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Introduction.

0-1. Let G=GL(2, C) be the complex general linear group of order 2.
Denote by <o) a group of automorphisms of G generated by the complex
conjugation o. Let G~ be the semi-direct product of G with (o). More pre-
cisely, G~ is the group whose underlying set is GX{o) and whose composition
law is given by (g, 7)(g’, /)=(g"g’, zv’). Then G~ is a disconnected Lie group
which has G as a connected component of the identity element. Let T be an
irreducible unitary representation of G~. Then the restriction of T to G is
either an irreducible representation of G or the direct sum of two mutually
inequivalent irreducible representations of G. Accordingly, T is said to.be of
the first or the second kind. In the following, we assume T to be of the first
kind. For each smooth and compactly supported function f on G, it is known

that the operator Lf(g)T(g, 0)dg is a trace operator acting on the representa-

tion space of T (dg is an invariant measure on G). Moreover it is shown that
there exists a locally integrable function trace T(g, ¢) on G such that

trace | f(&)T(g, 0)dg={ f(¢) trace T(g, o)dg .

On the other hand, set G,=GL(2, R). It is known that, for any irreducible
unitary representation v of Gg, there exists a locally summable class function
trace 7(x) on Gp such that

trace fGRgo(x)r(x)dx: fGRgo(x) trace r(x)dx

for any smooth and compactly supported function ¢ on Gg (dx is an invariant
measure on Gg). We extend a class function tracer on Gg to a class function
on G¢ by setting

trace r(x) if g is conjugate to x=Gy in Ge,
trace r(g):{

otherwise.
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THEOREM 1. Notations being as above, for each irreducible unitary repre-
sentation T of the first kind of G, there exists an trreducible unitary representa-
tion v of Gg such that

trace T(g, o) =c¢ trace r(g’g) VeeG),

where e==1 does not depend upon g.

REMARK 1. An analogous result for finite general linear groups was given
in [5]

0-2. This paper consists of two sections. In §1, we study orbits and
orbital integrals on G,=SL(2, C)/%1, with respect to the “o-twisted adjoint
action”: x—g%g ! of G,. We also determine a general form of distributions
on G,, invariant under the above G,-action and whose supports are concentrated
to the following “o-twisted singular set”: {g=G; trace g’g==+2}. Results
obtained are quite similar to those on orbital integrals on SL(2, R) with re-
spect to the adjoint action.

In § 2, we compute irreducible unitary characters of the first kind of the
semi-direct product G of G, with <o), Then, Theorem 1 is proved.

Notations.

As usual, C, R, Z denote the field of complex numbers, the field of real
numbers and the ring of integers respectively.

The group of non-zero complex (resp. real) numbers is denoted by C*
(resp. R*).

For a complex matrix g, g2° means the complex conjugation of g. We use
such standard notations in the theory of linear groups as SL(2, C), SL(2, R),
SU(2), PU(2)=SU(2)/+1 and SO(2).

For a smooth manifold X, C{(X) is the space of smooth functions on X
with compact support.

Let G be a Lie group and H be a closed subgroup of G. If normalizations
of invariant measures of G and H are prescribed, the invariant measure on
G/H (if any) is normalized to be the quotient of the invariant measure of G
by that of H.

§1.

1 Set G,=PSL(2, C)=SL(2, C)/%1. Denote by Gi the semidirect product
of G, and the Galois group {o) of C with respect to R generated by the com-
plex conjugation ¢. More precisely, G is the group with the underlying set
G, x<{o> whose composition rule is given by (g, z)(g’, t/)=(g7g’, zz’) (g, 8'=G,,
7, v’€{oy). Two elements g and g’ of G, is said to be o-twistedly conjugate

(1) The was reported by the author at the annual meeting of the Mathe-
matical Society of Japan on fall, 1974.
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in G, if, for a suitable element x of G, g’=x%gx"'=xgx™’. It is easy to see

that (g, ¢) and (g’, o) are conjugate in G7 if and only if g and g’ are o-twis-
tedly conjugate in G,. For real variables 6, t>0 and x set

cos /2 sin 8/2 N 1 x
) ky= ( ) , at:( B ) and n(x)= ( ) .
—sinf/2 cos0/2 N 1

It follows from Lemma 3.4~Corollary 3.7 of that a complete set of repre-
sentatives for o-twisted conjugate classes of G, is given by {ks; 0Z0=7}\J
{a,, t>1}Un(l). For each g=G, set

ZLg)=1{x=G,; x°gx'=g}.

Then we have

GueUGia(' ;) if 0=0, where we put Giz=SL(2, R)/%1

2)  Z(ke)= K=50(2)/+1 if 0<f<r,

PU(2)=SU(2)/+1 if O=m,

Z(a)=AVA(" _i) if t+ 1, where we put A= {a,; >0}, and Z,(n(1))=N=
{n(x); x€ R}.
We normalize an invariant measure on G, by setting dg:dudz%t— for

g=un(z)a, (ues PUQ2), z€C, t>0) where du is the normalized Haar measure of
SU(2)/+1. Similarly, we normalize an invariant measure on G, by setting

dg=drdx 9 for g=kn(x)a, (€K, xR, 1>0), where dk is the normalized Haar
measure of K. Further, we normalize invariant measures on A and on N by
setting datz—dti and dn(x)=dx. For each compactly supported smooth func-

tion f on G,, set

3) o= lt—t1f fGrai)di (e Ry, t21),
(4) F2 (6)=sin 0 j o T ko) (0= R,sinf+0),
(5) 0(N=], , fEeEdi,

(6) 5 ()= A £(z(4 “Hi)ax,

7) n={ (et 1)a)dx,
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where invariant measures on quotient spaces G,;/A, G,/K etc. are quotient
measures of previously normalized Haar measures of respective groups.
PrRoOPOSITION 1. Notations being as above,
(1) the function F%, (feC7(G,) on R,—{1} is extended to a smooth junc-
tion on R, with the following properties:

Fr)y=Fi (™), Fi()=40(f).

(ii) The function F}, (feC§(Gy) on R—zZ is extended to a smooth odd
Sfunction on R—2rZ with the following properties:

lim F3 ,(0)= +2703(f),

§—30

lim 40 F},,(0) = —2204(/),

(& F3. ) =35
Proor. (i) We have

b= 1t=t171f  fun(e)am(—2pu)dzdu

— $-1 g -1
=t fPU<2)xcf(u n(z)a,u " dzdu .

Thus, F},, is extended to a smooth function on R,. Since ¢, and a,-: are o-
twistedly conjugate to each other, F% (t"")=F% ,t). On the other hand,
3 f)= j Fuen(—ix)an)a;n(—ix)u-Y)dudxdt

PU)XRXR+

= 4'1f Jw'n(z2)u Hdudz .
PUQ2)XC

Hence F ,(1)=46%(f).

(ii) It is easy to see that F%, is a smooth odd function on R—zxZ with
period 27. For any compact subset [/ of the interval (0, 2x), the mapping
(x, )—¢(x, )=x°kex' is a proper mapping from G,x[I into G, In fact, let
M, be a compact subset in ¢(G,xI) and set M,=¢ (M,). Let {(g;, 8)}(i=
1,2, ---) be an infinite sequence in M,. Set g;=u;n(z;)a,; (¢;>0, z;€C, u;= PU(2)).
Choosing a suitable subsequence if necessary, we may assume that 0,—0<1,

uy—uc PUQ2) and ¢(g;, 0,)=g%ke,87'—g =M, Put (u")'{gu:(? Z) and x;=

* *

<n<zi>ati>0kaix(n(zim)“:( ) Then limx=(¢ [) and

i—00

—t;'sin ~62—1 *

lim (—t;‘ sin —6’2—1'—)»—»0. Since sin g" — sin %iO (= 1c(0, 27)), ~1ilq1”t;1:c/sin-g—.
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g
If ¢ were equal to zero, the eigenvalues of (‘cl Z) (CCZ 2 would be positive

while the eigenvalues of x¢x; are exp(++—16;) (6,I). Thus, ¢#0 and

0, .
lim a,;—a, (t™'=-—c/sin§/2>0). Hence n(zf)a,kpa;'n(z;)™' = (COST+Zi ¢ *) —
¢ %

(? Z) as 1—c0. We have Z%"—’—i‘(a— cos —g—) We have proved that from

any infinite sequence in M,, we can choose a convergent subsequence. Hence
M, is compact. Thus the integral defining F?%,(f) is absolutely convergent
for any 0<(0, 27) and F3,(6) is smooth on (0, 27). Since

4o(0)= sin 0f %jcdz f o KGN ™ 0(E) 0
—

(du is the quotient measure of the normalized Haar measures of PU(2) by
that of K), and

5N=f L[ dzf(ane)(; ~Hnera),

F,4(x)=0 and (-5 F3,.)(®=—3/).

Next, we will show that, for a given compact subset C of G, there exists
a compact subset C’ of G, such that x°kyx ' C for some f<(—=x/4, ©/4)
implies x°x'<C’. Denote by M the image of G, X (—=/4, #/4) under the
mapping (x, )—x°kex"'. Set C,= {z°2;z Cn\M}. Then C, is a relatively
compact subset of G,. The eigen values of any element of C, are given by
{e%, e} for a suitable ¢=(—r/4, ©/4). Hence, the binomial series /g =

020<11§12)(g—1)’” is absolutely convergent on C,. Let C; be the image of C,

under the continuous mapping g—+/g . Then C, is also a relatively compact
subset of G. For g=C,, ~/g is an element of G characterized by the follow-
ing two properties:

(i) (V/g)*=g, (i) Arguments of eigen values of /g are both in the in-
terval (—=/8, ©/8). Hence, y=x%kyx ' C for some 0= (—r/4, #/4) implies
¥y = xkgx~'. Thus, x°kyx*cC (0=(—nx/4, ©/4)) implies xksx'<C,. Let C’
be the closure of CC;!. Then C’ is compact and x°kyx ' C for some f<
(—=n/4, n/4) implies x°x~'eC’. It is easy to see that the mapping x—x%x*
establishes a bicontinuous 1 to 1 correspondence between the homogeneous
space G,/Z,(1) and the closed submanifold {z=G,; z°2=1} of G,. Since

Fh0)=sin0| dif  fa7ky e,
Gl/GlR GlR/K
for a given compactly supported smooth function f on G, there exists a com-
pact subset C of G,/G,p suct that
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2 e ) o o1 -1 .
7.(6)=sin 6f dx jamm S(579key 5 dy (020, |6] <z/4).
By the Lemma of [1],

. . R 1o -1 . X l 1 c—1 -1 .
1011110131n6 - /Kf(x ykey 1% )dyMZKJGIR/Nf@ Y 1>y % >dy,

1R

.od 00 =11\ A o1
%1?01 77 Sin Hj‘GlR/Kf(x Yoy X " Ndy=—2rf(%9%"1).

Moreover, if x remains in a compact subset, both convergences are uniform
with respect to £. Thus,

Nim F5 (0)=£2707(f) ,
—+0

lim - F3.(0) = — 2209 f).

We omit the proof of the following proposition which is an analogue of
the Weyl integral formula.
PROPOSITION 2. For each compactly supported smooth function f on G,

[, Kexdg=-5[ Froi—r S+

1 2r .
T { L F3..0)4sin0dg.

2 Let G be a connected complex semi-simple Lie group with the Lie algebra
g. Let g, be a real form of g and G, be the Lie subgroup of G corresponding
to g,. We assume that there exists an anti-holomorphic involutive automor-
phism o of G such that G, is the subgroup of fixed points of ¢. Denote by
B the universal enveloping algebra of g(?C. We identify B with the algebra

of left invariant differential operators on G in a usual manner. For a smooth
function f on G, we write (bf)(x)=f(x, b) (xeG, bB). Let 5, be a Cartan
subalgebra of g, and let A, be the Lie subgroup of G, corresponding to ,.
Denote by U the universal enveloping algebra of ), and identify it with the
algebra of left invariant operators on A,. For Xeg, Ly (resp. Ry) is a linear
mapping in B given by left (resp. right) multiplication by X. The proof of
the next lemma is quite similar to that of Lemma 15 of [2].

LEMMA 3. For each as Ay, there exists a unique linear mapping I',, from
BX U into B such that I'y (Ixv)=v and I, (X, - XrXV)Z(LAzz(a—l)Xg-Rxl)

(LAd(a—l)X:—RXT)V for Xy, -, X,eq, veW (Ad(a™?) is the adjoint transformation

corresponding to a™).
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For a smooth function f on G, denote by F a smooth function on GX A4,
given by F(x, a)=f(x%x""). It is proved that, for b=8B and ve¥,

F(x, b; a,v)=f(x"ax™", w),
where w=1", ,(bXv) and w® is the image of w under the adjoint transforma-
tion corresponding to x (see p. 114 of [2]). Let g be the real subspace of g

spanned by +/—1 §, and by root vectors of g with respect to the Cartan
subalgebra H=0,++/—1 b,. Denote by A the canonical mapping from S(g(%)C)

(the symmetric algebra over g(?C) onto B and set 0=A(S(q)), where S(q) is
the symmetric algebra over gq. Put
Aj={ae A4,; det (Ad(a™")-0—1)|q+0}.

LEMMA 4 (cf. Lemma 15 of [2]). Notations being as above, for ac Aj, the
mapping Iy, is a linear bijection from OXU onto B.

Set /= E}IZ(ST(q)), where S,(q) is the space of homogeneous elements of
degree 7 in T:S‘(q). By lemma 4, for b&®B and a< Aj, there exists a uniquely
determined 0,,(b)eU such that

b—0q,0(b) € [y (D" X NA).

A smooth function f on G is said to be o-twistedly G-invariant if f(x%gx )=
f(g) for any x, g=G. The following lemma is an easy consequence of pre-
ceding results.

LEMMA 5. Notations being as above, let z be in the center of B and let f
be a smooth o-twistedly G-invariant function on G. Then, for ac A}, fla, 2)=
Aa, Ba,o(2), where B, .(2) is a differential operator on A, whose local expression
(the definition of “local expression” is given at p. 112 of [2]) at a coincides with
0a,,(2).

An example of Set G=SL(2,C)/+1, G,=SL(2, R)/+1, g°=§

(g=6). Put H=(1 _ ), x=() 0), v=(] Q) H=v—TH, X=v-TX,
Y,=+/—1Y. Then {H X,Y, H, X,,Y,} is an R-base of the Lie algebra g
of G and Q=3 H*+XY+YX—(—-H}+X,Y,+Y,X,) is the Casimir operator
on G.

1 Set 9,=RH, A={a=(Y" _;.);t>0}. Then Al=A4,~{1}. For

a,< A}, we have, by an elementary calculation,

Q= Loyt f b (AL 121y a))

1 t t
+Lorol({ =g Hi= ~gqye XY +Y X) = e (Y1 ViXp) <),
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Thus, a,g(.Qo)—"——Hz—}—Z §+§: H. Hence, for a o-twistedly G-invariant smooth

function f on G,

(8) fay Q)={20—1( -5 Y (t—1)—2} fa).

2. Set By=R(X—Y), AO:{/eﬂ:(_gi"jg//zz 5:,2%)} Then Aj= (ks ;

sin #x0}. For ky= A;, we have, by an elementary calculation

Qozpk0’0<1x{#%K2* 1'8‘1302(9 K+ 1—?—1(1‘:1020 K}>+

1 1 1 :
L a0el{ 5 K+ g=cos oy H' W)~ qiseos gy T WDFXL).

where we put K=X—Y, K,=+—1 K, W=X+Y, W,=+~/—1 W. Thus,
1 cos @
Oy, o(820) = ~-~2—K2—2———Sin ] K.

Hence, for a o-twistedly G-invariant smooth function f on G,

2
©) Sk, Q) ={ 2t L sin 0—2}1(ks)
Set
(10) Q=20,+4=H+2AXV+YX)— H =2 X,Y,+Y,X,)+4.

The following proposition follows from (8), (9), and Proposition 2
PROPOSITION 6. For feCy(G,) (G,=SL(2,C)/+1),

d 2
Flore)=4(t-57) Fho®),

2
bro(0)= 42 F%(8)  (for notations, see (3) and (4)).

3 Let M be an m-dimsnsional smooth manifold and let N be an n-dimensional
submanifold of M. For each p= N, there exists a relatively compact coordinate
neighborhood U of p in M and a system of coordinate functions {x,, ---, x,,
Y1, "y Ym-n} such that

UNN={qeU;y(q)=+=Innlg)=0}. For each (m—n)-tuple of non-
negative integers [=(i;, -+, in-,), We put
0 : .
I= — i m—n
ay_< ay1 ) ( aym n > yl_yll  Ymw

[Tl =i+ +igon, ]Iz—‘ll'lm—n‘
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Let T be a distribution on M whose support is contained in N. As is well-
known, the localization of T to U has the following expression:

(11 T(N= Z T.(0flv) (FeCeU)),

where each T, is a distribution on UNN. In [11), if there is an [ such that
T,+0 and |I|=7, the non-negative integer r is called the normal rank of T
on UNN. Now assume that a Lie group G operates smoothly on M and that
N is a single G-orbit.

LEMMA 7. Notations and assumptions being as above, assume further that
T is invariant under the action of G.

(i) The normal rank of T is constant on N,

(ii) In (11), each T; is a smooth function on NNU.

PrOOF. (i) is obvious. We identify UNN with its image under the map-
ping : ¢g—x(@)=(x,(q), -+, x,(¢)). Take a neighborhood U,CU of p such that
x(Uy,)Cx(UNN). For each ¢=C7(UNN), denote by ¢y’ a smooth function on
U, given by

oy (D)= e(x(P)Y (D) -

Since the support of T is concentrated to N, T(¢y?) is defined in a natural
manner. Moreover, T(py)=1!T;(¢). Let {X,, ---, X;} be an R base of the
Lie algebra g of G. For each X&g, we denote by the same symbol a differ-

ential operator on M given by (Xf)(x)= —jt—f(exp tX) x)|=0. Set
Xo= 3, 1) 2+ bua(t, )0
1) P Tj\*y s axj = T\ ayk

on U. Since T is G-invariant, T(X;(¢y")=0 (1=i<[). Thus

§ x UEDig gf (32| v )+

J=1 Wl sr—11| .]'

m—n . 1
+% x EDL
k=1 Tl =r— {1l +1 ]'

T1k+J(€Pa§bjk |¥)=0,

where, for I=(iy, -, ip_n), we put I[,=(,, -+, 1,—1, ==, in_n). Since N is a
G-orbit, b;,| y=0 and the rank of the matrix (a,,(x, 0)) (1=;=Z1 1<k<n), is n
for each xeUNN. Thus, a system of distributions {7T;; |I|<r} satisfies an
elliptic system of differential equations with smooth coefficients. Hence, each
T; is a smooth function on UNN.

Let us further assume that there exists a non-zero G-invariant zn-form
on N. Then, in there exists a smooth function T;(x) on UNN such

that T(¢)= LT ()0 for any peCi(UNN).
Denote by S™(Ty(M)/T(N)) the symmetric tensor product of homogeneous
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degree r of the normal tangent bundle of N in M.

The next lemma is easily proved.

LEMMA 8. Notations and assumptions being as above, the mapping: p—
'IIZ:]TT,(p)(G{,)p gives a G-invariant section of S™(Ty(M)/T(N)).

In the following, for each G-invariant distribution 7 supported in N, we
denote by s(T) the G-invariant section of S™(Tx(M)/T(N)) given by
We note that if T, and T, are G-invariant distributions supported on N of
normal rank 7, s(T',)=s(T,) implies that the normal rank of 7,~—T, is less than 7.

From now on, we regard the group G,=SL(2, C)/+1 as a transformation
space of G, under the action

(12) x——>g-x=g%xg"" (g, x=G,).

A distribution T on G, is said to be o-twistedly G,-invariant if T is invariant
under the transformations [(12). Set N,={geG,, g°%g=1}. Then N, is a three
dimensional closed submanifold of G; which is a single G,-orbit. It is easy to
see that there exists a G;-invariant non-zero 3-form on N,. For each non-zero
integer k, 2%3. (see (5), (10)) is a o-twistedly G,-invariant distribution supported
on N, with the normal rank 2k Moreover, any G;-invariant section of
S™(Ty,(G)/T(N,)) is zero if r is odd and is a multiple of s(2720Y) if r is even.
The following lemma is now easily proved, by the induction with respect to
the normal rank.

LEMMA 9. Any o-twistedly G,-invariant distribution supported on N, is a
finite linear combinations of 2%, (k=0, 1,2, ---).

Set N,={g=G,, g°g=—1}. Then N, is also a closed three dimensional
submanifold of G, which is a single G,-orbit. The next lemma is derived in
quite a similar manner.

LEMMA 10. Any o-twistedly G,-invariant distribution supported on N, is a
finite linear combinations of £2%6% (k=0, 1, 2, ---) (see (6), (10)).

Set S,={g=G,; trg’g==2}. Put N,={geG,;trg’g=2, g°g=1}, then S,=
N,\UN,UN, is a decomposition of S, into G;-orbits under the action: x—g-x
=g°xg~. The orbit N, is open in S, and is of codimension 1 in G,.

LEMMA 11. Let T be a o-twistedly G,-invariant distribution on G, supported
in S,. Then, on N,, T is equal to a suitable finite linear combinations of %6
(=0,1, 2, --+) (see (7), (10)).

ProOOF. Set x(g)=trg’g¢—2 (g G,). Then it is easy to see that dx=0
on N,. Hence, if the support of 7 has a nonempty intersection with N,
there exists the largest non-negative integer 7 such that x(g)"T=0 on N,.
We call  the normal rank of T on N,. It is easy to see that, for a suitable
constant ¢, x"T=cd> on N,, We note that the normal rank of £2%3} on N, is
E (k=0, 1,2, ---). In fact, it follows from [Proposition 1| and [Proposition 6 that




Irreducible unitary characters of a group extension 175

(4x7Q%3)()= lim Flotyry,o(t)
-1

. d \2* _ .
= lim (2t7> (t+171=2)"F (8)

t—1 ™

{ 0 if r>Fk
22R(2R) 1 40%( 1) if r==~F.

Thus, the normal rank of T— ZT,e(cz—k)—'-.Q’Bi on N, is smaller than . The

lemma is now obtained easily, by applying the induction with respect to r.

Lemma 9, Cemma 10 and imply the following :

LeMMA 12.. Notations being as above, any o-twistedly G,-invariant distribu-
tion on G, supported on S, is a finite linear combinations of Q%L Q%% and
Q% (k=0,1, 2, ---).

COROLLARY. If T is a o-twistedly Gi-invariant distribution on G, supported
on S, and is an eigen distribution of 2, then T=0.

§2.

1. Let T be an irreducible unitary representation of the group G; on a
Hilbert space © (Gi is the semi-direct product of G;=SL(2, C)/+1 and (¢
introduced in §1, 1). Let T, be the restriction of T to the group G,, which
is the connected component of 1 of G;. Then T, is either irreducible or the
direct sum of two mutually inequivalent irreducible unitary representations of
G,. The representation T is said to be of the first kind or of the second kind
according as T, is irreducible or reducible. If T is of the first kind,

(12) Tog)=JT\(g%) ]! (ge6Gy),

where Ty(g)=T(g, 1), J=T(1, o). Hence, T, is equivalent to its ‘“conjugate
representation” given by g—T,(g%. We note that a unitary operator J on 9
which satisfies is either T(1, o) or —T(1, o).

2. We recall a description of irreducible unitary representations of G,=
SL(2, C)/+1. For details, see [3]. For an integer m, denote by H*™ the space
of measurable functions f on PU(2)=SU(2)/+1 which satisfy the following
conditions (i) and (ii).

() A u)=emrw)  (vocR),

(i) [ oy 0 P <o,

where du is the normalized invariant measure on PU(2). The sapce $*™ is a
Hilbert space with the inner product
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(o f)=], R0,

For each g=G,, there exists a uniquely determined triple (z(g), t(g), k(g))e
_(1 z(g)t(e)™? 2m,
CxXR,xPU2) such that g=(" “F’)( {(g)) ¥(&). Denote by Re™?

(peR) a representation of G, on ™ given by the following formula;

(RE™(g) f)(w) = H(ug)*~* f (k(ug)) .

It is known that R®™# js an irreducible unitary representation of G,. Two
representations R®™? and R®™-*> are equivalent if and only if (2m, p)=
+(@2m’, p).

For a positive 7 (0<7<2), denote by $. the space of measurable functions
on PU(2) which satisfy the following conditions:

o A" ou)=rw)  (¥0cR).

(i) J e @it Pl sy < oo,

where we put @ (u)= |u,,| %", u,, being the (2, 1)-entry of u. Then 9, is the
Hilbert space with the inner product

(fu, fa)= ”jPU(Z)2¢r(u1u2_l)fl(ul)fzu_z)dulduz .

Denote by R. a representation of G on 9. given by the following :
(RL8)f () =t(ug)~* " f(k(ug)) .

Then R. is an irreducible unitary representation of G. Two representations
R. and R, (0<7, 7/<2) are equivalent if and only if t=1’. Representations
R. and R®™® are never equivalent. It is known that any non-trivial irredu-
cible unitary representation of G, is equivalent either to R®™” (meZ, peR)
or to R. (0<z<2). An irreducible unitary representation R of G, is said to
be self-conjugate if R is equivalent to R?: g—R(g?. It is easy to see that
representations R (p=R), R*™” (meZ) and R. (0<r<2) are all self-con-
jugate and that any non-trivial self-conjugate irreducible representation of G,
is equivalent to one of them.
Denote by I, a unitary operator of order 2 on £° (or 9;) given by

(13) (L) wy=f@).

We extend representation R“* (resp. R.) of G, to a representation T (resp.
T:.) of GU by setting TO7((g, 0))=xL,R"”(g) (resp. T:.((g, 0))==*1,R.(g)).

Let m, n and 7 be integers which satisfy inequalities: n=|m/|, |r|. Denote
by Cr,. the function on SU(2)/+1 given by
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5T _ n—r n+r Btmtr
V2T Ch(u)= ) "N ar T
max(0,—m~r)<k=min(n—r,n—m) k n—m—k

X (_E)n—m—kbn—r‘kdk

for u=(_2 ). Namely, +/2n+1 Cp,(u) is the coefficient of X™™Y "™ in
—b a

(aX—=bY)""(bX+aY)" . It is well known that {C2 (u); n=|m|, |m|+1, -,
r=-—n, ---, n} forms a complete orthonormal base of the Hilbert space £*™.

LEMMA 13. Set ®(u)= |u,,| 2™ ****ulp for u= Zn Zm). If Re s=1,
21 22

§ e Em(ou™C () du
PU(2)

B nim n+m—1 S—?’l—{—k 1 u
=(=D™ ( = s—m+k /) s+n Clnr(0) -

PrROOF. Making use of the change of variable: w—uv, we see that the
above integral is equal to

[ wgm g, | #5720y, (uv)du
PU(2)

- jPU(z)qum l Y1 I 2m+2s—2j‘m =1C¢"”<u <t t‘l)v>tzmdtdu ’

(where dt is the normalized Haar measure on the unit circle)
=Cn )] i@ | ) du N/ 20T
PU2)

Set uy,= VI—t ¥ and u, =+t e (0=t=<1, 0=¢, ¢, <2rx). Then du=
—47—1_Tdtd§01d§02 and
n+m

'\/27’l+l CZL__m(u): et mive 'afn_;_'mf (1__t)n+mtn—m>< (7’1#[‘77’1) -,

Thus the integral is equal to

-1 ! m+8s—-1 dn+m n+min-m
Cr () {(n+m) 1} jot e (L= )"+t

— (7 nem (" S—n‘*‘k_ 1
= Cl (0)(=D™ (kI:IO s—m-+k / s+n -

shows that if m>0, for a smooth function ¢ in *™ the integral
_fPU( )¢§"‘(v”u“)go(u)du, which is absolutely convergent for Res=1, gives rise
2

to a holomorphic function of s in the domain {s; Res>—|m|}. Set

(14) Ig()w)=(=1"m | O uewdu|
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Since Cp . (u%)=(—1)™"C~,,_(u), shows that I$™ is a unitary
operator of order 2 of $*™. Furthermore, it is easy to see that I$™ R®™%(g)
=RE®™O(gN 2™ (Yge(G,). We extend a representation R®™® (m>0) of G, to
a representation TE™® of G by setting

T(iZm,O)(g, O') — i[;ﬂm)R(Zm,O)(g) .

So far, we have proved the following proposition.

PROPOSITION 14. Notations being as above, any non-trivial irreducible uni-
tary representation of Gi of the first kind is equivalent to TO? (p=0) or Tes
(0<z<2) or to TE™® (m=1, 2, --+).

3. If T is an irreducible unitary representation of G of the first kind,
for any feCg(G,), the linear operator _fG f(g)T(g, o)dg is known to be of trace

1

class. In the following we calculate the trace of this operator for each repre-
sentation 7. We use notations introduced in 2 without further comment.

ProprosiTION 15. (i) Notations being as above, for feCy(G,), the trace of
the linear operator

(15) [ fynRo"(g)dg

on H is given by jclf(g)S“”f”(g)dg, where S? is a function on G, given as
Sfollows:
fiorz | y-io/
SO (g)= [t—t71

0 otherwise.

1f g is o-twistedly conjugate to a, (t>0),

(i) The trace of the linear operatorf fg),R(g)dg on $. is given by
Gy
[ R2)S(g)dg, where Sg) is given by
G1

{22 . . . .
B if g is o-twistedly conjugate to a, (t>0).

S{g)=
0 otherwise.

Proor. (i) For p=9’,

([ AR g)dgp)w)
Gy
=[_Reney > okug)dg

Ay a2yt p(w) S dzdv

j‘Iz.|_><c><PU(2)
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= fPU(Z)K(u, v)p(v)dv,

where K(u, v) is a smooth function on PU(2)X PU(2) given by

K(u, v) :fR . S((uo)an(z)v)tterr —%Ldz .
+X

Hence, the trace of the operator is given by

[ K udu=| 1Ry (a) 3 (see (3)
PU® Ry

={ f@)s™”(g)dg  (see Proposition 2).
G

The second part of the proposition is proved in a similar manner.
For zeC, put X(z)=exp2r+/—1 Rez. For feCg(G,) and (x, y)=C? set

I =], F@K(ai+esly—(bi+d)ah)imdgdt

(g: (‘CI 3), m=1, 2, >, where T is the unit circle and dt¢ is the normalized

Haar measure on 7.
PROPOSITION 16. Notations being as above, the integral

jcxcff(x, y)dxdy

is absolutely convergent and is equal to the trace of the linear operator
T RO g on 7.

PROOF. Set c(s, m)=(—1" ”2 i ['I(ﬂl(i"';;zni)s) .

Then

ZZTnIZI -2m

-2m —
f Htrdt=2—F

[ (s, my|z|-2ds,
Res=ag

(—m<e,<0), the integral is absolutely convergent. Put (x, y)=7r(0, Du (r=0,
ueSU(2)). We denote by u’ the image of u in SU(2)/+1. We have

I(x, y):«—;Tj " c(s, m){jpu(z)Ff(v, uw, s)r‘“x@%’_"s(u"’v“)dv}ds ,

Res=

where we put

Fi(v, v, s):fhxcf(v'l 1 i) atu’)t“sﬁtl;dz

and
O (as) = |5
Set
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D™ (u/, s):f Ff(v w, )0 (uw'v)dv .
PU
It follows from that

0w, )= B | Fov, 0, )Cha0)dvCr ' *)an n(1-5),

nzlk

n 1
where ap,,(s)=(— Dnm( ;Zﬁ ) Sﬁl-n ’

It is now easy to see that for any polynomial P(s) in s, |@%™(u’, s)P(s)]|
is bounded, uniformly with respect to w’, when s remains in the strip

{se C; —1<Re s<—%}. We have, for (x, y)=r(0, Du,

~—_1_. Q@m)( 4,/ -4s8
106 )= [ els, m@Fma, rovds.
Thus, the function I;(x, ) is integrable on CxXC and

[ Ij(x, y)dxdy
cXeC

= 277: jo r" “drU.Reg aoc(s m){f @(?m’(u’, s)du/}ds]

_ 2n’ 27rz my( 4 /
=< )j @<2 (w/, 1)du

:%— tracejallggm’R‘zm’”(g)f(g)dg.

PROPOSITION 17. Assume that the support of feCy(G,) is contained in the
following set:

(16) Go=1{g€G,; trg’gx 2},
Then

§ 0t yaxdy=—5f f)semn(g)dg,
where '

emiﬁ__e—miﬂ i i
— if g 1s o-twistedly conjugate to ky,
Semo(g)=
Tz_t—Fr if g is o-twistedly conjugate to a, (t>1).

Proor. It follows from [Proposition 16| that

[ Ix, )dxdy
CxC

"ls‘fn mexp{—ﬂre<lxlz+lylz)}ff(x,y)dxdy.
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We note that for g:(g 3)6 Gy,
(] x|+ |y|®)—2iRet{(ax+cy)y—(bX+dy)x}
= (e4ibt+ibt™Y) | x| *—i(at—dt ) xy—i(Gt*—dt)xy+
+(e—ict—ict ™) |y|*?.

Changing the orders of integrations, we have

f I(x, y)dxdy
CXC

— lim fgier

51045‘(;1‘5‘1' {sz—i—is(bt+b_t"1—ct—c't"l)+Z‘T’g"g~—l‘2—~t_2} dgdt

We note that the set of roots of the following equation in # is invariant under
the transformation: t——(f)™%
17) t—ie(b—&)t* — (2 +-tr g?g)t?—ie(b—c)t+1=0.

For ¢>0, the above equation has no root on the unit circle. Denote by
{2(8), #8), —2:1(8), —1(8)} (12,(e)| <1, |pe(e)| <1) the set of roots of the
above equation By the assumption, if g is in the support of f, the
matrix g°g¢ has two different eigenvalues {¢?, e=} (sin #=0) or {2, 27'} (A>1).
In the former case, we may assume

lim (2.(8), m(g)=(e"", %)
elo
or

lim (2(8), p(g))= ("2, —e77),
€l 0

In the latter case, we may assume that li{rg (4(8), /,ea(g)):(\/,{t ——\/,2:1),

Since the support of f is a compact subset of there exists a positive
number 7 such that 2.(g)¥u(g) if 0<e<7 and f(g)x0. Thus, for 0<e=y,
if f(g)=0,

12" dt
jT {e2+ie(bt+bt™ —ct—Ct™Y) +tr g°g—(t2+172)}

B ﬂvzl{ ) Ze(g)zmﬂ
27 L (A(8)+ 271 8)) (2L g)— p(8))( A g)+ ' ( &)

n ﬂs(gfm“ }
(1 8)— AL )N pe @)+ 251 (&) e g)+227(8)) T

Thus,

I(x, 9) =] (@)™ (g)dg
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under our assumption that the support of f is contained in the set [16).
ProrosITION 18. For m=1, 2, ---, the trace of linear operator

Jo f@nrRem(g)dg

on §" (feCF(G)) is given by [ f(g)Se™(g)dg.
1
PROOF. Set

T(f)=trace | flg)IR™™(g)dg,

T(N=]_ RS "(g)dg.

Then, both T, and T, are o-twistedly invariant distributions on G, (see 3, § 1).

Moreover, by [Proposition 16| and [Proposition 17, the support of T,—T, is
contained in the set S,= {g=G; tr g°g==+2}. Let 2 be the Casimir operator
on G, given by It is well-known that Q7T,=4m*T,. We will show that
QT,=4m*T,. By [Proposition 2, we have

Tyen= [ =L 25y,

-!-%j:”sin o(—-SIn10 N ps - (6)d0.

By [Proposition 6,
d 2
Flogoa)=4(t—5) Fi.o1)

and

Fipr.ollo)= —4-2 F3,(0).

Hence, in view of (i),
— dt > emf L dt
2f | Pl (0 F-=8mf t (b ) P05~
= 8(mt)[ 1" F Y, ()—8m- 45 ).
On the other hand, by (ii) of [Proposition I}

2 (% . . _ 8m
‘7fo sin mOF 3, ,(0)d0 = ——— jo cos mf—2—

d
25 F5.6(0)d0

H

S (—or—2m)ay ) - :”sin mOF?, (0)d6 .

Thus, again by
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To(21) =8 "ty o(t)-F-— B2 “sin moF3, (6)d0
0

=4m*Ty(f) .

Hence, T,—T, is a o-twistedly G-invariant distribution on G, with support
concentrated to the set S, and satisfies the differential equation (T,—T,)=
4m*(T,—T,). Thus, by [Corollary] to Lemma 12, T,=T,.

4. For an feCy(G)), set

Su(f)=trace jg @I RE™™(g)dg  (n=1,2, )
1

and

T fy=trace | [(@)LR™"(g)dg.

The following formula is quite analogous to the Plancherel formula for
SL(2, R).
PrROPOSITION 19. Notations being as above, we have

_ 2 1=, chzmli
4704 f)= D nSu N+ 5| A

TA(f)dx  (cf. (5).

PrOOF. It follows from [Proposition 18 [Proposition 17 and
that

N . 4 2r N . 9 o N SR dt
3 1S, (f)=———| B nsinnbF3(0)do+2[ 5 nnFy (05
n=1 0 n=1 1 n=1

N 0
:———j P 6y Sm( +02) i

sin ——
2

- d_ 14t —2t N
P e 2

suggests that

sin( N+—5-)0
§ P05 <Sm _0?> a8
2

. 1
N+—5-)0
=~z N+ DA~ (5 F3.40)) Sm(_ 02> o
SIn —5—
2

and
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TN B E R
jl Fhrot) =g =g 4

= —@N+ 04— [ (G Fra) HEE T gy

Thus, we have

v g sm(N—l———-)ﬁ
SusufH=—={" —a dgF A0
2
o “1__o4-N-1
+f A2 Ry ot

It follows from that

s H= o N+] TE-E- P,

In view of [Proposition 15, we have

TAN={ Fhom-4-

Hence,

~ 14 d 1 (= , chnl
| A g Fhdi=——f ~ 257 TA(dx.

Thus we get the Proposition.

5. Set G=GL(2,C) and let G be the semi-direct product of G with <o)
(for details, see the introduction). We are going to construct (up to equiva-
lence) all the irreducible unitary representations of the first kind of G. Inthe
following we use notations in §2, 2. without further comment. Let L*(C) be
the Hilbert space of square-integrable functions on C. We denote by X(R*)
the character group of R*. For (u, .)€ X(R*)x X(R*), let II#1#2 be the
representation of G on L*C) given by the following formula:

ITee2(g, 1) f(2)

az+c_ ad—bc

Tbztd |>”2('b2+ dl%—{%—j{ﬁflv (e=(¢ De=o).

]I;}llvﬂﬁ(g, 0‘) fosund i]a- H;ﬁtl'#zj(gy 1) ’

where [/, is a unitary operator on L*C) given by (J,/)(z)=/(2?). Denote by
T2 the representation of G given by

T (g, )= () (Idet g T e(g, 2) (@€ G, E<0)).

The representation 7 “#2 is naturally regarded as a representation of G,.
Take a real number p such that pi'u,(t)=(t)" (¢>0). Denote by M,, a linear
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mapping from £° into L*(C) given by the following formula :

Mi(F)@) == (1+ |21 F(u(z)) (F),

(% By (= L g2
where u(z)_< 8 a) (a_ WiERFIEE B= V)

It is easy to see that M, is an isometric linear mapping from $° onto L*C)
such that M;,(I,)=J,M;, and
M TO(g)=T¢ve(g)M,, (Vgeb,).

For a positive integer m, denote by M™ the linear mapping from £°™ into
L*C) given by the following formula:

1

M™F(z)= v A+1z|)F(u(z) (FedH9™).
Let /™ be the linear operator on L*(C) given by the following :
(=1)™m

J§m i) =

lim\ |z°—w]| "™ *"(z27—w)*™f(w)dw .
T s—+0vC

It is easy to see that M‘™ is an isometric linear mapping from $°™ onto
L*C) and that J@WM™=ME™]¢™ (cf, [14)).

Hence, /$™ is a unitary operator of order 2 on L¥C). For a pue X(R*)
and a positive integer m, let II.,. be the representation of G on L¥C) given
by the following formula :

II5.(8, 1) f(z)

_ o (@ad—bc)™  |bz4-d|*™® az+tc _qa b
———ﬂ('(ld—bCl ) |ad_bclm-1 (bZ-{-d)zm f( bz+d ) (g— c d)E G),

I5.(g 0)==x]¢m15.(g 1).
Denote by T4. the representation of G given by

The(g, D)= p(Idet g|)I5.(g,2) (g6, 2€{0)).

M

The representation T,,. is naturally regarded as a representation of the group
G,. Moreover, it is easy to see that

T2, (g)M™ = MT @mo( g) (Vge 61) .

For each 7(0<7<1), denote by H. the space of measurable functions on C
such that

jcz | 2,—2,| 2(?_1)]((21)7(2_2)6121(122( .,

Then the space H. is a Hilbert space with the inner product
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(f4 12) :jcz121"“22|2(r_1)f1(21)f2(22)d21d22 .

For a p= X(R*) and a 7 (0<7z<1), denote by II%, the representation of G on
H. given by the following formula:

IIt.(g, Df(z)

ad—bc

= p(|ad—bcl|?) “zFdF

1 az+c _ra b
f(bz+d) (g_ ¢ d)eG)’
Hfﬂ:(g’ 0'): i.’anfi(g; 1) .
Set
II2.(g, H)=p(ldet g|)T%.(g,2) (g€G, A€0o)).

Then T7. is naturally regarded as a representation of 5,. Let L. be a linear
mapping from $,. into H. given by

L&) == (+121)7 7 F (@) (Fef),

Then it is easy to see that L. is an isometric linear mapping from £,. onto
H. which satisfies

LTo(g)=T%(8)L, (VgeG)).

The next proposition is now an easy consequence of Prop. 14, Prop. 15, Prop.
18 and the classification theory of irreducible unitary representations of
GL(2, C).

PRrROPOSITION 20. Let notations be as above,

(1) Any infinite dimensional irreducible unitary representation T of G of the
first kind is equivalent to a suitable II{¢1#2 ((y,, p.)E X(R*)?) or to I}, (ne X(R™),
m=1, 2, ---) or to II%, (pe X(R*), 0<c<1).

(ii) For each FeCy(G), the trace of the operator LF(g)T(g, o)dg 1s equal

to J'GF(g)traceT(g, o)dg, where traceT(., o) is a locally integrable function on

G given by the following formulas:
a) If T=II¢ve?,

{ +|det g| ﬂl(ll)ﬂz(lzz)+#1(22)ﬂ2(21>

— , if gg° has

1 12

trace T(g, 0):1 distinct positive eigenvalues 2, and 2,
0,

otherwise.
b) If T=II%.
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iy(!detgw)ldetgw-f—%f—fl—, if gg° has two
1 2
trace 7(g, o) = distinct positive eigenvalues 1, and 2,,

0, otherwise.

o IfT=I.,

iy(ldetglz)[detgll"“—l—]f—z_%T, if gg° has two
distinct positive eigenvalues A, and A, (2,<2,)
trace T(g, o) =
sin mf
sinf /’

+ (| det g|2)<—— if gg? has complex

eigenvalues re'?, re™*.

6. Let us recall a description of irreducible unitary representations of
Gr=GL(2, R). For (y,, p.)= X(R*)?, r**#2 is a representation of G on L*(R)
(=the Hilbert space of square integrable functions on R) given by

revtd(g)f(x)
N ad—bc {ad—bc|? ax+c¢ _qsa b
= m(Gerg Jbrt () (8=(C )=6a).

For a 7 (0<z<1), let h, be the space of measurable functions on R such that

J Il ) i) dxda, < oo

Then h. is a Hilbert space with the inner product
AL N ESS A ACATACALER LS

For a pe X(R*) and a 7 (0<7<1), the representation 7# of Gg on A, is given by
ad—bc |FH2 _ , ax+c _/a b
fexa)  (e=(C )e=Gr).

re(@)(x) = plad—bo|-faT
For a positive integer m, denote by 4, the space of holomorphic functions
on C—R such that

J @1 m 2™ dz < oo

For p= X(R*) and a positive integer m, the representation 7#™ of Gz on %,
is given by

i g)f(z)= plad—bc) | ad—be| ™ (FEEE) betd) ™.

The next theorem is now an immediate consequence of Prop. 20 and the
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well-known character formulas for irreducible unitary representations of
GL(2, R).

We employ notations in the introduction, § 2, 4. and in §2, 5.

THEOREM. For each irreducible unitary representation T of G of the first
kind, there exists an irreducible unitary representation r of Gp such that

trace T(g, o) = ¢ trace r(gg’) Vge GL(2, C)),

where e=+1 does not depend upon g.
More precisely, for T=II%vr2, one may put e==+1, r=rtve? for T=1I%,,
one may put e==+1, r=r*™ and for T=II¥? one may put e==*1, r=r&.
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