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In this article we give an estimation of the singular spectrum of boundary
values of real analytic solutions of linear partial differential equations with
constant coefficients. The result has been expected from the study of con-
tinuation of real analytic solutions. It gives a unified aspect to many problems
on continuation of regular solutions. (See [5]. But the present result (Theorem
2.1) is a little weaker than the conjecture in [5].) Our estimate is sharp for
the wave eqaations or for the ultrahyperbolic equations (Example 2.5).

Before my work, Professor Komatsu has given a vast conjecture (unpub-
lished) on precise determination of the singular spectrum of the boundary values
of general hyperfunction solutions from the standpoint of purely boundary-

value-theoretical origin. Corollary 2.4 is a partial answer to his conjecture.
Also in Theorem 2.1 we have added the distinction of the signs in the conormal
direction taking account of his conjecture. I am very grateful to Professor
Komatsu for his kind advices.

In \S 1, we paraphrase the definition of boundary values by way of the
Fourier transform. It was originally given for the equations with analytic
coefficients in [9] employing the Cauchy-Kowalevsky theorem. In \S 2 we prove
the main theorem. In \S 3, we give an application to continuation of real
analytic solutions. In some sense it is an extension of the results in [4] or [5].

\S 1. Boundary values of hyperfunction solutions.

First we prepare the notation. $p(D)$ denotes a linear partial differential
operator with constant coefficients, where $D=(D_{1}, \cdots , D_{n})$ and $D_{i}=\sqrt{-1}\partial/\partial x_{i}$ ,
$i=1,$ $\cdots$ , $n$ . By the Fourier transform

$a=\mathcal{F}[u]=\int u(x)e^{\prime_{-1x\xi}}dx$ , $x\xi=x_{1}\xi_{1}+\cdots+x_{n}\xi_{n}$ ,

it corresponds to the multiplication operator $p(\xi)$ . $\zeta$ denotes the complexifica-

*Partially supported by F\^ujukai.
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tion of $\xi$ . Let $U$ be a bounded convex open set in $R^{n}$ . Put $K=U\cap\{x_{1}=0\}$

and $U^{+}=U\cap\{x_{1}>0\}$ . Let $L$ be the closure $\overline{K}$ of $K$ in $R^{n}$ . $L$ is compact.
Later, we separate the variables $x$ in the way $(x_{1}, x^{\prime})$ with $x^{\prime}=(x_{2}, \cdots , x_{n})$ and
further $x^{\prime}=(x^{\prime\prime}, x_{n})$ with $x^{\prime\prime}=(x_{2}, \cdots , x_{n- 1})$ . We employ a similar notation for
the dual variables $\xi$ or $\zeta$ . $\mathcal{B}(U)$ resp. $d(U)$ denotes the hyperfunctions resp.
real analytic functions on U. $\mathcal{B}_{p}(U)$ resp. $A_{p}(U)$ denotes the hyperfunction
solutions resp. real analytic solutions of $p(D)u=0$ on U. $\prime \mathcal{B}(K)$ resp. $’\leftrightarrow q(K)$

denotes the hyperfunctions resp. real analytic functions of $n-1$ variables $x^{\prime}$

in the $n-1$ dimensional open set K. $\mathcal{B}[L]resp$ . $\prime \mathcal{B}[L]$ denotes the hyperfunc-
tions of $n$ resp. $n-1$ variables with support in $L$ .

Assume that the hyperplane $x_{1}=0$ is non-characteristic with respect to
$p(D)$ . Further, for the sake of simplicity assume that $p(\zeta)$ is an irreducible
polynomial of degree $m$ . This is not an essential restriction to the argument
(see Remark 1.4). For $u\in \mathcal{B}_{p}(U^{+})$ we define its boundary values $b_{j}^{+}(u)$ to the
hyperplane $x_{1}=0$ in the following way. Let $[u]\in \mathcal{B}(U)$ be an extension of $u$

satisfying supp $[u]\subset\{x_{1}\geqq 0\}$ . Then supp $p(D)[u]\subset\{x_{1}=0\}$ . Let $[[P(D)[u]]]$

$\in \mathcal{B}[L]$ be an extension of $P(D)[u]$ . The Fourier transform $F(\zeta)=\overline{[[p(D)[u]]]}$

is an entire function of $\zeta$ satisfying the growth condition
$|F(\zeta)|\leqq C_{\epsilon}$ exp $(\epsilon|\zeta|+H_{L}({\rm Im}\zeta))$ ,

where $ H_{L}({\rm Im}(\zeta)=\sup_{x\in L}{\rm Re}\sqrt{-1}x\zeta$ is the supporting function of $L$ . Then the
restriction $F(\zeta)|_{N(p)}$ of $F(\zeta)$ to the variety $N(P)=\{p(\zeta)=0\}$ is obviously deter-
mined by $u$ with the ambiguity in $\mathcal{B}[L\backslash K]|_{N(p)}$ . The elements of the latter
space cannot be characterized by a growth condition.

Next we seek the entire function $\tilde{f}(\zeta)$ of the form

\langle 1.1) $f(\zeta)=\zeta_{1}^{m-1}f_{0}(\zeta^{\prime})+\zeta_{1}^{m-2}f_{1}(\zeta^{\prime})+\cdots+f_{m-1}(\zeta^{\prime})$ ,

satisfying $\tilde{f}(\zeta)|_{N(p)}=F(\zeta)|_{N(p)}$ . We can obtain an example of such $\tilde{f}(\zeta)$ from
$F(\zeta)$ by reducing $\zeta_{1}^{N},$ $N\geqq m$ employing the equation $P(\zeta)=0$ . On the other
hand, $\tilde{f}(\zeta)$ is uniquely determined by the interpolation formula: Let $\tau_{j}(\zeta^{\prime})$ ,
$j=1,$ $\cdots$ , $m$ be the roots of the equation $P(\zeta)=0$ with respect to $\zeta_{1}$ . Then

$j+1$

(1.2) $f_{j}(\zeta^{\prime})=\left|\begin{array}{llllll}\tau_{1}(\zeta^{\prime})^{m- 1}, & \cdots & F(\tau_{1}(\zeta^{\prime}), & \zeta^{\prime}), & \cdots & 1\\\vdots & & \vdots & & & \vdots\\\tau_{m}(\zeta’)^{m- 1}, & \cdots & F(\tau_{m}(\zeta^{\prime}), & \zeta^{\prime}), & \cdots & 1\end{array}\right|\div\left|\begin{array}{lll}\tau_{1}(\zeta^{\prime})^{m- 1}, & \cdots & 1\\\vdots & & \vdots\\\tau_{m}(\zeta^{\prime})^{m- 1}, & \cdots & 1\end{array}\right|$ .

Since $p(\zeta)$ is irreducible, the discriminant $\Delta(\zeta^{\prime})$ of the equation $p(\zeta)=0$ in $\zeta_{1}$

does not vanish identically. Therefore the above formula gives an expression
of $\tilde{f}_{j}(\zeta^{\prime})$ as the quotient of an entire function $F_{j}(\zeta^{\prime})$ by the polynomial $\Delta(\zeta^{\prime})^{2}$ ,

where $F_{j}(\zeta^{\prime})$ is defined $replacing\div by\times in(1.2)$ . We denote this correspondence
by $B[F|_{N(p)}]=(\tilde{f}_{0}, \tilde{f}_{m- 1})$ . Since $B$ is linear, $f_{j}$ have the same estimate as
$F|_{N(p)}$ :
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$|\tilde{f}_{j}(\zeta^{\prime})|\leqq C_{\epsilon}$ exp $(\epsilon|\zeta^{\prime}|+H_{L}({\rm Im}\zeta^{\prime}))$ .
(Note that $H_{L}({\rm Im}\zeta)$ in fact depends only on $\zeta^{\prime}.$ ) In fact, this estimate can be
directly obtained for the numerator $F_{j}(\zeta^{\prime})$ . Hence by Malgrange’s inequality
it holds also for the quotient $\tilde{f}_{j}(\zeta^{\prime})$ (see [3], Theorem 3.8). Thus $\tilde{f}_{j}(\zeta^{\prime})$ are the

Fourier images of some elements $f_{j}(x^{\prime})\in^{\prime}\mathcal{B}[L]$ . The ambiguity in $\mathcal{B}[L\backslash K]\sim|_{N(p)}$

goes into $\prime \mathcal{B}[L\backslash K]$ by $B$ . In fact, assume that $F|_{N(p)}=G|_{N(p)}$ with some
$ G\in \mathcal{B}[L\backslash K]\sim$ . Then we can decompose $G=\sum_{k}G^{k}$ in accordance with the decom-

position of the support $L\backslash K$ into small pieces $L_{k}$ . Then $B[F|_{N(p)}]=\sum_{k}B[G^{k}|_{N(p)}]$ .
From the growth condition we see that $B[G^{k}|_{N(p)}]$ is a Fourier image of some
element in $(^{\prime}\mathcal{B}[chL_{k}])^{m}$, where ch denotes the convex hull. Thus the support
of $B[F|_{N(p)}]$ is contained in any small neighborhood of $L\backslash K$, hence in $L\backslash K$

itself. Thus we can define with no ambiguity that

$b_{j}^{+}(u)=f_{j}(x^{\prime})|_{K}$ , $j=0,$ $m-1$ .
LEMMA 1.1. $b_{f}^{+}(u)$ agree with the boundary values $C_{j}(-D)u|_{x_{1}\rightarrow+0}$ defined in

[9], where $\{C_{j}(D)\}$ denotes the dual system of the boundary condition { $D\{\}$ with
resPect to $p(D)$ . We assume that $C_{j}$ is of order $j,$ $j=0,$ $m-1$ .

PROOF. The boundary values $C_{j}(-D)u|_{x_{1}\rightarrow+0}$ defined in [9] are charac-
terized by the formula

$P(D)[\iota\iota]=\sum_{j=0}^{m-1}D_{1}^{m-j-1}(C_{j}(-D)u|_{x_{1^{\rightarrow+0}}}\delta(x_{1}))$ ,

where $[u]\in \mathcal{B}(U)$ is some (in fact unique) extension of $u$ satisfying supp $[u]$

$\subset\{x_{1}\geqq 0\}$ . Our construction shows that for an arbitrary such extension $[u]$

we have
$\overline{[[p(D)[u]]]}|_{N(p)}=\{\zeta_{1}^{m-I}\tilde{f}_{0}(\zeta^{\prime})+\cdots+\tilde{f}_{m- 1}(\zeta^{\prime})\}|_{N(p)}$ .

Hence, by the Fundamental Principle ([3], Theorem 3.8) we can Pnd $v\in \mathcal{B}[L]$

such that
$\overline{[[p(D)[u]]]}=\zeta_{1}^{m-1}\tilde{f}_{0}(\zeta^{\prime})+\cdots+\tilde{f}_{m-1}(\zeta^{\prime})+p(\zeta)\tilde{v}(\zeta)$ .

Thus we have in $U$

$p(D)([u]-v)=\sum_{j=0}^{m-1}D_{1}^{m-j-1}(f_{j}(x^{\prime})\delta(x_{1}))$ . $q$ . $e$ . $d$ .

REMARK 1.2. Because the boundary values in [9] are given as a sheaf
homomorphism, we see from this lemma that $b_{j}^{+}(u)$ are locally determined on $K$.

REMARK 1.3. Although $D_{1}^{j}u|_{x_{1}\rightarrow+0}$ may be more natural as the boundary
values, we treat $b_{j}^{+}(u)$ for the sake of simplicity. Since $\{C_{j}(-D)\}$ is a normal
system of boundary operators, these two sets of boundary values are easily
translated to each other.
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REMARK 1.4. When $P(\zeta)$ is not irreducible, we treat as follows. Let $p$

$=q_{1}^{\iota_{1}}\cdots q_{k}^{\iota_{k}}$ be the irreducible decomposition of $p;q_{j}$ of order $m_{j},$ $j=1,$ $k$ .
We have $m=\sum l_{j}m_{j}$ . Let $\tau_{j1}(\zeta^{\prime}),$ $\cdots$ , $\tau_{jm_{j}}(\zeta^{\prime})$ be the roots of $q_{j}(\zeta_{1}, \zeta^{\prime})=0$ with
respect to $\zeta_{1}$ . For a given entire function $F(\zeta)$ , seek an entire function

$f(\zeta)=\zeta_{1}^{m-1}f_{0}(\zeta^{\prime})+\cdots+f_{m- 1}(\zeta^{\prime})$

such that the difference $f(\zeta)-F(\zeta)$ is divisible by $p(\zeta)$ . $\tilde{f}$ is obtained from
$F(\zeta)$ by reducing $\zeta_{1}^{N}(N\geqq m)$ , employing the equation $P(\zeta)=0$ . Put $F_{ji}(\zeta)=$

$(\partial/\partial\zeta_{1})^{i- 1}F(\zeta)|_{N(q_{j})},$ $i=1,$ $\cdots$ , $l_{j},$ $j=1,$ $k$ . Then the restriction to the multi-
plicity variety $N(P):F(\zeta)\rightarrow\partial F=\{F_{ji}\}$ determines $F(\zeta)$ modulo the multiple of
$p(\zeta)$ . (See, $e$ . $g.$ , [11], Chapter IV, \S 4, Corollary 2 and Proposition 3.) We
claim that $\tilde{f}_{j}(\zeta^{\prime})$ is determined from $F_{ji}(\zeta)$ by a formula similar to (1.2). In
fact, the identity $\partial\tilde{f}=\partial F$ gives a system of linear equations for $\tilde{f}_{j}(\zeta^{\prime})$ :

$\left\{\begin{array}{l}\tau_{11}(\zeta^{\prime})^{m- 1}f_{0}(\zeta^{\prime})+: ............... +f_{m- 1}(\zeta^{\prime})=F_{11}(\tau_{11}(\zeta^{\prime}), \zeta^{\prime}):’\\\tau_{1m_{1}}(\dot{\zeta}^{\prime})^{m- 1}f_{0}(\zeta^{\prime})+ \cdot.............. +f_{m- 1}(\zeta^{\prime})=F_{11}(\tau_{1\dot{m}_{1}}(\zeta^{\prime}), \zeta^{\prime}),\\(m-1)\tau_{11}(\zeta^{\prime})^{m- 2}f_{0}(\zeta^{\prime})+:\ldots\ldots\ldots+f_{m- 2}(\zeta^{\prime})=F_{12}(\tau_{!^{1},:}(\zeta^{\prime}), \zeta^{\prime}),\\-(\frac{m-1)!}{m-l_{k})!}\tau_{km_{k}}(\zeta^{\prime})^{m-\iota_{k}}f_{0}(\zeta^{\prime})+(\ldots+l_{k} ! f_{m-\iota_{k}}(\zeta^{\prime})=F_{kl_{k}}(\tau_{km_{k}}(\zeta^{\prime}), \zeta^{\prime}).\end{array}\right.$

The determinant of the coefficient matrix is obtained from the Van der Monde
determinant of the m-th order by successive limit process. Hence it is dif-
ferent from zero when no pairs from $\{\tau_{ji}(\zeta^{\prime})\}$ agree. Since

{ $\zeta^{\prime}\in C^{n-1}$ ; $\tau_{ji}(\zeta^{\prime})=\tau_{j^{\prime}i^{\prime}}(\zeta^{\prime})$ for some $(j,$ $i)\neq(j^{\prime},$ $i^{\prime})$ }

is a proper algebraic subvariety of $C^{n-1}$ , the above argument (and the argu-
ment in the next section) goes with no essential modification in this general
case.

\S 2. Estimation of singular spectrum of boundary values of real
analytic solutions.

We inherit the situation in the preceding section. For the sake of sim-
plicity, we also inherit the assumption that $p(\zeta)$ is an irreducible polynomial
of order $m$ . This is not an essential restriction as mensioned in Remark 1.4.
First we give another expression of the Fourier image $\tilde{f}_{j}$ of the boundary
values when $u$ belongs to $d_{p}(U^{+})$ . Let $\chi(x)$ be a function of Gevrey class on
$U^{+}$ such that supp $\chi$ is contained in an $\epsilon$ neighborhood of $K,$ $\overline{\sup p\chi}\cap\partial U\subset L\backslash K$

and $x\equiv 1$ on a smaller neighborhood of $K$. Let $[(1-\chi)u]_{0}\in C^{\infty}(U)$ be the ex-
tension of $(1-\chi)u\in C^{\infty}(U^{+})$ by zero. Then we have obviously

$P(D)[[[(1-\chi)u]_{0}-[u]]]\equiv[[p(D)([(1-\chi)u]_{0})]]-[[P(D)[u]]]$ mod $\mathcal{B}[L\backslash K]$ .
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where $[[$ $]]$ denotes in general one of the extension with the smallest support.
Thus on $N(p)$ we have

$ F(\zeta)\equiv[[p(D)[(1-\chi)u]_{0}]]\sim$ mod $\mathcal{B}[L\backslash K]\sim$ .

Moreover, let $J(D)$ be a local operator with constant coefficients. (For the
definition see [2], \S 1, $2^{o}.$ ) The same representation holds for another element
$J(D)u\in \mathcal{A}_{p}(U^{+})$ . Let $J(\zeta)$ be the total symbol of $J(D)$ . Since $J(\zeta)F(\zeta)$ is clearly
one of the representatives of $J(D)u$ , we have on $N(P)$ ,

$ J(\zeta)F(\zeta)\equiv[[p(D)[(1-\chi)J(D)u]_{0}]]\sim$ mod $\sim \mathcal{B}[L\backslash K]$ .

Next, let $\varphi(x)$ be a function of Gevrey class such that $supp\varphi$ is contained in
the $\epsilon$ neighborhood of $L\backslash K$ and $\varphi\equiv 1$ on a smaller neighborhood. Put

$v=(1-\varphi)P(D)[(1-\chi)J(D)u]_{0}$

and
$w=[[P(D)[(1-\chi)J(D)u]_{0}]]-v$ .

$We_{-}^{-}can$ choose $\chi$ and $\varphi$ such that $v$ is in Gevrey class satisfying

$|\tilde{v}(\zeta)|\leqq C$ exp ( $-A|{\rm Re}\zeta|^{q}+\epsilon$ max $\{-{\rm Im}\zeta_{1},0\}+H_{L}({\rm Im}\zeta^{\prime})$),

where $q<1$ and $A$ are arbitrarily prescribed positive constants. On the other
hand, supp $w$ is contained in the part $x_{1}\geqq 0$ of the $\epsilon$-neighborhood of $L\backslash K$.
Employing the Fundamental Principle as before, we can include the ambiguity
in $\mathcal{B}[L\backslash K]\sim|_{N(p)}$ into $\tilde{w}$ . Then we have

$J(\zeta)F(\zeta)=\tilde{v}(\zeta)+\tilde{w}(\zeta)$ .
Put $B[v|_{N(p)}]=$ $(\tilde{g}_{0}(\zeta^{\prime}), \cdots , \tilde{g}_{m-1}(\zeta^{\prime}))$ and $B[w|_{N(p)}]=(\tilde{h}_{0}(\zeta^{\prime}), \cdots , \tilde{h}_{m-1}(\zeta^{\prime}))$ . If $J$

contains only $\zeta^{\prime}$ , then by the linearity of $B$ we have

$J(\zeta^{\prime})\tilde{f}_{j}(\zeta^{\prime})=\tilde{g}_{j}(\zeta^{\prime})+\tilde{h}_{j}(\zeta^{\prime})$ .

In this formula, $\tilde{g}_{j},\tilde{h}_{j}$ depends on $J,$ $\epsilon$ etc. The estimates for $\tilde{g}_{j},\tilde{h}_{j}$ provide
the necessary information. It depends on the condition on $\tau_{j}(\zeta^{\prime})$ .

THEOREM 2.1. Assume that the roots $\tau_{j}(\zeta^{\prime})$ of the equation $P(\zeta)=0$ in $\zeta_{1}$

satisfy

(2.1) $-{\rm Im}\tau_{j}(\zeta^{\prime})\leqq a|{\rm Re}\zeta^{\prime}|^{q}+b|{\rm Im}\zeta^{\prime}|+C$ , if ${\rm Re}\zeta_{n}\leqq-c|{\rm Re}\zeta^{\prime\prime}|$ ,

where $q<1,$ $a,$ $b,$ $c,$
$C$ are positive constants. Then, for $u\in d_{p}(U^{+}),$ $S.S.b7(u)$ do

not contain the direction $+\sqrt{-1}dx_{n}\infty$ .
PROOF. From the condition on $\tau_{j}(\zeta^{\prime})$ , we have for real $\xi^{\prime}$

(2.2) $|\tilde{g}_{j}(\xi^{\prime})|\leqq C$ exp $(-a^{\prime}|\xi^{\prime}|^{q})$ , if $\xi_{n}\leqq-c|\xi^{\prime\prime}|$ ,
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where we have assumed $A-\epsilon a>a^{\prime}>0$ . On the other hand, because $x_{1}=0$ is
non-characteristic with respect to $p(D)$ , we have $|\tau_{j}(\zeta^{\prime})|\leqq M|\zeta^{\prime}$ , hence,

(2.3) $|\tilde{g}_{j}(\xi^{\prime})|\leqq C$ exp $(M\epsilon|\xi^{\prime}|-a^{\prime}|\xi^{\prime}|^{q})$ , if $\xi_{n}\geqq-c|\xi^{\prime}|$ .

As for $\tilde{h}_{j}(\zeta^{\prime})$ , we can decompose it into $\sum_{k}\tilde{h}_{j}^{k}(\zeta^{\prime})$ in correspondence with the

decomposition $w=\sum_{k}w^{k}$ , where supp $w^{k}$ is contained in the $\epsilon$-neighborhood of

ch $L_{k}$ ; $UL_{k}=L\backslash Kk$ Then, each $\tilde{h}_{j}^{k}$ satisfies: given $\gamma>0$ , there exists $C_{\gamma}>0$ such
that

(2.4) $|\tilde{h}_{j}^{k}(\zeta^{\prime})|\leqq C_{\gamma}$ exp $(\gamma|\zeta^{\prime}|+(1+b)\epsilon|{\rm Im}\zeta^{\prime}|+H_{chL_{k}}({\rm Im}\zeta^{\prime}))$ ,

if ${\rm Re}\zeta_{n}\leqq-c|{\rm Re}\zeta^{\prime\prime}|$ ,

(2.5) $|\tilde{h}_{j}^{k}(\zeta^{\prime})|\leqq C_{\gamma}$ exp $(\gamma|\zeta^{\prime}|+M\epsilon|{\rm Re}\zeta^{\prime}|+(1+M)\epsilon|{\rm Im}\zeta^{\prime}|+H_{chL_{k}}({\rm Im}\zeta^{\prime}))$ ,

if ${\rm Re}\zeta_{n}\geqq-c|{\rm Re}\zeta^{\prime\prime}$ .

Anyway, the appearance of $M\epsilon|{\rm Re}\zeta^{\prime}|$ in the estimates does not allow us to
consider $\tilde{g}_{j},\tilde{h}_{j}$ as Fourier image of Fourier hyperfunctions. Therefore, we
must make another device. We prepare a tool for the local estimation of the
singular spectrum by way of the Fourier image.

LEMMA 2.2. We have the following decompOsihOn of delta function: $\delta(x)$

$=\int_{|\omega|=1}W(x, \omega)d\omega$ , where

$W(x, \omega)=\frac{(n-1)!\psi(x,\omega)e^{-x^{2}}}{(-2\pi\sqrt{-1})^{n}(x\omega+\sqrt{-1}(x^{2}-(x\omega)^{2})/\sqrt{1+x}^{2}+\sqrt{-1}0)^{n}}$

with

$\psi(x, \omega)=\det\{\frac{\partial}{\partial\omega_{j}}[\omega_{i}+\sqrt{-1}(x_{i}|\omega|-(x\omega)\frac{\omega_{i}}{|\omega|})/1’+x^{2}]\}|_{1\omega=1}$ ,

$x^{2}=x_{1}^{2}+\cdots+x_{n}^{2}$ .

Let $f$ be a hyperfunctjOn with compact suppOrt. Then S. S. $f$ does not contain
$(0, \sqrt{-1}dx_{1}\infty)$ , if for each $\omega$ in a neighborhood $\Omega\subset\{|\omega|=1\}$ of $(1, 0, \cdots, 0)$ the

function $\int f(y)W(x-y, \omega)dy$ can be extended as a holomorphic function of $x$ to a

fixed comPlex neighborhood of $x=0$ dePending continuously on $\omega$ .
PROOF. The above formula is obtained from a special case of the curved

wave decomposition given by Kashiwara ([12], Chapter III, Example 1.2.5) by
multiplication by $e^{-x2}$ . We have

$f(x)=\int f(y)\delta(x-y)dy=\int_{|\omega|=1}d\omega\int f(y)W(x-y, \omega)dy$
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$=\int_{\Omega}d\omega\int f(y)W(x-y, \omega)dy+\int_{G9}d\omega\int f(y)W(x-y, \omega)dy$ .

Obviously the second term does not contain $(0, \sqrt{-1}dx_{1}\infty)$ in its singular
spectrum. On the other hand, the integral in the first term converges in the
space of holomorphic functions of $x$ on a complex neighborhood of $x=0$ .
Hence it does not contain the same point in its singular spectrum. $q$ . $e$ . $d$ .

LEMMA 2.3. The Fourier transform $\pi(\zeta, \omega)$ of $W(x, \omega)$ with $resPect$ to the
variables $x$ is holomorPhic in $\zeta,$ $\omega$ on $C^{n}\times\{|\omega|=1\}$ . It satisfies the following
condition: For any $\delta>0(\delta<1/2)$ , there exists $C_{\delta}>0$ and $C_{\delta}^{\prime}>0$ which are inde-
Pendent of $\omega$ such that

$|\tilde{W}(\zeta, \omega)|\leqq C_{\delta}^{\prime}|\zeta|^{n}$ exp $(\delta|{\rm Im}\zeta|)$ , if $C_{\delta}|{\rm Im}\zeta|\leqq|{\rm Re}\zeta|$ ,

moreover,
$|\tilde{W}(\zeta, \omega)|\leqq C_{\delta}^{\prime}$ exp $(\delta|{\rm Im}\zeta|-|{\rm Re}\zeta|/C_{\delta}^{\prime})$ ,

if $C_{\delta}|{\rm Im}\zeta|\leqq|{\rm Re}\zeta|$ and $\delta{\rm Re}\zeta\cdot\omega\geqq-\sqrt{}({\rm Re}\zeta)^{2}-({\rm Re}\zeta\cdot\omega)^{2}$

RROOF. The analyticity is obvious. (See, $e$ . $g.,$ $[12]$ , Chapter I, Theorem
2.3.1.) Without loss of generality we can assume that $\omega=(1,0, 0)$ , thus
$x\omega=x_{1}$ and ${\rm Re}\zeta\cdot\omega={\rm Re}\zeta_{1}$ . We deform the path of integration to the complex

domain with $z=x+\sqrt{-1}y(x)$ :

This deformation is regitimate if $|y|\leqq(|x|+1)/2$ and if the denominator does
not vanish. Assume that

$|z_{1}+\sqrt{-1}z^{\prime 2}/\sqrt{1+z^{2}}|\geqq r$ .
Then we have obviously

$|^{ffi_{(\zeta,\omega)|}}\leqq\frac{C}{r^{n}}\int_{y=y(x)}e^{-x^{2}/2+y^{2}-x{\rm Im}\zeta-y{\rm Re}\zeta}|dz|$ .

We specify the path $y=y(x)$ . Note that the denominator vanishes if and only if

(2.6) $z_{1}^{2}(1+z^{2})+z^{\prime 4}=0$ .
This is an elliptic polynomial of $z$ and has no real roots other than $x=0$ .
Hence, given any $\delta>0$ there exists $C_{\delta}>0$ such that (2.6) does not hold if $|x|$

$\geqq\delta$ and $C_{\delta}|y|\leqq|x|$ . Moreover we can simultaneously assume that $|z_{1}+$

$\sqrt{-1}z^{\prime 2}/\sqrt{1+z^{2}}|\geqq r\geqq 1/C_{\delta}^{\prime}$ there. Without loss of generality we can assume
that $C_{\delta}\geqq 8$ . Then we choose

(2.7) $y=\frac{|x|{\rm Re}\zeta}{C_{\delta}|{\rm Re}\zeta|}$ for $|x|\geqq\delta$ .
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Then, for the integral $\tilde{W}_{0}(\zeta, \omega)$ on such part of the path we have

$|\pi_{0}(\zeta, \omega)|\leqq C_{\delta}^{\prime}\int e^{-x^{2}/4-|{\rm Re} Q/2C_{\delta}}dx$ if 2 $C_{\delta}|{\rm Im}\zeta|\leqq|{\rm Re}\zeta|$ .

For $|x|\leqq\delta$ , we take the path to the real domain. By integration by parts
we have

$\pi(\zeta, \omega)=\int\frac{(-1)^{n}}{(n-1)!}(\frac{\partial}{\partial x_{1}})^{n}[\psi(x, \omega)e^{-x2+\prime_{-1x\zeta]}}$

$\times\log(x_{1}+\sqrt{-1}x^{\prime 2}/\sqrt{1+x^{2}}+\sqrt{-1}0)dx$ .
This integral converges absolutely at the origin. Thus, if we join these two
paths by the cylinder $|x|=\delta,$ $y_{i}$ from zero to $|x|{\rm Re}\zeta_{i}/C_{\delta}|{\rm Re}\zeta|$ , we obtain
the first estimate with another constant $C_{\delta}^{\prime}>0$ .

To show the second estimate, we choose the path for $|x|\leqq\delta$ more care-
fully. First, if ${\rm Re}\zeta_{1}\geqq|{\rm Re}\zeta^{\prime}|$ we can take

$y_{1}=\frac{\delta{\rm Re}\zeta_{1}}{C_{\delta}|{\rm Re}\zeta|}$ , $y^{\prime}=0$ for $|x|\leqq\delta$ .

Note that in general $|x|\leqq\delta$ and $|y|\leqq\delta$ implies $|z|\leqq\sqrt{2}\delta$ , hence, assuming
$\delta\leqq 1/2$ without loss of generality we have

$|\frac{1}{\sqrt{1+z^{2}}}-1|\leqq\delta$ .
Thus we have

(2.8) ${\rm Im}(z_{1}+\sqrt{-1}z^{\prime 2}/\sqrt{1+z^{2}})$

$\geqq y+x^{\prime 2}-y^{\prime 2}-\delta|z^{\prime}|^{2}$

$\geqq y_{1}+(1-\delta)x^{\prime 2}-(1+\delta)y^{\prime 2}$

$\geqq y_{1}-2y^{\prime 2}$

For our special value of $y$ , we have

${\rm Im}(z_{1}+\sqrt{-1}z^{\prime 2}/\sqrt{}\overline{1+z^{2}})\geqq\frac{\delta}{\sqrt{2}C_{\delta}}=r$ ,

$-\frac{1}{2}x^{2}+y^{2}-x{\rm Im}\zeta-y{\rm Re}\zeta\leqq-\frac{1}{2}x^{2}+1+\delta|{\rm Im}\zeta|-\frac{\delta}{2C_{\delta}}|{\rm Re}\zeta|$ .

On the cylinder $|x|=\delta$ , we join this path with (2.7) in a natural way. Then
obviously we obtain the second estimate.

Next, if $|{\rm Re}\zeta_{1}|\leqq|{\rm Re}\zeta^{\prime}$ , we put

$y_{1}=\frac{4\delta^{2}}{C\S}\frac{|{\rm Re}\zeta^{\prime}|^{2}}{|{\rm Re}\zeta|^{2}}$ , $y^{\prime}=\frac{\delta{\rm Re}\zeta^{\prime}}{C_{\partial}|{\rm Re}\zeta|}$ , for $|x|\leqq\delta$ .
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Then we have
$y_{1}-2y^{\prime 2}\geqq\frac{2\delta^{2}}{C_{\delta}^{2}}\frac{{\rm Re}\zeta^{\prime}|^{2}}{{\rm Re}\zeta|^{2}}\geqq\frac{\delta^{2}}{C_{\delta}^{2}}||=r$ ,

$\frac{1}{2}x^{2}+y^{2}-x{\rm Im}\zeta-y{\rm Re}\zeta$

$\leqq-\frac{1}{2}x^{2}+1+\delta|{\rm Im}\zeta|+\frac{4\delta^{2}}{C_{0}^{2}}\frac{{\rm Re}\zeta^{\prime}|^{2}}{{\rm Re}_{b}^{r}|^{2}}|||{\rm Re}\zeta_{1}|-\frac{\delta|{\rm Re}\zeta^{\prime}|^{2}}{C_{\delta}|{\rm Re}\zeta|}$

$\leqq\frac{1}{2}x^{2}+1+\delta|{\rm Im}\zeta|-\frac{\delta}{4C_{\delta}}|{\rm Re}\zeta|$ .

On the cylinder $|x|=\delta$ , we join this path with (2.7) in a natural way. Ob-
viously the latter estimate at least does not break on this joint.

Finally, if $-|{\rm Re}\zeta^{\prime}|/\delta\leqq{\rm Re}\zeta_{1}\leqq-|{\rm Re}\zeta^{\prime}$ , we put

$y_{1}=\frac{4\delta^{2}}{C\beta}\frac{({\rm Re}\zeta_{1})^{2}}{|{\rm Re}\zeta|^{2}}$ , $y^{\prime}=\frac{\delta{\rm Re}\zeta^{\prime}}{C_{\partial}|{\rm Re}\zeta|}$ for $|x|\leqq\delta$ .

Then we have

$y_{1}-2y^{\prime 2}\geqq\frac{\delta^{2}}{C_{o}^{2}}\frac{4|{\rm Re}\zeta_{1}|^{2}-2|{\rm Re}\zeta^{\prime}|^{2}}{|{\rm Re}\zeta|^{2}}\geqq\frac{\delta^{2}}{C\beta}$ ,

$-\frac{1}{2}x^{2}+y^{2}-x{\rm Im}\zeta-y{\rm Re}\zeta$

$\leqq-\frac{1}{2}x^{2}+1+\delta|{\rm Im}\zeta|-\frac{4\delta^{2}}{C_{\delta}^{2}}\frac{({\rm Re}\zeta_{1})^{2}}{|{\rm Re}\zeta|^{2}}{\rm Re}\zeta_{1}-\frac{\delta|{\rm Re}\zeta^{\prime}|^{2}}{C_{\delta}|{\rm Re}\zeta}$

$\leqq-\frac{1}{2}x^{2}+1+\delta|{\rm Im}\zeta|+(\frac{4}{C_{\delta}^{2}}-\frac{\delta}{C_{\delta}})\frac{|{\rm Re}\zeta^{\prime}|^{2}}{|{\rm Re}\zeta|}$ .

Thus, if we further assume $ C_{\delta}\geqq 8/\delta$ , we have

$-\frac{1}{2}x^{2}+y^{2}-x{\rm Im}\zeta-y{\rm Re}\zeta\leqq---x^{2}+1+\delta 21|{\rm Im}\zeta|-\frac{\delta^{2}}{4C_{\delta}}|{\rm Re}\zeta|$ .

When we join this path with (2.7), the estimate does not become worse on the
joint. Thus we have established the second estimate. $q$ . $e$ . $d$ .

END OF PROOF OF THEOREM 2.1. Now we denote by $W(x^{\prime}, \omega^{\prime})$ the com-
ponent of the decomposition of $(n-1)$-dimensional delta function $\delta(x^{\prime})$ given in
Lemma 2.2. We have

$1(\zeta^{\prime})f_{j}(\zeta^{\prime})\pi_{(\zeta^{\prime},\omega^{\prime})=\tilde{g}_{f}(\zeta^{\prime})}\pi_{(\zeta^{\prime},\omega^{\prime})+\tilde{h}_{j}(\zeta^{\prime})}\pi_{(\zeta^{\prime},\omega^{\prime})}$ .

From (2.2), (2.3) and Lemma 2.3 we have

$|\tilde{g}_{J}(\xi^{\prime})W(\xi^{\prime}, \omega^{\prime})|\leqq C_{\delta}^{\prime}|\xi^{\prime}|^{n}$ exp $(-a^{f}|\xi^{\prime}|^{q})$

provided that $M\epsilon\leqq 1/C_{\delta}^{\prime}$ and
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$\delta\xi^{\prime}\cdot\omega^{\prime}\geqq-\sqrt{}|\xi^{\prime}|^{2}-|\xi^{\prime}\omega^{\prime}$ 2 for $\zeta_{n}\geqq-c|\zeta^{\prime\prime}|$ .

The last condition holds if $\omega_{n}\geqq 4c|\omega^{\prime}|$ . In fact, it suffices to consider only
the case $\xi^{\prime}\omega^{\prime}\leqq 0$ . Then we have

$|\xi^{\prime}\omega^{\prime}|^{2}\leqq|\xi^{\prime\prime}|^{2}|\omega^{\prime\prime}|^{2}+2\xi^{\prime\prime}\omega^{\prime\prime}\xi_{n}\omega_{n}+|\zeta_{n}|^{2}|\omega_{n}|^{2}$

$\leqq|\zeta^{\prime}|^{2}(|\omega^{\prime}|^{2}+2c|\omega^{\prime}||\omega_{n}|)+|\xi_{n}|^{2}|\omega_{n}|^{2}$

Hence
$\frac{\prime 2\prime}{I|\xi||\xi|}\geqq\sqrt{|\xi^{\prime}|^{2}(|\omega_{n}|^{2}-2c|\omega^{\prime}||\omega_{n}|)}$

$\geqq\frac{1}{\sqrt{2}}|\xi^{\prime}||\omega_{n}|\geqq\frac{4c}{\sqrt{2}}|\xi^{\prime}||\omega^{\prime}|$ .

Thus if $\xi_{n}\geqq 0$ , we have $\xi^{\prime}\omega^{\prime}\geqq-|\xi$“ $||\omega^{\prime}$ . If $\xi_{n}<0$ , we have

$|\xi^{\prime}\omega^{\prime}|\leqq(\frac{1}{4c}+c)|\xi^{\prime}||\omega_{n}|$ .

Therefore the assertion holds if $\delta\leqq\min\{4c/\sqrt{2}(1+4c^{2}), 4c/\sqrt{2}\}$ . The obtained
estimate shows that $\tilde{g}_{j}(\xi^{\prime})\tilde{W}(\xi^{\prime}, \omega^{\prime})$ can be considered as the Fourier image of
a function in Gevrey class, depending continuously on $\omega$ , if $\omega_{n}\geqq 4c|\omega^{\prime\prime}$ .

Next we decompose $\tilde{h}_{j}(\zeta^{\prime})=\sum_{k}\tilde{h}_{j}^{k}(\zeta^{\prime})$ as before. Choose $\delta$ and $\epsilon$ as above.
Then $\tilde{h}_{j}^{k}(\zeta^{\prime})\tilde{W}(\zeta^{\prime}, \omega^{\prime})$ satisfy

(2.9) $|\tilde{h}_{j}^{k}(\zeta^{\prime})\tilde{W}(\zeta^{\prime}, \omega^{\prime})|$

$\leqq C_{\delta,\gamma}$ exp $(\gamma|\zeta^{\prime}|+\delta|{\rm Im}\zeta^{\prime}|+(1+b+M)\epsilon|{\rm Im}\zeta^{\prime}|+H_{chL_{k}}({\rm Im}\zeta^{\prime}))$ ,

if $C_{\delta}|{\rm Im}\zeta^{\prime}|\leqq|{\rm Re}\zeta^{\prime}|$ and $\omega_{n}\geqq 4c|\omega^{\prime\prime}$ .

We fix a small $\delta$ and an $\epsilon$ corresponding to it, and apply [6], Lemma 5.1.2
(see also the remark after Lemma 2.3 in $[5bis]$ ). Thus we conclude that each
$\tilde{h}_{j}^{k}(\zeta^{\prime})\tilde{W}(\zeta^{\prime}, \omega^{\prime})$ is the Fourier image of a Fourier hyperfunction whose analytic
singular support is contained in the $[(1+b+M)\epsilon+\delta]$-neighborhood of ch $L_{k}$ .
Choosing $L_{k}$ small enough, we thus conclude that $\tilde{h}_{j}(\zeta^{\prime})\tilde{W}(\zeta^{\prime}, \omega^{\prime})$ is the Fourier
image of a Fourier hyperfunction whose analytic singular support is contained
in the $[(2+b+M)\epsilon+\delta]$-neighborhood of $L\backslash K$. We can see more precisely that
the family of functions $\{\mathcal{F}^{-1}[\tilde{h}_{j}(\zeta^{\prime})\tilde{W}(\zeta^{\prime}, \omega^{\prime})];\omega_{n}\geqq 4c|\omega^{\prime\prime} \}$ in $x^{\prime}$ is holomorphic
on a fixed complex neighborhood of

$K_{\delta,\epsilon}=$ { $x^{\prime}\in K$ ; dis $(x^{\prime},$ $ L\backslash K)\geqq 2(2+b+M)\epsilon+2\delta$ }

depending continuously on $\omega^{\prime}$ . This follows from the method of proof of [6],

Lemma 5.1.2 estimating the integral after the deformation of the path, because
the estimate (2.9) is uniform in $\omega^{\prime}$ . Thus we conclude that $J(D^{\prime})[f_{j}(x^{\prime})*$

$W(x^{\prime}, \omega^{\prime})]$ is a continuous function of $x^{f},$
$\omega^{\prime}$ for $x^{\prime}\in K_{\delta,\epsilon},$ $\omega_{n}\geqq 4c|\omega^{\prime}|$ . In view
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of Proposition 2.4 in [2] this implies that $\{f_{j}(x^{\prime})*W(x^{\prime}, \omega^{\prime});\omega_{n}\geqq 4c|\omega^{\prime\prime} \}$ is a
bounded set of real analytic functions of $x^{\prime}$ on $K_{\delta,\epsilon}$ . Hence it can be extended
holomorphically to a fixed complex neighborhood of $K_{\delta,\epsilon}$ and depends con-
tinuously on $\omega^{\prime}$ . Thus we can apply Lemma 2.2 and conclude that S.S.$f_{j}(x^{\prime})$

$\cap K_{\delta,\epsilon}\times\{\sqrt{-1}dx_{n}\infty\}=\emptyset$ . Since $\delta$ and $\epsilon$ are arbitrary, we have proved the
theorem. $q$ . $e$ . $d$ .

We present the intrinsic form of our theorem.
COROLLARY 2.4. Let $P(D)$ be an operaior of order $m$ and $p_{m}(D)$ be its prin-

ciPal Part. Assume that $x_{1}=0$ is non-characteristic with resPect to $p$ . Let
$V_{(1,0,\cdots,0)A}(p)$ be the sets of Points $\xi^{\prime}\in S^{n-2}$ such that the equation $p_{m}(\zeta_{1}, \xi^{\prime})=0$ in

$\zeta_{1}$ has a root with Positive imaginary part. Then for every real analytic solution
$u$ of $P(D)u=0$ in $x_{1}>0$ , we have

S.S. $ b_{j}^{+}(u)\subset R^{n- 1}\times\sqrt{V_{(1,0,\cdots,0)A}(p)}dx^{\prime}\infty$ ,

where the $upp\alpha^{\prime}$ bar denotes the closure operatiOn in $S^{n-2}$ .
PROOF. Assuming that

$\{\xi^{\prime}\in S^{n-2} ; \xi_{n}\geqq c|\xi^{\prime\prime}|\}\subset S^{n-2}\backslash \overline{V_{(1,0,\cdots,0)A}(p)}$ ,

we will show that the roots $\zeta_{1}=\tau_{j}(\zeta^{\prime})$ of $P(\zeta_{1}, \zeta^{\prime})=0$ satisfy (2.1) if ${\rm Re}\zeta_{n}\leqq$

$-c|{\rm Re}\zeta^{\prime\prime}$ . Then Theorem 2.1 can be applied to the point $(0, \cdots, 0,1)$ . Since
we have $|\tau_{j}(\zeta^{\prime})|\leqq M|\zeta^{\prime}|$ , the estimate (2.1) trivially holds for $|{\rm Im}\zeta^{\prime}|\geqq\epsilon|{\rm Re}\zeta^{\prime}$ .
Therefore we only have to discuss for $|{\rm Im}\zeta^{\prime}|\leqq\epsilon|{\rm Re}\zeta^{\prime}|$ for some $\epsilon>0$ . Replac-
ing $\zeta_{1},$ $\xi^{\prime}$ by $-\zeta_{1},$ $-\xi^{\prime}$ , we see from the assumption that the roots $\zeta_{1}=\tau_{j}^{0}(\xi^{\prime})$

of $p_{m}(\zeta_{1}, \xi^{\prime})=0$ satisfy

(2.10) ${\rm Im}\tau_{j}^{0}(\xi^{\prime})\geqq 0$ if $\xi^{\prime}$ real and $\xi_{n}\leqq-(c-\delta)|\xi$“ $|$ ,

for some $\delta>0$ . Therefore the function $1/p_{m}(\zeta_{1}, \zeta^{\prime})$ is holomorphic on

$\{\zeta=\xi+\sqrt{-1}\eta\in C^{n} ; \xi_{n}\leqq-(c-\delta)|\xi^{\prime}|, \eta_{1}<0, \eta^{\prime}=0\}$ .

The local version of Bochner’s tube theorem shows that then $1/p_{m}(\zeta_{1}, \zeta^{\prime})$ can
be extended holomorphically to a domain containing

$\{\zeta=\xi+\sqrt{-1}\eta\in C^{n} ; \xi_{n}\leqq-c|\xi^{\prime\prime}|, |\xi^{\prime}|=1, |\eta^{\prime}|\leqq-\epsilon\eta_{1}\leqq 2\epsilon M\}$ ,

where $\epsilon>0$ is a constant. (See, $e$ . $g.$ , [8], Theorem 5. Here we follow the
argument of Bony-Schapira [1] on non-strict hyperbolic operators.) This
implies that the roots $\zeta_{1}=\tau_{j}^{0}(\zeta^{\prime})$ of $p_{m}(\zeta_{1}, \zeta^{\prime})=0$ satisfy

${\rm Im}\tau_{j}^{\cap}(\zeta^{\prime})>-\div|\eta^{\prime}|$ if $\xi_{n}\leqq-c|\xi^{\prime}|$ , $|\xi^{\prime}|=1$ , $|\eta^{\prime}|\leqq\epsilon$ .
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By the homogeneity we conclude that there exist positive constants $b,$ $\epsilon$ such
that

${\rm Im}\tau_{j}^{0}(\zeta^{\prime})\geqq-b|{\rm Im}\zeta^{\prime}|$ if ${\rm Re}\zeta_{n}\leqq-c|{\rm Re}\zeta^{\prime\prime}|$ , $|{\rm Im}\zeta^{\prime}|\leqq\epsilon|{\rm Re}\zeta^{\prime}$ .

Now we compare $\tau_{j}^{0}(\zeta^{\prime})$ with $\tau_{j}(\zeta^{\prime})$ . Since the difference of the coefficients
of $\zeta_{1}^{m-k}$ in these two equations is bounded by $c_{k}|\zeta^{\prime}|^{k-1}$ , we can apply Lemma
2.4 in Chapter IV in [10], after dividing the equations by $|\zeta^{\prime}|_{\iota}^{m}$ . Thus we have

$|\tau_{j}^{0}(\zeta^{\prime})-\tau_{j}(\zeta^{\prime})|\leqq c^{\prime}|\zeta^{\prime}|^{(m-1)/m}+c^{\prime}$ .
Thus we have proved (2.1) with $q=(m-1)/m<1$ . $q$ . $e$ . $d$ .

We leave to examine the points in $\overline{V_{(1,0,\cdots,0)A}(p)}\backslash V_{(1,0,\cdots,0)A}(p)$ . It needs a
more strong analytical tool. Instead we give an example of operators to which
our theorem gives a sharp answer.

EXAMPLE 2.5. Consider the wave equation: $p(D)=D_{1}^{2}+\cdots+D_{n-1}^{2}-D_{n}^{2}$ . Then
we have

$V_{(1,0,\cdots,0,A}(p)=\{\xi^{\prime}\in S^{n-2} ; \xi_{n}^{2}\leqq\xi^{\prime\prime 2}\}$ .
By Corollary 2.4 we conclude that for a real analytic solution $u$ of $p(D)u=0$

on $\{x_{1}>0\}$ ,

S.S. $b_{j}^{\tau}(u)\subset R^{n-1}\times\{\sqrt{-1}\xi^{\prime}dx^{\prime}\infty;\xi_{n}^{2}\leqq\xi^{\prime\prime 2}\}$ , $j=0,1$ .

This estimate cannot be improved in general. In fact, for $\xi^{\prime}\in V_{(1,0,\cdots,0)A}(p)$ we
can give a solution $u$ whose boundary values $b_{j}^{+}(u)$ contain the direction $\xi^{\prime}$ in
their singular spectrum. First assume that $\xi_{n}^{2}<\xi^{\prime\prime 2}$ . Let $E(x_{1}, x_{n- 1})$ be the
fundamental solution of $D_{1}^{2}+\cdots+D_{n-1}^{2}$ . Let $E(x, \xi^{\prime})$ be the function obtained
by a Lorentz transform which brings the $\chi_{n}$ axis to a line in $\{x_{1}=0\}$ perpendi-
cular to $\xi^{\prime}$ . Then obviously S. $S.b_{j}^{+}(E(x, \xi^{\prime}))$ contains the direction $\xi^{\prime}$ . Next
assume that $\xi_{n}^{2}=\xi^{\prime\prime 2}$ . Then we can take as $u$ the solution whose singular
spectrum contains only one bicharacteristic strip corresponding to the direction
$(0, \xi^{\prime})$ (see [7], Theorem 2.8). Then S.S. $b_{j}^{+}(u)$ obviously contains the direction
$\xi^{\prime}$ . Similar argument holds for ultrahyperbolic equations $D_{1}^{2}+\cdots+D_{k}^{2}-D_{k+1}^{2}-$

$...-D_{n}^{2}$ .

\S 3. Continuation of real analytic solutions.

The following result is a localization of those of [4] or [5] and extends
them in some aspect.

THEOREM 3.1. Let $K$ be a closed set in $\{x_{1}=0\}$ . Assume that $K$ is contained
in one side of an analytic hypersurface in $R^{n-1}$ passing through the origin. Let
$\xi^{\prime}$ be its unit normal vector at the origin. Assume that both $\xi^{\prime}$ and $-\xi^{\prime}$ do not
belong to $V_{(1,0,\cdots,0)A}(p)$ . Then every real analytic solution $u$ of $p(D)u=0$ defined
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on a neighborhood of the origin except on $K$, can be continued as a hyperfunctiOn
solution to $K$ in a smaller neighborhood.

PROOF. We consider the difference $b_{j}(u)=b_{j}^{+}(u)-b_{j}^{-}(u)$ of the boundary
values to $x_{1}=0$ from the two sides. Obviously this is a hyperfunction of $n-1$

variables with support in $K$. Thus by the Holmgren type theorem (see [12],

Chapter III, Proposition 2.1.3), each $b_{j}(u)$ either vanishes on a neighborhood of
the origin or contains the direction $\pm\xi^{\prime}$ in its singular spectrum. The latter
does not hold due to Corollary 2.5. Thus $b_{j}(u)\equiv 0$ , and by Theorem 4 in [9]

we conclude that $u$ can be continued as a hyperfunction solution. $q$ . $e$ . $d$ .
COROLLARY 3.2. In addition to Theorem 3.1, assume that the Principal Part

of $p(D)$ is of Principal type and with real coeJficients. Assume further that every
bicharacteristic line of $p(D)$ flows out of $K$ on any small neighborhood of the
origin. Then, under the same situation $u$ can be continued as a real analytic
solution.

PROOF. If the origin belongs to the analytic singular $suPport$ , then by [7],

Theorem 3.3’, the singularity flows out along one of the bicharacteristic line
passing through the origin. Thus by the assumption $u$ must be real analytic
at the origin. $q$ . $e$ . $d$ .

Note that in case $n=3$ , every bicharacteristic line flows out of $K$ automa-
tically if the equation $p_{m}(\zeta_{1}, \xi^{\prime})=0$ in $\zeta_{1}$ has no multiple roots. In fact, the
only possible counterexample is the bicharacteristic line $dx/dt=d_{r}p_{m}(\eta)$ con-
tained in $x_{1}=0$ and perpendicular to $\xi^{\prime}$ . This implies

$P_{m}(\eta)=0$ , $-\partial\frac{\partial}{\eta_{1}}p_{m}(\eta)=0$ ,

$\xi_{2}-\partial\frac{\partial}{\eta_{2}}p_{m}(\eta)+\xi_{3}-\partial\frac{\partial}{\eta_{3}}p_{m}(\eta)=0$ .

Euler’s identity gives

$\eta_{2}-\partial\frac{\partial}{\eta_{2}}p_{m}(\eta)+\eta_{3}-\partial\frac{\partial}{\eta_{3}}p_{m}(\eta)=0$ .

Since $p_{m}$ is of principal type, either $(\partial/\partial\eta_{2})p_{m}(\eta)$ or $(\partial/\partial\eta_{3})p_{m}(\eta)$ is different of
zero. Thus we conclude that $\xi^{\prime}=k\eta^{\prime}$ with a non-zero constant $k$ . Then the
equation $p_{m}(\zeta_{1}, \xi^{\prime})=0$ in $\zeta_{1}$ has real double root $\zeta_{1}=k\eta_{1}$ . This contradicts to
the assumption.

Note that in case $K$ is convex the propagation of regularity holds with
no assumption on $p(D)$ ([6], Theorem 5.1.1). But the corresponding result is
weaker than our earlier one which was obtained by the direct application of
convex Fourier analysis (see [4], Theorem 2.7, 2).
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