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§0. Introduction.

B.Y. Chen [1,2,3], C.S. Houh [2], S. Tachibana and the present
author [3, 9, 10] have recently studied infinitesimal variations of submanifolds
of Riemannian and Kaehlerian manifolds. (See also [7]}.)

The main purpose of the present paper is to study infinitesimal variations
of hypersurfaces of a Kaehlerian manifold, to obtain variations of structure
tensors of the almost contact metric structure induced on the hypersurfaces
from the Kaehlerian structure of the ambient manifold and to prove theorems
on variations of Sasakian hypersurfaces with f-sectional curvature a®. (For the
definition of a Sasakian manifold with f-sectional curvature «? see §1.)

In §1 we state some preliminaries on almost contact metric structure in-
duced on a hypersurface from the Kaehlerian structure of the ambient mani-
fold.

In §2 we consider infinitesimal variation of a hypersurface of a Kaehlerian
manifold and obtain variations of structure tensors of almost contact metric
structure induced on the hypersurface.

§ 3 is devoted to the study of what the author calls parallel variation and
§4 to that of variation of the second fundamental form of the hypersurface.

In the last §5, we consider variations of a Sasakian hypersurface with f-
sectional curvature a® and obtain the condition that an infinitesimal variation
carries a Sasakian hypersurface with f-sectional curvature a® into a hyper-
surface of the same kind.

§1. Preliminaries.

Let M**** (n>1) be a real (2n+2)-dimensional almost Hermitian manifold
covered by a system of coordinate neighborhoods {U ; x"} and F;" be its almost
complex structure tensor and g;; its almost Hermitian metric tensor, where
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and in the sequel the indices 4, i, j, &, --- run over the range {1/, 2/, ---, (2n+2)'}.
Then we have

(1.1) Fi{F'==—0}
and
(1.2) FjLFisgts:gji .

Let M?*"*! be a (2n-+1)-dimensional orientable Riemannian manifold covered
by a system of coordinate neighborhoods {V; y*} and g., be its fundamental
metric tensor, where and in the sequel the indices a, b, ¢, -+ run over the range
{1,2, -, 2n+1}. We assume that M***' is isometrically immersed into M?*"*+?
by the immersion 7: M***'—M?**** and identify i(M*"*) with M?"*!, We repre-
sent the immersion by

(1.3) xh=x"(y%
and put
(1.4) Bt =0yx", (0,=0/0y").

Then B," are 2n-+1 linearly independent vectors of M*"*? tangent to M?®"*!,
Since the immersion is isometric we have

(1.5) gcb:gjchiji .

We represent the unit normal to M?*"*! by C*. We then have

(1.6) g]-iBbjCi: 0
and
(L.7) g,:0iCi=1.

Now the transform F;"B,’ of B,’ by F;" can be written as
(18) Fithi:fbaBah—l—beh ’

where f,* is a tensor field of type (1,1) and f, a 1-form of M*"*! and the
transform F,*C* of C' by F,", being orthogonal to C”, can be written as

(1.9) F*Ci=—f*B.*,

where f%=f,g% is a vector field of M?*"*! g% being contravariant components
of e

Applying F to the both sides of and using [(1.1), (1.8) and [1.9), we find

(1.10) Hft=—0+fof*,  ['fe=0.
Applying F to the both sides of and using [1.1), [1.8] and [1.9), we
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find

(1.11) =0, fofe=1.
From [1.2), (T.5), (1.6}, [1.7) and [1.8), we have

(1.12) fe'fo'Gea=8Ber—SeSo -

Equations [1.10, (1.11) and [1.12) show that the set (f,% g, f») defines the
so-called almost contact metric structure on M**** (Tashiro [6]).

We denote by I'% the Christoffel symbols formed with g;; and by I'% those
formed with g.. Then it is well known that I'% and I'% are related by

(1.13) I's,=(0.B,"+1I"%Bi})B%, ,

where Bli=B/B,’ and B%,=B,'g*g;». We define the van der. Waerden-Bor-
tolotti covariant derivative of B,* along M*®*"*! by

(1.14) VB =0.By"+1"Bii—1"%B,"

and that of C" by

(1.15) v.C*"=0,C"+I'%B,C".
Then equations of Gauss can be written as

(1.16) VeBy" =he,C",

where A, is the second fundamental tensor of M?*"*! and equations of Wein-
garten as

(1.17) V.C'=—h,"B,",
where h,%=h.g%
Equations of Gauss and Codazzi are respectively written as

(1.18) Kuer® =K, ji" BEis4-hy®hey—he®hay
and
(1.19) KkjihB(’;ggch; — vdhcb_vchdb ’

Ky® and K,;;* being curvature tensors of M***! and M*"** respectively, where
Bit=B,;*B By'B%, BEj=B;*B/By" and C,=C"g.
We now assume that the ambient manifold M*®*"**? is Kaehlerian, that is,

(1.20) VJF‘Lh:O s

where V; denotes the operator of covariant differentiation with respect to re,.
Differentiating covariantly along M?®**! and using [1.16), and
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(1.20), we find

(121) Vefof= —hcbfa-l'hcafb
and
(1.22) Vefo=—hefs .

Differentiating covariantly along M?"*! and using [1.16), and
1.20), we find

(1.23) Vefe= hefe® .
Equations (1.22) and (1.23) are equivalent because of the relation f,o=/:’Gea
- —‘fab-
We now consider the tensor field S;;* defined by
(1.24) Seo® = Neo®+ (Ve fo—=Vo fo)f %,
where N.,* is the Nijenhuis tensor formed with f,%:
(125) Ncba:fcevefba—fbevefca_(vcfbe—vbfce>fea .

When the tensor field S.;* vanishes identically, the almost contact metric
structure (/% e, f5) is said to be normal.

Substituting [1.21) and [(1.22) into [1.24), we find
(1.26) Sev® = (fe*he®—he’f ") fo— (o' " — R fe®)f e -
Thus if the almost contact metric structure is normal, we have
(fhe® —hf ) fo—= (ot he"— M f") e =0,
from which, using and [(L.11),

(127) fcehea_hcefea =0
and
(1.28) hlfe=hfe,

where h=h,,f°f°.
When the almost contact metric structure (f,% Zep, f5) Satisfies

(1.29) vcfb""vbfc - 2fcb ’
the structure is said to be contact. Substituting (1.22) into [(1.29), we obtain
(1-30) fcehea_*— hcefea: zfca .

When the almost contact metric structure is normal and contact, we call
the structure a Sasakian structure [6]. For a Sasakian structure, we have
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(1.27) and [(1.30) and consequently

(131) fcehea:fca ’
from which, using [1.10), (1.11)] and [1.28),
(1.32) hcb:gcb+(h_1)f6fb .
For a Sasakian structure, [(1.21), (1.22) and [(1.23) reduce respectively to
(1.33) VefoP=—8gef*+02fs,
(1.34) Vefo=Fe
and
(1.35) VoS =1".
But if, instead of [1.29), we assume
(136) chb—vbfc - Zafcb ’
a being a function, we obtain, substituting into [(1.36),
(1.37) FEhSE+RSf = 2af*.

Thus, from [(1.27) and [(1.37), we find

(1.38) fehlt=af’,
from which, using [(1.10), (1.11) and [1.28),
(1.39) hey= agcb+-(h—a)fcfb .

Thus [(1.21), [(1.22) and [1.23) reduce respectively to
(1.40) vcfl)a: a(—gcbfa+ agfb) ’
(1041) vab = afcb
and
(1.42) Voft=af,".

From and [(1.40), we have
Vo(Vefo=Vofe) =2(Nu)fert+20*(—gac fot+-BanSe) »
from which, using the Ricci formula and the Bianchi identity, we obtain
(Vea)f o+ (Vo)fae+ (Vo) foa=0.
Thus if n>1, we have
(1.43) a=constant.
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For a Sasakian structure, we have, from and ((1.35),
(1.44) Keoo®f = 02fv—08f

which shows that the sectional curvature with respect to a plane section con-

taining f* is always 1.
But for the structure under consideration, we have, from (1.40) and (1.42),

(1.45) Kepof = a*(0sf,—03fe) ,

which shows that the sectional curvature with respect to a plane section con-
taining f* is always a®.

So we call an almost metric structure satisfying (1.40), (1.41) and [(1.42) a

Sasakian structure with f-sectional curvature a® (Okumura [4]).

§ 2. Infinitesimal variation of a hypersurface of a Kaehlerian manifold.
We now consider an infinitesimal variation of the hypersurface M*"*' in
M®***% given by
(2.1) It =" +EMy)e,
&" being a vector field of M*"** defined along M®"*!, where ¢ is an infinitesimal.
We then have
(2.2) Bbh = Bbh+(ab€h)e ,

where B,*=0,X" are 2n-+1 linearly independent vectors tangent to the varied

hypersurface at the varied point ().
We displace vectors B," parallelly from the varied point (¥*) to the original

point (x*) and obtain

gbh:Bbh*l‘rg'li<x+55)§j§bi€ ,
or
(2.3) By*= By (Ty&M)e,

neglecting the terms of order higher than one with respect to &, where

(2-4) vbgh:abfh‘*‘[‘?ﬁBbjsi .
In the sequel we always neglect terms of order higher than one with respect
to e.
Putting
(2.5) 5Bbh:§bh—Bbh )

we have
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(2.6) 0B," = (V,EMe .
If we put
2.7) g"=&°B,"+1C*,
&% and 1 bzing respectively a vector field and a scalar function on M***', we
have
(2.8) V" = (V,6°— 20,") B+ (W, A+ Ry CP .

We denote by C* the unit normal to the varied hypersurface. We displace
C" parallelly from the point (¥*) to (x*) and obtain

(2.9) Cr=Cr+-I'(x+Ee)&iC .
We put
(2.10) aCr=Cr—C".
Then 0C", being orthogonal to C", is of the form
(2.11) 0C"=7"B, e,
7 being a vector field on M*"*'. Thus from [2.9), and [2.11), we have
(2.12) Cr=Cr—I'"£iCl+ 9By .

Now applying the opsrator 6 to B,’C'g;;=0 and using and dg;,=0,
we find
(vbéj)cigji_l"BijaBaigji =0,
from which, using [2.8),

(2.13) 7o =—(Vpd+hp %) ,

where 7,=%°gc,. Thus [2.11) can be written as

(2.14) 0C"* = —(N*A+h,*E) B, e,
where V?=g%V, and as

(2.15) Cr=Cr—I"g/Cice—(T°A+h,%E") B, .

Now applying the operator é to [1.8) and using 6F;*=0, and [2.14),
we find

FMV,E0e = (01,") Ba" + /42 (Vo6Me+(0f,)CM— (V24 h, 6% B, e |
from which, using [(1.8), [1.9) and [(2.8),
[(Vo€*— AR ) ([ Ba"+.C") — (Vo A+ hyp o) f By 1e
=(0/s") Ba"+ [ f+*(Vo£*—AR,") B+ f,*(V A+ hoa ) CP e
+(0f)CH—F5(V2A+h,*E%) Bole
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and consequently comparing tangential and normal parts, we have

(2.16) 0/ =[(Vp& —Ahy")f o —f,* (V2 — AR,
— (VoA hpe&0) SO+ 15 (V0 A+, E%) Je

and

(2.17) 0fo=L(Vs&*—2h") fo— S (VeA+heaE®) e .

Using (1.21), we can write [2.16)] in the form

(2.18) 0fy* =[LL"+ Ao h"—hy'f )+ (V) —(V,A)f e,

where £, denotes the Lie derivative of f,* with respect to the vector field
£% in M®***' [8], that is,

(2.19) L=V [+ (V)" — (V£ .
Using we can write in the form
(2.20) 0fs=[Lfv— A" fe— "N Ale,

where Lf, denotes the Lie derivative of f, with respect to &% that is,

(2-21) -fszfevefb+(vb§e>fe .

Next applying the operator J to and using 0F;"=0, (2.6) and [(2.14),
we find
—F (V% 241,E") Byle=—(0f ) B."—f*N "¢,

or using and [2.8),
—(V2+hE)(f* B +f.C")e
= _'(afa)Bah_fe‘:(VeSa"lhea)Bah'*_(ve'2+hec§c)ch]€ ’

from which, comparing the tangential parts,

(2.22) 0t =L(VA+h &)/ =1 (V&% —Ah,") e .
Using [(1.23), we can write (2.22) in the form
(2.23) of =[Lr*+(N°Af*+Af°h e,
where Lf* denotes the Lie derivative of /¢ with respect to £% that is,
(2.24) Lf*=86N f"—(V.E9/°.
Applying the operator 0 to and using 0g;;=0, (2.6) and [2.8), we find
(2.25) 08cr =[Lger—22hc1 e,

where .£g., denotes the Lie derivative of g., with respect to &% that is,
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(226) L8 =V +VsEc ’ (Eb:ECgcb> .

Thus summing up we have

THEOREM 2.1. Under an infinitesimal variation (2.1) of a hypersurface of
a Kaehlerian manifold, the variations of siructure tensors of the almost contact
metric structure induced on the hypersurface are given by

8fs* = [L fo 4+ A Fihe—hy £+ Fo(T°2) —(Tp2)f e
{ 0fy =[Lfo—A0fo—f+N A e,
t5fa=[i7”+ﬁﬁbﬁwflﬁhfk,

0gco =[-Lgcp—22h, e .

(2.27)

COROLLARY 1. Under an infinilesimal tangential variation X*=x"+&°B,"e
of a hypersurface of a Kaehlerian manifold, the variations of the struciure ten-
sors of the almost contact metric structure induced on the hypersurface are given
by their Lie derivatives with respect to &%

COROLLARY 2. Under an infinitesimal normal variation ¥*=x"+AC" of a
hypersurface of a Kaehlerian manifold, the variations of the structure tensors
of the almost contact metric structure induced on the hypersurface arve given by

0F = LA fhe— &)+ AT — (T2 De,
{whz—UM%+ﬁmua

67" =L(VAL 21 h Te,

08y = —2Ahpe .

From [1.27), [1.28), [1.39) and [Theorem 21, we have

COROLLARY 3. Suppose that the almost contact metric structure induced on
a hypersurface of a Kaehlerian manifold is a Sasakian structure with f-sectional
curvature a®. Then under an infinitesimal variation (2.1) of the hypersurface
the variations of the structure tensors arve given by

0fy* =LLL + (VA=A S 1e,

0fp =[Lfy—Ahfo—['VA]e,

of* =[Lf*+ DS "+ahf e,

08y =[Lger—2M{agu+(h—a)fcfo} Je.

(2.28)

(2.29)

§ 3. Parallel variations.

We consider an infinitesimal variation [2.1) of a hypersurface of a Kaeh-
lerian manifold. When the tangent space at a point (x") of the original
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hypersurface and that at the corresponding point (¥") of the varied hyper-
surface are parallel, we say that the variation is parallel.

From [2.5), [2.6) and [2.8), we have
@.D By =08+ (V46— )] B+ (TyA-+ hyo£0)Che,

and cosequently we have
THEOREM 3.1. In order for an infinitesimal variation (2.1) of a hypersurface
to be parallel it is necessary and sufficient that

(3.2) VoA+h5=0.

COROLLARY 1. In order for an infinitesimal normal variation #'=x"+1C"e
of a hypersurface to be parallel, it is necessary and sufficient that A=-constant.

From and this corollary, we have

COROLLARY 2. Under an infinitesimal parallel normal variation x*=x"+AC"e
(A=constant), the variations of the structure tensors are given by

0f 3% = A(fo*he*—hy’fe%)e,
0fy = —Ahy'f.e,
(3.3)
l o = ahofe,
5gcb - _2’2hcb5 ’
A being a constant.
COROLLARY 3. Suppose that the almost contact metric structure induced on
a hypersurface of a Kaehlerian manifold is a Sasakian structure with f-sectional

curvature a®. Then under an infinitesimal parallel normal variation of the
hypersurface, the variations of the structure tensors are given by

afba:()’

0fy = —Ahfse,
(3.4)

of* = Ahf %,

0gco = —20{agup+(h—a)f.[r}e,
A being a constant.

§4. Variation of the second fundamental form.

To find the variation of the sscond fundamental form we have used in

the formula
OV By =V 0B," = K,;,"&* Blie—(01'%) B,",

where 61'% is the variation of the Christoffel symbols I'% of the hypersurface.
But here we shall use another method to find the variation of the second
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fundamental form.
For the varied hypersurface, we have

(41) VCBD'LZ Ecbch .

Thus denoting by I'%+d1'% the Christoffel symbols and by k., +0h., the second
fundamental form of the varied hypersurface, we have

(42) acgbh+Fj}i(x+$5)Echbi—(F(czb”{' 5F§‘b)éah - (hcb—*—ahcb)éh .

Substituting [(2.2) and [2.12) into [(4.2), we find by a straightforward com-
putation

(4.3) (Ve Vo + K" Bi)e = [ 01 % —hey(VA+h,*6%)e 1By +(0he,)C .
On the other hand, using and [2.8), we have
(4.4) VeV + K16 Bl = [V V6% =V o(hp*) — h*(Vp A4 hyo6%) 1 Bo"

+[vcvbz‘Ji‘VC(hbeEe)'*"hce(vbse—zhbe)jch
+ K" BEiE 42K ;"C* B .
Thus from and we obtain

(4.5) 01" —hey (VO A+N,E%)e
=[V V68—V (Ah,*) = he (N Aty )+ Ky i BEGRE?
+2Kkjihc kBg?;%]E ,
where B¢ = B,’B,'B%, and
(46) ahcb: [vcvbz_}"vc(hbeée)—i_hce<vb§e_)‘hbe)

+ K ;" BECL &+ AK ;" C*BECy Je .

Thus using equations of Gauss and those of Codazzi (1.19), we have
from (4.5

4.7 oI's, =T LI'%—Y (A1) —V (AR +V%Ahe) e,
where £1'% denotes the Lie derivative of I'%, that is,

(4.8) LIG=V V4 K8,

and from

4.9 0hey=[-Lhep+ 2+ 2K ,;"CEBEC,—he 1) e,
where Lh,, denotes the Lie derivative of A, that is,

(4.10) Lhey=E ghep+heo Vo4 hopyV E°.
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Thus we have

THEOREM 4.1. Under an infinitesimal variation (2.1) of a hypersurface, the
variations of the Christoffel symbols and the second fundamental form are respec-
tive given by (4.7) and (4.9).

COROLLARY 1. Under an infinitesimal tangential variation ¥'=x"-+£°B,"e
of a hypersurface, the variations of the Christoffel symbols and the second-
fundamental tensor are given by their Lie derivatives with respect to &°

COROLLARY 2. Under an infinitesimal normal variation ¥"=x"-+-2C" of a
hypersuaface, the variations of the Christoffel symbols and the second fundamental
tensor are respectively given by

(4.11) 0l'% = —[V (Ah,*)+Vo(Ah,*)—*(Ahp)]e
and
(4.12) 0hey =[Ny A+ A(K ;" C*BEC,—heehy) Je .

§5. Variation of Sasakian hypersurface with f-sectional curvature a’.

We now assume that the almost contact metric structure induced on the
hypersurface is a Sasakian structure with f-sectional curvature a®>. Then we

have [(1.39) and consequently

(51) hcehbe: azgcb+(h2—a2)fcfb .
Thus reduces to
(5.2) Ohey=La(Lger) H(LAS fo+(h—a) (LI o+ (L)}

+V Vo A+ K, ;" CFBEC,—a’gey— (WP —a®)f . [} Je .
On the other hand, we have
0h=0(he, ff") = (0hey) [ f°+2he,(0F) S .

Thus substituting the third equation of and into the equation
above, we find

(5.3) O0h=[Lh+(INA+AK,;;"C*BLC)ff 4+ Ah* e .

Now in order for the variation to carry the Sasakian hypersurface with
f-sectional curvature a® into a Sasakian hypersurface with f-sectional curva-
ture a®+0a? it is necessary and sufficient that dh., given by is equal to

(5.4) 0hg,=o0lage+(h—a)f. fp],
that is, to
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(5.5) Ohey = (0)8er+ (0gc0) +(0h—0a)f . ot (h—a) {(0F o) fot+ S e(0f )} -

Substituting the second and the fourth equations of into [5.5), we
see that is equivalent to

(5.6) Ohep=L[a(Lg,—2ag.,)—2A(h*—a®)f. [,
+(h—a) (Lot f (L) = ([ ot [ f)(VeA)} Je
+(0a)(geo—Scfo)+ (BN fo -
Comparing with [5.6), we find
[VeVod+2{K ;"G * BiCy+ 0’ gop+ (R —a®)fo fr}
H(h—a){fEfot 1o f e} (Ved)
—(0a)g,,—(8h—Lhe—da)f f,=0,
from which, using
(5.7) [V A+ 2{K,;"C*BEC,+a*(gep— o fo)}
—(VeVad+ 2K, ;:"C*BE CO U o fot (h—a) ([ fotfo'f ) (Vo) Je
—(0a)(geo—fcf0)=0.

Conversely if 4 satisfies an equation of the form
(5.8 VeVodtA{K ;" C*BECh+ 0 (ger—f o fo)}
—(VNad+ 2K ;" C*BICOT S o fo
+(h—) ([ ot/ V)= ' (gep—Fefo)
@’ being a function, then becomes
Ohpy=La(Lg,—22ag.,)—22(h*—a®)f.fs
+(h—=a) (LS o+ F(L)— ([ ot [T (VeA)}
+ (VA4 2K, " CHBY Cff 4+ Lh+AR f o fo
+a’(gwo—rScfn)le,

which shows, together with [5.3), that is satisfied, if we put da=a’e.
Thus we have

THEOREM 5.1. In order for an infinitesimal variation (2.1) to carry a Sasakian
hypersurface with f-sectional curvature o® into a Sasakian hypersurface with f-
sectional curvature a*+0da?, it is necessary and sufficient that the function A
satisfies (5.7).

COROLLARY 1. In order for an infinitesimal normal parallel variation "=
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x"+AC", 2=const. #0, o carry a Sasakian hypersurface with f-sectional curva-
ture o into a Sasakian hypersurface with f-sectional curvature a®-+0a®, it 1is
necessary and sufficient that the original hypersurface satisfies

(5.9) ALK ;"C*BECy+a*(gey—f o 0)}
_Kkjihc *Bi; Chfefdfcfb:ls—(5a)(gcb_fcfb) =0.

COROLLARY 2. An infinitesimal normal parallel variation ¥*=x"+2C"e of
a Sasakian hypersurface with f-sectional curvature a® of a flat Kaehlerian mani-
fold carries it into a Sasakian hypersurface with f-sectional curvature a®-+da?,
if and only if Aa’e=da.

COROLLARY 3. An infinitesimal normal parvallel variation never carries a
Sasakian hypersurface (with f-sectional curvature 1) of a flat Kaehlerian mani-
fold into a Sasakian hypersurface.

Suppose that the ambient Kaehlerian manifold M**** is of constant holo-
morphic sectional curvature k, that is,

Kkjih = ‘Zli— [5Zgji_5?gki‘|‘FkhFji—thFki“ZijFih] )
where F;;=F,'g,;. Then gives

{Z(—i——f—aZ)s—ﬁa} (gcb_fcfb) =0.

Thus we have

COROLLARY 4. If an infinitesimal normal parallel variation ¥*=x"+2C"e
carries a Sasakian hypersurface with f-sectional curvature o of a Kaehlerian
manifold of constant holomorphic sectional curvature k into a Sasakian hyper-
surface with f-sectional curvature a®*+0a®, then we have

da = 2(% + a2>e .

COROLLARY 5. If an infinitesimal normal parallel variation carries a Sasa-
kian hypersurface (with f-sectional curvature 1) of a Kaehlerian manifold of
constant holomorphic sectional curvature k into a Sasakian hypersurface, then
we have k=—4.

The author wishes to express here his sincere gratitude to the referee
whose suggestions improved the paper very much.
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