §)—(B, 2g) be a Sasakian submersion. If

and Bg are critical Riemannian metrics gz on M and B respectively, then the

scalar curvature K is constant and (B, Bg) is an Einstein manifold satisfying

(3.28) CK}:—(n—1)#+2) BEK+(n—1)*(7+1)=0.

Conversely consider the case where (B, 2g) is an Einstein manifold where BK =
a*—1 or n—1. If one of g and Bg is a critical Riemannian metric gz, then the
other is also a critical Riemannian metric gg.

For Az, and 2A;, we have the following identities

Ajy=24,— 5 (3=5) "+ 5 PE=3(— 1) I, 1,
Ay=—5 (PK—3(—1) T,

Auy=-% (PK—3(i—1)) .

If 3 and 2g are critical Riemannian metrics g,, namely, Einstein metrics, we
get from the above identities

(3.29) R=w—pn, BK=i*—1.

Conversely, if K and 2K are such, then from we can conclude that g and
Bg are simultaneously Einstein metrics or not.

REMARK. A (2n+1)-dimensional sphere with standard Riemannian metric
g, admits a Sasakian submersion x: (S***!, g,)—(B, Bg) where (B, 2g) is a
Kaehler manifold of constant holomorphic sectional curvature 2. Here g, and
Bg are critical Riemannian metrics on S***! and B respectively in the sense
A, B, C, D simultaneously (see also §4). As we have

K= (it Dby, KuaK"*=20(n-+ 1)k,

K=n(n+1k

for a Kaehler manifold of constant holomorphic sectional curvature and k=4
in the present case, [3.16), [3.27), [[3.28), [(3.29) are all satisfied.
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§4. Riemannian submersions with totally geodesic fibers on spheres.

Let g, be the standard Riemannian metric on an (n+m)-dimensional sphere.
All possible Riemannian submersions = : (S™*™, g,)—(B, 2g) with totally geodesic
fibers were obtained by R.H. Escobales [2]. In the present paper the follow-

ing theorem is proved independent of Escobales’ result.

THEOREM 4.1. If (S™™, g,) admits a Riemannian submersion w: (S™*™, g,)
—(B, Bg), dim B=n, with totally geodesic fibers, then Bgis a critical Riemannian

metric in the sense A, B, C and D.

The remaining part of the present paper is devoted to the proof of this

theorem. As the curvature tensor of (S™*™, g,) satisfies

(4-1) KDCBA:§CB§DA—§DB§C/_ ,
we get

(KHHHH>kjih = ngi Bgin— 28w ngh )
(4-2) (KHHHV) kjix 0 ’
(KHVHV)k;zi/c: —B g F Q.

Substituting this into [1.6), and we get

(4.3) BKkjih = ngi ngh—ngi ngn

+_zli' (R;i"Rina— R "R jng)— 2
(4-4) RkjiE:O ’
(45) —%_R,ujil_ ‘All—Rjt‘uRitZ:_ngi Fg(d-

From we deduce

(46) Ry =4 (R AR —RER ),
(A7) "80 78, = g (R Ruat R uR )
(48> Rw/thsl - 477' Fg,ul ’

(4:.9) RjtaR“a,zzlm ngi .

For the Ricci tensor of (S™™, g,) we have
Kep=m+m—1)goz.

Substituting this into (1.12) we get

kl_ Rk[,‘aRihn .
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1 a
BKﬁ:_z‘Rjt Rt (nt+m—1) ngi

and from
(4.10) PKji=(n+3m—1)%g,;,
(4.11) BK=n(n+3m—1).

For these formulas see also Ishihara and Konishi
shows that the base manifold is an Einstein manifold.

BVjBViBK:(), ththBKji:O,
BKjt BKit: (n+3m—1)2 ngi ’
Bchsi B = (”+3m‘1)2 ngi ’

BR,BK" = n(n-f—Sm—l)Z:—(B]n{)2 .

By straightforward calculation we get

BKjtsr BK;'”T =2(n—1) ngi—i_SstaRisa

Hence we get

+ R RR, R o L RUR 4R R,
_LR ap Rt 5Rsr + 1_R aR Rt ﬁRsr
4 ts rjatt B ’8 tj sTatt i B
— L RR,RUR
k8 sj tratt i B-

Applying and to this formula we get
PKjisr PKST = {2(n—1+6m)+6nm} 2g;;

1 8 T (4 (23
P RURTSR Ry - RCR

ria

1 a sr
'—'*8—st R”aRtiﬂR B

and finally applying
BKjCST BK,,”T:Z(n—1+12m+3nm—3m2) ngi .

RtiﬂRsrﬁ

This proves that 2g is a critical Riemannian metric g,. That g is a critical
Riemannian metric g and gp simultaneously is immediately proved.

From Escobales’ result we obtain the following corollary.
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COROLLARY 4.2. The standard Riemannian metrics on CP(n) and QP(n)lare

critical Riemannian metrics in the sense A, B, C, D.

In this corollary a standard Riemannian metric means a Riemannian metric

induced by the projection =.
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