On irreducible unitary characters of a certain group extension of $GL(2, \mathbb{C})$

By Takuro SHINTANI

(Received July 14, 1976)

Introduction.

0-1. Let G=GL(2,C) be the complex general linear group of order 2. Denote by $\langle \sigma \rangle$ a group of automorphisms of G generated by the complex conjugation σ . Let G^{\sim} be the semi-direct product of G with $\langle \sigma \rangle$. More precisely, G^{\sim} is the group whose underlying set is $G \times \langle \sigma \rangle$ and whose composition law is given by $(g,\tau)(g',\tau')=(g^{\tau'}g',\tau\tau')$. Then G^{\sim} is a disconnected Lie group which has G as a connected component of the identity element. Let T be an irreducible unitary representation of G^{\sim} . Then the restriction of T to G is either an irreducible representation of G or the direct sum of two mutually inequivalent irreducible representations of G. Accordingly, T is said to be of the first or the second kind. In the following, we assume T to be of the first kind. For each smooth and compactly supported function f on G, it is known that the operator $\int_G f(g)T(g,\sigma)dg$ is a trace operator acting on the representation space of T (dg is an invariant measure on G). Moreover it is shown that there exists a locally integrable function trace $T(g,\sigma)$ on G such that

trace
$$\int_{\mathbf{G}} f(g)T(g, \sigma)dg = \int_{\mathbf{G}} f(g) \operatorname{trace} T(g, \sigma)dg$$
.

On the other hand, set $G_R = GL(2, \mathbf{R})$. It is known that, for any irreducible unitary representation r of G_R , there exists a locally summable class function trace r(x) on G_R such that

trace
$$\int_{G_R} \varphi(x) r(x) dx = \int_{G_R} \varphi(x)$$
 trace $r(x) dx$

for any smooth and compactly supported function φ on G_R (dx is an invariant measure on G_R). We extend a class function trace r on G_R to a class function on G_C by setting

$$\operatorname{trace} r(g) = \begin{cases} \operatorname{trace} r(x) & \text{if } g \text{ is conjugate to } x \in G_{R} \text{ in } G_{C}, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem $1^{(1)}$. Notations being as above, for each irreducible unitary representation T of the first kind of G, there exists an irreducible unitary representation r of G_R such that

trace
$$T(g, \sigma) = \varepsilon$$
 trace $r(g^{\sigma}g)$ $(\forall g \in G)$,

where $\varepsilon = \pm 1$ does not depend upon g.

REMARK 1. An analogous result for finite general linear groups was given in [5].

0-2. This paper consists of two sections. In § 1, we study orbits and orbital integrals on $G_1 = SL(2, \mathbb{C})/\pm 1$, with respect to the " σ -twisted adjoint action": $x \mapsto g^{\sigma} x g^{-1}$ of G_1 . We also determine a general form of distributions on G_1 , invariant under the above G_1 -action and whose supports are concentrated to the following " σ -twisted singular set": $\{g \in G : \operatorname{trace} g^{\sigma} g = \pm 2\}$. Results obtained are quite similar to those on orbital integrals on $SL(2, \mathbb{R})$ with respect to the adjoint action.

In § 2, we compute irreducible unitary characters of the first kind of the semi-direct product G_1^{\sim} of G_1 with $\langle \sigma \rangle$. Then, Theorem 1 is proved.

Notations.

As usual, C, R, Z denote the field of complex numbers, the field of real numbers and the ring of integers respectively.

The group of non-zero complex (resp. real) numbers is denoted by C^{\times} (resp. R^{\times}).

For a complex matrix g, g^{σ} means the complex conjugation of g. We use such standard notations in the theory of linear groups as $SL(2, \mathbf{C})$, $SL(2, \mathbf{R})$, SU(2), $PU(2)=SU(2)/\pm 1$ and SO(2).

For a smooth manifold X, $C_0^\infty(X)$ is the space of smooth functions on X with compact support.

Let G be a Lie group and H be a closed subgroup of G. If normalizations of invariant measures of G and H are prescribed, the invariant measure on G/H (if any) is normalized to be the quotient of the invariant measure of G by that of H.

§ 1.

1 Set $G_1=PSL(2, \mathbb{C})=SL(2, \mathbb{C})/\pm 1$. Denote by G_1^- the semidirect product of G_1 and the Galois group $\langle \sigma \rangle$ of \mathbb{C} with respect to \mathbb{R} generated by the complex conjugation σ . More precisely, G_1^- is the group with the underlying set $G_1\times\langle\sigma\rangle$ whose composition rule is given by $(g,\tau)(g',\tau')=(g^{\tau'}g',\tau\tau')$ $(g,g'\in G_1,\tau')\in\langle\sigma\rangle$. Two elements g and g' of G_1 is said to be σ -twistedly conjugate

⁽¹⁾ The Theorem was reported by the author at the annual meeting of the Mathematical Society of Japan on fall, 1974.

in G_1 if, for a suitable element x of G_1 $g'=x^{\sigma}gx^{-1}=\bar{x}gx^{-1}$. It is easy to see that (g, σ) and (g', σ) are conjugate in G_1^{\sim} if and only if g and g' are σ -twistedly conjugate in G_1 . For real variables θ , t>0 and x set

(1)
$$k_{\theta} = \begin{pmatrix} \cos \theta/2 & \sin \theta/2 \\ -\sin \theta/2 & \cos \theta/2 \end{pmatrix}$$
, $a_{t} = \begin{pmatrix} \sqrt{t} & \\ & \sqrt{t}^{-1} \end{pmatrix}$ and $n(x) = \begin{pmatrix} 1 & x \\ & 1 \end{pmatrix}$.

It follows from Lemma 3.4 \sim Corollary 3.7 of [4] that a complete set of representatives for σ -twisted conjugate classes of G_1 is given by $\{k_{\theta}; 0 \leq \theta \leq \pi\} \cup \{a_t, t > 1\} \cup n(1)$. For each $g \in G_1$ set

$$Z_{\sigma}(g) = \{x \in G_1; x^{\sigma}gx^{-1} = g\}.$$

Then we have

(2)
$$Z_{\sigma}(k_{\theta}) = \begin{cases} G_{1R} \cup G_{1R} \binom{i}{-i} & \text{if } \theta = 0, \text{ where we put } G_{1R} = SL(2, R)/\pm 1 \\ K = SO(2)/\pm 1 & \text{if } 0 < \theta < \pi, \\ PU(2) = SU(2)/\pm 1 & \text{if } \theta = \pi, \end{cases}$$

 $Z_{\sigma}(a_t) = A \cup A \begin{pmatrix} i \\ -i \end{pmatrix}$ if $t \neq 1$, where we put $A = \{a_t; t > 0\}$, and $Z_{\sigma}(n(1)) = N = \{n(x); x \in \mathbb{R}\}$.

We normalize an invariant measure on G_1 by setting $dg = dudz \frac{dt}{t}$ for $g = un(z)a_t$ ($u \in PU(2)$, $z \in C$, t > 0) where du is the normalized Haar measure of $SU(2)/\pm 1$. Similarly, we normalize an invariant measure on G_{1R} by setting $dg = dkdx \frac{dt}{t}$ for $g = kn(x)a_t$ ($k \in K$, $x \in R$, t > 0), where dk is the normalized Haar measure of K. Further, we normalize invariant measures on A and on N by setting $da_t = \frac{dt}{t}$ and dn(x) = dx. For each compactly supported smooth function f on G_1 , set

(3)
$$F_{f,\sigma}^{1}(t) = |t - t^{-1}| \int_{G_{1}/A} f(\dot{x}^{\sigma} a_{t} \dot{x}^{-1}) d\dot{x} \qquad (t \in \mathbf{R}_{+}, t \neq 1),$$

(4)
$$F_{f,\sigma}^{2}(\theta) = \sin \theta \int_{G_{1}/K} f(\dot{x}^{\sigma} k_{\theta} \dot{x}^{-1}) d\dot{x} \qquad (\theta \in \mathbf{R}, \sin \theta \neq 0),$$

(5)
$$\delta_{\sigma}^{1}(f) = \int_{G_{1}/G_{1}R} f(\dot{x}^{\sigma}\dot{x}^{-1}) d\dot{x},$$

(6)
$$\delta_{\sigma}^{2}(f) = \int_{G_{1}/PU(2)} f\left(\dot{x}^{\sigma}\begin{pmatrix} & -1 \\ 1 & \end{pmatrix} \dot{x}^{-1}\right) d\dot{x},$$

(7)
$$\delta_{\sigma}^{3}(f) = \int_{G} f\left(\dot{x}^{\sigma}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \dot{x}^{-1}\right) d\dot{x},$$

where invariant measures on quotient spaces G_1/A , G_1/K etc. are quotient measures of previously normalized Haar measures of respective groups.

PROPOSITION 1. Notations being as above,

(i) the function $F_{f,\sigma}^1(f \in C_0^{\infty}(G_1))$ on $\mathbb{R}_+ - \{1\}$ is extended to a smooth function on \mathbb{R}_+ with the following properties:

$$F_{f,\sigma}^{1}(t) = F_{f,\sigma}^{1}(t^{-1}), \quad F_{f,\sigma}^{1}(1) = 4\delta_{\sigma}^{3}(f).$$

(ii) The function $F_{f,\sigma}^2$ ($f \in C_0^{\infty}(G_1)$) on $\mathbf{R} - \pi \mathbf{Z}$ is extended to a smooth odd function on $\mathbf{R} - 2\pi \mathbf{Z}$ with the following properties:

$$\begin{split} &\lim_{\theta \to \pm 0} F_{f,\sigma}^2(\theta) = \pm 2\pi \delta_{\sigma}^3(f) \;, \\ &\lim_{\theta \to 0} \; \frac{d}{d\theta} \, F_{f,\sigma}^2(\theta) = -2\pi \delta_{\sigma}^1(f) \;, \\ &\left(\frac{d}{d\theta} \, F_{f,\sigma}^2(\pi) \right) = -\delta_{\sigma}^2(f) \;. \end{split}$$

PROOF. (i) We have

$$\begin{split} F^1_{f,\sigma}(t) &= |t-t^{-1}| \int_{PU(2)\times\mathbf{C}} f(u^{\sigma}n(z^{\sigma})a_tn(-z)u^{-1})dzdu \\ \\ &= t^{-1} \int_{PU(2)\times\mathbf{C}} f(u^{\sigma}n(z)a_tu^{-1})dzdu \;. \end{split}$$

Thus, $F_{f,\sigma}^1$ is extended to a smooth function on R_+ . Since a_t and a_{t-1} are σ -twistedly conjugate to each other, $F_{f,\sigma}^1(t^{-1})=F_{f,\sigma}^1(t)$. On the other hand,

$$\begin{split} \delta_{\sigma}^{3}(f) &= \int_{PU(2) \times R \times R_{+}} f(u^{\sigma} n(-ix) a_{t} n(1) a_{t}^{-1} n(-ix) u^{-1}) du dx dt \\ &= 4^{-1} \int_{PU(2) \times C} f(u^{\sigma} n(z) u^{-1}) du dz \; . \end{split}$$

Hence $F_{f,\sigma}^1(1) = 4\delta_{\sigma}^3(f)$.

(ii) It is easy to see that $F_{I,\sigma}^2$ is a smooth odd function on $\mathbf{R} - \pi \mathbf{Z}$ with period 2π . For any compact subset I of the interval $(0,2\pi)$, the mapping $(x,\theta) \mapsto \varphi(x,\theta) = x^{\sigma}k_{\theta}x^{-1}$ is a proper mapping from $G_1 \times I$ into G_1 . In fact, let M_1 be a compact subset in $\varphi(G_1 \times I)$ and set $M_2 = \varphi^{-1}(M_1)$. Let $\{(g_i,\theta_i)\}(i=1,2,\cdots)$ be an infinite sequence in M_2 . Set $g_i = u_i n(z_i) a_{t_i}$ $(t_i > 0, z_i \in C, u_i \in PU(2))$. Choosing a suitable subsequence if necessary, we may assume that $\theta_i \mapsto \theta \in I$, $u_i \mapsto u \in PU(2)$ and $\varphi(g_i,\theta_i) = g_i^{\sigma}k_{\theta_i}g_i^{-1} \mapsto g \in M_1$. Put $(u^{\sigma})^{-1}gu = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $x_i = (n(z_i)a_{t_i})^{\sigma}k_{\theta_i} \times (n(z_i)a_{t_i})^{-1} = \begin{pmatrix} * & * \\ -t_i^{-1}\sin\frac{\theta_i}{2} & * \end{pmatrix}$. Then $\lim_{i \to \infty} x_i = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $\lim_{i \to \infty} (-t_i^{-1}\sin\frac{\theta_i}{2}) \mapsto c$. Since $\lim_{i \to \infty} \frac{\theta_i}{2} \mapsto \sin\frac{\theta_i}{2} \neq 0$ $(\theta \in I \subset (0,2\pi))$, $-\lim_{i \to \infty} t_i^{-1} = c/\sin\frac{\theta_i}{2}$.

If c were equal to zero, the eigenvalues of $\binom{a}{c} \binom{b}{d}^{\sigma} \binom{a}{c} \binom{b}{c}$ would be positive while the eigenvalues of $x_i^{\sigma} x_i$ are $\exp\left(\pm\sqrt{-1}\theta_i\right) \left(\theta_i \in I\right)$. Thus, $c \neq 0$ and $\lim a_{t_i} \mapsto a_t$ $(t^{-1} = -c/\sin\theta/2 > 0)$. Hence $n(z_i^{\sigma}) a_t k_{\theta} a_t^{-1} n(z_i)^{-1} = \begin{pmatrix} \cos\frac{\theta}{2} + z_i^{\sigma} c & * \\ c & * \end{pmatrix} \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ as $i \mapsto \infty$. We have $z_i^{\sigma} \mapsto \frac{1}{c} \left(a - \cos\frac{\theta}{2}\right)$. We have proved that from any infinite sequence in M_2 , we can choose a convergent subsequence. Hence M_2 is compact. Thus the integral defining $F_{J,\sigma}^2(\theta)$ is absolutely convergent for any $\theta \in (0, 2\pi)$ and $F_{J,\sigma}^2(\theta)$ is smooth on $(0, 2\pi)$. Since

$$F_{f,\sigma}^2(\theta) = \sin\theta \int_{\mathbb{R}^{++}} \frac{dt}{t} \int_{\mathcal{C}} dz \int_{PU(2)/K} f(a_t n(z^{\sigma}) \dot{u}^{\sigma} k_{\theta} \dot{u}^{-1} n(z)^{-1} a_t^{-1}) d\dot{u}$$

 $(d\dot{u})$ is the quotient measure of the normalized Haar measures of PU(2) by that of K), and

$$\delta_{\sigma}^{2}(f) = \int_{R^{+}} \frac{dt}{t} \int_{C} dz \, f\left(a_{t} n(z^{\sigma}) \begin{pmatrix} 1 \end{pmatrix} n(z)^{-1} a_{t}^{-1}\right),$$

$$F_{f,\sigma}^2(\pi) = 0$$
 and $\left(\frac{d}{d\theta}F_{f,\sigma}^2\right)(\pi) = -\delta_{\sigma}^2(f)$.

Next, we will show that, for a given compact subset C of G_1 there exists a compact subset C' of G_1 such that $x^{\sigma}k_{\theta}x^{-1} \in C$ for some $\theta \in (-\pi/4, \pi/4)$ implies $x^{\sigma}x^{-1} \in C'$. Denote by M the image of $G_1 \times (-\pi/4, \pi/4)$ under the mapping $(x, \theta) \mapsto x^{\sigma}k_{\theta}x^{-1}$. Set $C_2 = \{z^{\sigma}z; z \in C \cap M\}$. Then C_2 is a relatively compact subset of G_1 . The eigen values of any element of C_2 are given by $\{e^{i\varphi}, e^{-i\varphi}\}$ for a suitable $\varphi \in (-\pi/4, \pi/4)$. Hence, the binomial series $\sqrt{g} = \sum_{m=0}^{\infty} \binom{1/2}{m} (g-1)^m$ is absolutely convergent on C_2 . Let C_3 be the image of C_2 under the continuous mapping $g \mapsto \sqrt{g}$. Then C_3 is also a relatively compact subset of G. For $g \in C_2$, \sqrt{g} is an element of G characterized by the following two properties:

(i) $(\sqrt{g})^2 = g$, (ii) Arguments of eigen values of \sqrt{g} are both in the interval $(-\pi/8, \pi/8)$. Hence, $y = x^{\sigma}k_{\theta}x^{-1} \in C$ for some $\theta \in (-\pi/4, \pi/4)$ implies $\sqrt{y^{\sigma}y} = xk_{\theta}x^{-1}$. Thus, $x^{\sigma}k_{\theta}x^{-1} \in C$ ($\theta \in (-\pi/4, \pi/4)$) implies $xk_{\theta}x^{-1} \in C_3$. Let C' be the closure of CC_3^{-1} . Then C' is compact and $x^{\sigma}k_{\theta}x^{-1} \in C$ for some $\theta \in (-\pi/4, \pi/4)$ implies $x^{\sigma}x^{-1} \in C'$. It is easy to see that the mapping $x \mapsto x^{\sigma}x^{-1}$ establishes a bicontinuous 1 to 1 correspondence between the homogeneous space $C_1/Z_{\sigma}(1)$ and the closed submanifold $\{z \in C_1; z^{\sigma}z = 1\}$ of C_1 . Since

$$F_{f,\sigma}^{\,2}(\theta)\!=\sin\theta\!\int_{G_{1}/G_{1R}}\!d\dot{x}\!\int_{G_{1R}/K}f(\dot{x}^{\sigma}\dot{y}k_{\theta}\dot{y}^{-1}\dot{x}^{-1})d\dot{y}\,,$$

for a given compactly supported smooth function f on G_1 there exists a compact subset C of G_1/G_{1R} such that

$$F_{f,\sigma}^{2}(\theta) = \sin \theta \int_{C} d\dot{x} \int_{G_{1,L}/K} f(\dot{x}^{\sigma} \dot{y} k_{\theta} \dot{y}^{-1} \dot{x}^{-1}) d\dot{y} \qquad (\theta \neq 0, |\theta| < \pi/4).$$

By the Lemma of [1],

$$\lim_{\theta \downarrow 0} \sin \theta \int_{G_{1R}/K} f(\dot{x}^{\sigma} \dot{y} k_{\theta} y^{-1} \dot{x}^{-1}) d\dot{y} = 2\pi \int_{G_{1R}/N} f(\dot{x}^{\sigma} \dot{y} \begin{pmatrix} 1 & 1 \\ 1 \end{pmatrix} \dot{y}^{-1} \dot{x}^{-1}) d\dot{y} ,$$

$$\lim_{\theta \downarrow 0} \frac{d}{d\theta} \sin \theta \int_{G_{1R}/K} f(\dot{x}^{\sigma} \dot{y} k_{\theta} \dot{y}^{-1} \dot{x}^{-1}) d\dot{y} = -2\pi f(\dot{x}^{\sigma} \dot{x}^{-1}) .$$

Moreover, if x remains in a compact subset, both convergences are uniform with respect to \dot{x} . Thus,

$$\lim_{ heta o\pm0}F_{f,\sigma}^{\,2}(heta)=\pm\,2\pi\delta_{\sigma}^{\scriptscriptstyle{(3)}}(f)$$
 ,

$$\lim \frac{d}{d\theta} F_{f,\sigma}^2(\theta) = -2\pi \delta_{\sigma}^{(1)}(f).$$

We omit the proof of the following proposition which is an analogue of the Weyl integral formula.

PROPOSITION 2. For each compactly supported smooth function f on G_1 ,

$$\begin{split} \int_{G_1} f(g) dg &= \frac{1}{2} \int_0^\infty F_{f,\sigma}^1(t) |t - t^{-1}| \, \frac{dt}{t} + \\ &+ \frac{1}{2\pi} \int_0^{2\pi} F_{f,\sigma}^2(\theta) 4 \sin \theta \, d\theta \, . \end{split}$$

2 Let G be a connected complex semi-simple Lie group with the Lie algebra \mathfrak{g} . Let \mathfrak{g}_0 be a real form of \mathfrak{g} and G_0 be the Lie subgroup of G corresponding to \mathfrak{g}_0 . We assume that there exists an anti-holomorphic involutive automorphism σ of G such that G_0 is the subgroup of fixed points of σ . Denote by \mathfrak{B} the universal enveloping algebra of $\mathfrak{g} \bigotimes_{R} C$. We identify \mathfrak{B} with the algebra of left invariant differential operators on G in a usual manner. For a smooth function f on G, we write (bf)(x) = f(x, b) $(x \in G, b \in \mathfrak{B})$. Let \mathfrak{h}_0 be a Cartan subalgebra of \mathfrak{g}_0 and let A_0 be the Lie subgroup of G_0 corresponding to \mathfrak{h}_0 . Denote by \mathfrak{A} the universal enveloping algebra of \mathfrak{h}_0 and identify it with the algebra of left invariant operators on A_0 . For $X \in \mathfrak{g}$, L_X (resp. R_X) is a linear mapping in \mathfrak{B} given by left (resp. right) multiplication by X. The proof of the next lemma is quite similar to that of Lemma 15 of [2].

LEMMA 3. For each $a \in A_0$, there exists a unique linear mapping $\Gamma_{a,\sigma}$ from $\mathfrak{B} \times \mathfrak{A}$ into \mathfrak{B} such that $\Gamma_{a,\sigma}(1 \times \nu) = \nu$ and $\Gamma_{a,\sigma}(X_1 \cdots X_r \times \nu) = (L_{Ad(a^{-1})X_1^{\sigma}} - R_{X_1}) \cdots (L_{Ad(a^{-1})X_1^{\sigma}} - R_{X_r})\nu$ for $X_1, \dots, X_r \in \mathfrak{g}$, $\nu \in \mathfrak{A}$ (Ad(a^{-1}) is the adjoint transformation corresponding to a^{-1}).

For a smooth function f on G, denote by F a smooth function on $G \times A_0$ given by $F(x, a) = f(x^{\sigma}ax^{-1})$. It is proved that, for $b \in \mathfrak{B}$ and $\nu \in \mathfrak{A}$,

$$F(x, b; a, \nu) = f(x^{\sigma}ax^{-1}, w^{x}),$$

where $w = \Gamma_{a,\sigma}(b \times \nu)$ and w^x is the image of w under the adjoint transformation corresponding to x (see p. 114 of [2]). Let \mathfrak{q} be the real subspace of \mathfrak{g} spanned by $\sqrt{-1} \mathfrak{h}_0$ and by root vectors of \mathfrak{g} with respect to the Cartan subalgebra $\mathfrak{h} = \mathfrak{h}_0 + \sqrt{-1} \mathfrak{h}_0$. Denote by λ the canonical mapping from $S(\mathfrak{g} \otimes C)$ (the symmetric algebra over $\mathfrak{g} \otimes C$) onto \mathfrak{B} and set $\mathfrak{D} = \lambda(S(\mathfrak{q}))$, where $S(\mathfrak{q})$ is the symmetric algebra over \mathfrak{q} . Put

$$A_0' = \{a \in A_0 ; \det (\operatorname{Ad} (a^{-1}) \cdot \sigma - 1) |_{\mathfrak{q}} \neq 0\}$$
.

LEMMA 4 (cf. Lemma 15 of [2]). Notations being as above, for $a \in A'_0$, the mapping $\Gamma_{a,\sigma}$ is a linear bijection from $\mathfrak{D} \times \mathfrak{A}$ onto \mathfrak{B} .

Set $\mathfrak{D}'=\sum_{r=1}^{\infty}\lambda(S_r(\mathfrak{q}))$, where $S_r(\mathfrak{q})$ is the space of homogeneous elements of degree r in $S(\mathfrak{q})$. By lemma 4, for $b\in\mathfrak{B}$ and $a\in A_0'$, there exists a uniquely determined $\delta_{a,\sigma}(b)\in\mathfrak{A}$ such that

$$b - \delta_{a,\sigma}(b) \in \Gamma_{a,\sigma}(\mathbb{O}' \times \mathfrak{A})$$
.

A smooth function f on G is said to be σ -twistedly G-invariant if $f(x^{\sigma}gx^{-1})=f(g)$ for any $x, g \in G$. The following lemma is an easy consequence of preceding results.

LEMMA 5. Notations being as above, let z be in the center of \mathfrak{B} and let f be a smooth σ -twistedly G-invariant function on G. Then, for $a \in A'_0$, $f(a, z) = f(a, \beta_{a,\sigma}(z))$, where $\beta_{a,\sigma}(z)$ is a differential operator on A'_0 whose local expression (the definition of "local expression" is given at p. 112 of [2]) at a coincides with $\delta_{a,\sigma}(z)$.

An example of Lemma 5. Set $G = SL(2, \mathbb{C})/\pm 1$, $G_0 = SL(2, \mathbb{R})/\pm 1$, $g^{\sigma} = \bar{g}$ $(g \in G)$. Put $H = \begin{pmatrix} 1 & & \\ & -1 \end{pmatrix}$, $X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $H_1 = \sqrt{-1} H$, $X_1 = \sqrt{-1} X$, $Y_1 = \sqrt{-1} Y$. Then $\{H, X, Y, H_1, X_1, Y_1\}$ is an \mathbb{R} -base of the Lie algebra \mathfrak{g} of G and $\Omega_0 = \frac{1}{2}H^2 + XY + YX - \left(\frac{1}{2}H_1^2 + X_1Y_1 + Y_1X_1\right)$ is the Casimir operator on G.

1. Set $\mathfrak{h}_0 = \mathbf{R}H$, $A_0 = \left\{a_t = \begin{pmatrix} \sqrt{t} \\ \sqrt{t} \end{pmatrix}; t > 0\right\}$. Then $A_0' = A_0 - \{1\}$. For $a_t \in A_0'$, we have, by an elementary calculation,

$$\begin{split} \mathcal{Q}_0 &= \Gamma_{a_t,\sigma} \Big(1 \times \Big\{ \frac{1}{2} H^2 + \Big(\frac{t+1}{t-1} + \frac{t-1}{t+1} \Big) H \Big\} \Big) \\ &+ \Gamma_{a_t,\sigma} \Big(\Big\{ -\frac{1}{8} H_1^2 - \frac{t}{(t-1)^2} (XY + YX) - \frac{t}{(t+1)^2} (X_1 Y_1 + Y_1 X_1) \Big\} \times 1 \Big) \,. \end{split}$$

Thus, $\delta_{a,\sigma}(\Omega_0) = \frac{1}{2} H^2 + 2 \frac{t+t^{-1}}{t-t^{-1}} H$. Hence, for a σ -twistedly G-invariant smooth function f on G,

(8)
$$f(a_t, \Omega_0) = \left\{ 2(t - t^{-1})^{-1} \left(t - \frac{d}{dt} \right)^2 (t - t^{-1}) - 2 \right\} f(a_t) .$$

2. Set
$$\mathfrak{h}_0 = \mathbf{R}(X - Y)$$
, $A_0 = \left\{ k_\theta = \begin{pmatrix} \cos \theta/2 & \sin \theta/2 \\ -\sin \theta/2 & \cos \theta/2 \end{pmatrix} \right\}$. Then $A_0' = \{k_\theta; \mathbf{R} \in \mathbb{R} \mid \mathbf{R} \mid$

 $\sin \theta \neq 0$. For $k_{\theta} \in A'_{0}$, we have, by an elementary calculation

$$\begin{split} & \varOmega_0 = \Gamma_{k\theta,\sigma} \Big(1 \times \Big\{ -\frac{1}{2} K^2 - \frac{\sin \theta}{1 - \cos \theta} K + \frac{\sin \theta}{1 + \cos \theta} K \Big\} \Big) + \\ & + \Gamma_{k\theta,\sigma} \Big(\Big\{ \frac{1}{8} K_1^2 + \frac{1}{4(1 - \cos \theta)} (H^2 + W^2) - \frac{1}{4(1 + \cos \theta)} (H_1^2 + W_1^2) \Big\} \times 1 \Big) \,, \end{split}$$

where we put K=X-Y, $K_1=\sqrt{-1} K$, W=X+Y, $W_1=\sqrt{-1} W$. Thus,

$$\delta_{k\theta,\sigma}(\Omega_0) = -\frac{1}{2}K^2 - 2\frac{\cos\theta}{\sin\theta}K$$
.

Hence, for a σ -twistedly G-invariant smooth function f on G,

(9)
$$f(k_{\theta}, \Omega_0) = \left\{-2 \frac{1}{\sin \theta} \frac{d^2}{d\theta^2} \sin \theta - 2\right\} f(k_{\theta}).$$

Set

(10)
$$\Omega = 2\Omega_0 + 4 = H^2 + 2(XY + YX) - H_1^2 - 2(X_1Y_1 + Y_1X_1) + 4.$$

The following proposition follows from (8), (9), and Proposition 2 Proposition 6. For $f \in C_0^{\infty}(G_1)$ $(G_1 = SL(2, \mathbb{C})/\pm 1)$,

$$F_{\mathcal{Q}_{f,\sigma}}^{1}(t) = 4\left(t\frac{d}{dt}\right)^{2} F_{f,\sigma}^{1}(t)$$

$$F_{\mathcal{Q}_{f,\sigma}}^2(\theta) = -4 \frac{d^2}{d\theta^2} F_{f,\sigma}^2(\theta)$$
 (for notations, see (3) and (4)).

3 Let M be an m-dimensional smooth manifold and let N be an n-dimensional submanifold of M. For each $p \in N$, there exists a relatively compact coordinate neighborhood U of p in M and a system of coordinate functions $\{x_1, \dots, x_n, y_1, \dots, y_{m-n}\}$ such that

 $U \cap N = \{q \in U ; y_1(q) = \dots = y_{m-n}(q) = 0\}$. For each (m-n)-tuple of nonnegative integers $I = (i_1, \dots, i_{m-n})$, we put

$$\partial_y^I = \left(\frac{\partial}{\partial y_1}\right)^{i_1} \cdots \left(\frac{\partial}{\partial y_{m-n}}\right)^{i_{m-n}}, \qquad y^I = y_{1}^{i_1} \cdots y_{m-n}^{i_{m-n}},$$
$$|I| = i_1 + \cdots + i_{m-n}, \qquad I! = i_1! \cdots i_{m-n}!.$$

Let T be a distribution on M whose support is contained in N. As is well-known, the localization of T to U has the following expression:

(11)
$$T(f) = \sum_{|I| \le r} T_I(\partial_y^I f|_N) \qquad (f \in C_0^\infty(U)),$$

where each T_I is a distribution on $U \cap N$. In (11), if there is an I such that $T_I \neq 0$ and |I| = r, the non-negative integer r is called the normal rank of T on $U \cap N$. Now assume that a Lie group G operates smoothly on M and that N is a single G-orbit.

Lemma 7. Notations and assumptions being as above, assume further that T is invariant under the action of G.

- (i) The normal rank of T is constant on N.
- (ii) In (11), each T_I is a smooth function on $N \cap U$.

PROOF. (i) is obvious. We identify $U \cap N$ with its image under the mapping: $q \mapsto x(q) = (x_1(q), \dots, x_n(q))$. Take a neighborhood $U_0 \subset U$ of p such that $x(U_0) \subset x(U \cap N)$. For each $\varphi \in C_0^\infty(U \cap N)$, denote by φy^I a smooth function on U_0 given by

$$\varphi y^I(p) = \varphi(x(p))y^I(p)$$
.

Since the support of T is concentrated to N, $T(\varphi y^I)$ is defined in a natural manner. Moreover, $T(\varphi y^I)=I$! $T_I(\varphi)$. Let $\{X_1, \dots, X_l\}$ be an R base of the Lie algebra $\mathfrak g$ of G. For each $X\in\mathfrak g$, we denote by the same symbol a differ-

ential operator on M given by $(Xf)(x) = \frac{d}{dt} f(\exp tX) \cdot x)|_{t=0}$. Set

$$X_i = \sum_{j=1}^n a_{ij}(x, y) \frac{\partial}{\partial x_i} + \sum_{k=1}^{m-n} b_{ik}(x, y) \frac{\partial}{\partial y_k}$$

on U. Since T is G-invariant, $T(X_i(\varphi y^I))=0$ $(1 \le i \le l)$. Thus

$$\begin{split} &\sum_{j=1}^{n} \sum_{|J| \leq r - |I|} \frac{(I \! + \! J) \, !}{J!} \, T_{I \! + \! J} \! \left(\! - \! \frac{\partial \varphi}{\partial x_{j}} (\partial_{y}^{J} a_{ij}) |_{N} \right) + \\ &\quad + \sum_{k=1}^{m-n} \sum_{|J| \leq r - |J| + 1} \! i_{k} \frac{(I_{k} \! + \! J) \, !}{J!} \, T_{I_{k} \! + \! J} \! (\varphi \partial_{y}^{J} b_{jk} |_{N}) \! = \! 0 \; \text{,} \end{split}$$

where, for $I=(i_1,\cdots,i_{m-n})$, we put $I_k=(i_1,\cdots,i_k-1,\cdots,i_{m-n})$. Since N is a G-orbit, $b_{jk}|_{N}=0$ and the rank of the matrix $(a_{jk}(x,0))$ $(1\leq j\leq l,\ 1\leq k\leq n)$, is n for each $x\in U\cap N$. Thus, a system of distributions $\{T_I;\ |I|\leq r\}$ satisfies an elliptic system of differential equations with smooth coefficients. Hence, each T_I is a smooth function on $U\cap N$.

Let us further assume that there exists a non-zero G-invariant n-form ω on N. Then, in Lemma 7, there exists a smooth function $T_I(x)$ on $U \cap N$ such that $T_I(\varphi) = \int_{\mathcal{N}} \varphi(x) T_I(x) \omega$ for any $\varphi \in C_0^\infty(U \cap N)$.

Denote by $S^r(T_N(M)/T(N))$ the symmetric tensor product of homogeneous

degree r of the normal tangent bundle of N in M.

The next lemma is easily proved.

LEMMA 8. Notations and assumptions being as above, the mapping: $p \mapsto \sum_{|I|=r} T_I(p)(\partial_y^I)_p$ gives a G-invariant section of $S^r(T_N(M)/T(N))$.

In the following, for each G-invariant distribution T supported in N, we denote by s(T) the G-invariant section of $S^r(T_N(M)/T(N))$ given by Lemma 8. We note that if T_1 and T_2 are G-invariant distributions supported on N of normal rank r, $s(T_1)=s(T_2)$ implies that the normal rank of T_1-T_2 is less than r.

From now on, we regard the group $G_1=SL(2, \mathbb{C})/\pm 1$ as a transformation space of G_1 under the action

(12)
$$x \longrightarrow g \cdot x = g^{\sigma} x g^{-1} \qquad (g, x \in G_1).$$

A distribution T on G_1 is said to be σ -twistedly G_1 -invariant if T is invariant under the transformations (12). Set $N_1 = \{g \in G_1, g^{\sigma}g = 1\}$. Then N_1 is a three dimensional closed submanifold of G_1 which is a single G_1 -orbit. It is easy to see that there exists a G_1 -invariant non-zero 3-form on N_1 . For each non-zero integer k, $\Omega^k \delta^1_{\sigma}$ (see (5), (10)) is a σ -twistedly G_1 -invariant distribution supported on N_1 with the normal rank 2k. Moreover, any G_1 -invariant section of $S^r(T_{N_1}(G_1)/T(N_1))$ is zero if r is odd and is a multiple of $s(\Omega^{r/2}\delta^1_{\sigma})$ if r is even. The following lemma is now easily proved, by the induction with respect to the normal rank.

LEMMA 9. Any σ -twistedly G_1 -invariant distribution supported on N_1 is a finite linear combinations of $\Omega^k \delta^1_{\sigma}$ $(k=0, 1, 2, \cdots)$.

Set $N_2 = \{g \in G_1, g^{\sigma}g = -1\}$. Then N_2 is also a closed three dimensional submanifold of G_1 which is a single G_1 -orbit. The next lemma is derived in quite a similar manner.

Lemma 10. Any σ -twistedly G_1 -invariant distribution supported on N_2 is a finite linear combinations of $\Omega^k \delta^2_{\sigma}$ ($k=0, 1, 2, \cdots$) (see (6), (10)).

Set $S_{\sigma} = \{g \in G_1 ; \text{tr } g^{\sigma}g = \pm 2\}$. Put $N_3 = \{g \in G_1 ; \text{tr } g^{\sigma}g = 2, g^{\sigma}g \neq 1\}$, then $S_{\sigma} = N_1 \cup N_2 \cup N_3$ is a decomposition of S_{σ} into G_1 -orbits under the action: $x \mapsto g \cdot x = g^{\sigma}xg^{-1}$. The orbit N_3 is open in S_{σ} and is of codimension 1 in G_1 .

LEMMA 11. Let T be a σ -twistedly G_1 -invariant distribution on G_1 supported in S_{σ} . Then, on N_3 , T is equal to a suitable finite linear combinations of $\Omega^k \delta^3_{\sigma}$ $(k=0, 1, 2, \cdots)$ (see (7), (10)).

PROOF. Set $x(g) = \operatorname{tr} g^{\sigma}g - 2$ $(g \in G_1)$. Then it is easy to see that $dx \neq 0$ on N_3 . Hence, if the support of T has a nonempty intersection with N_3 , there exists the largest non-negative integer r such that $x(g)^r T \neq 0$ on N_3 . We call r the normal rank of T on N_3 . It is easy to see that, for a suitable constant c, $x^r T = c \delta_{\sigma}^3$ on N_3 . We note that the normal rank of $\Omega^k \delta_{\sigma}^3$ on N_1 is k $(k=0, 1, 2, \cdots)$. In fact, it follows from Proposition 1 and Proposition 6 that

$$\begin{split} (4x^{r} \mathcal{Q}^{k} \delta_{\sigma}^{3})(f) &= \lim_{t \to 1} F_{\mathcal{Q}^{k} x^{r} f, \sigma}^{1}(t) \\ &= \lim_{t \to 1} \left(2t \frac{d}{dt} \right)^{2k} (t + t^{-1} - 2)^{r} F_{f, \sigma}^{1}(t) \\ &= \left\{ \begin{aligned} 0 & \text{if } r > k \\ 2^{2k} (2k) \, ! \, 4 \delta_{\sigma}^{3}(f) & \text{if } r = k \, . \end{aligned} \right. \end{split}$$

Thus, the normal rank of $T - \frac{c}{2^{2k}(2k)!} \Omega^r \delta^3_{\sigma}$ on N_3 is smaller than r. The lemma is now obtained easily, by applying the induction with respect to r.

Lemma 9, Lemma 10 and Lemma 11 imply the following:

LEMMA 12. Notations being as above, any σ -twistedly G_1 -invariant distribution on G_1 supported on S_{σ} is a finite linear combinations of $\Omega^k \delta^1_{\sigma}$, $\Omega^k \delta^2_{\sigma}$ and $\Omega^k \delta^3_{\sigma}$ $(k=0, 1, 2, \cdots)$.

COROLLARY. If T is a σ -twistedly G_1 -invariant distribution on G_1 supported on S_{σ} and is an eigen distribution of Ω , then T=0.

§ 2.

1. Let T be an irreducible unitary representation of the group G_1^{\sim} on a Hilbert space \mathfrak{F} (G_1^{\sim} is the semi-direct product of $G_1 = SL(2, \mathbb{C})/\pm 1$ and $\langle \sigma \rangle$ introduced in § 1, 1). Let T_0 be the restriction of T to the group G_1 , which is the connected component of 1 of G_1^{\sim} . Then T_0 is either irreducible or the direct sum of two mutually inequivalent irreducible unitary representations of G_1 . The representation T is said to be of the first kind or of the second kind according as T_0 is irreducible or reducible. If T is of the first kind,

(12)
$$T_0(g) = JT_0(g^{\sigma})J^{-1} \qquad (g \in G_1),$$

where $T_0(g) = T(g, 1)$, $J = T(1, \sigma)$. Hence, T_0 is equivalent to its "conjugate representation" given by $g \mapsto T_0(g^{\sigma})$. We note that a unitary operator J on \mathfrak{D} which satisfies (12) is either $T(1, \sigma)$ or $-T(1, \sigma)$.

2. We recall a description of irreducible unitary representations of $G_1 = SL(2, \mathbb{C})/\pm 1$. For details, see [3]. For an integer m, denote by \mathfrak{F}^{2m} the space of measurable functions f on $PU(2) \cong SU(2)/\pm 1$ which satisfy the following conditions (i) and (ii).

(i)
$$f\Big(\Big(\begin{matrix} e^{+i\theta} & \\ & e^{-i\theta} \end{matrix}\Big)u\Big) = e^{2\mathrm{i}\mathrm{m}\theta}f(u) \qquad (\forall \theta \in \mathbf{R}),$$

(ii)
$$\int_{PU(2)} |f(u)|^2 du < \infty,$$

where du is the normalized invariant measure on PU(2). The sapce \mathfrak{H}^{2m} is a Hilbert space with the inner product

T. Shintani

$$(f_1, f_2) = \int_{PU(2)} f_1(u) \overline{f_2(u)} du$$
.

For each $g \in G_1$, there exists a uniquely determined triple $(z(g), t(g), k(g)) \in C \times R_+ \times PU(2)$ such that $g = \begin{pmatrix} 1 & z(g) \\ 1 \end{pmatrix} \begin{pmatrix} t(g)^{-1} \\ t(g) \end{pmatrix} k(g)$. Denote by $R^{(2m,\rho)}$ $(\rho \in R)$ a representation of G_1 on \mathfrak{P}^{2m} given by the following formula;

$$(R^{(2m,\rho)}(g)f)(u) = t(ug)^{i\rho-2}f(k(ug)).$$

It is known that $R^{(2m,\rho)}$ is an irreducible unitary representation of G_1 . Two representations $R^{(2m,\rho)}$ and $R^{(2m',\rho')}$ are equivalent if and only if $(2m,\rho)=\pm(2m',\rho')$.

For a positive τ (0< τ <2), denote by \mathfrak{H}_{τ} the space of measurable functions on PU(2) which satisfy the following conditions:

(i)
$$f\left(\begin{pmatrix} e^{-i\theta} & \\ & e^{i\theta} \end{pmatrix} u\right) = f(u) \qquad (\forall \theta \in \mathbf{R}).$$

where we put $\Phi_{\tau}(u) = |u_{21}|^{-2+\tau}$, u_{21} being the (2, 1)-entry of u. Then \mathfrak{F}_{τ} is the Hilbert space with the inner product

$$(f_1, f_2) = \pi \int_{PU(2)} {}^{2}\Phi_{\tau}(u_1u_2^{-1})f_1(u_1)\overline{f_2(u_2)}du_1du_2$$
.

Denote by R_{τ} a representation of G on \mathfrak{F}_{τ} given by the following:

$$(R_{\tau}(g)f)(u) = t(ug)^{-2-\tau}f(k(ug)).$$

Then R_{τ} is an irreducible unitary representation of G. Two representations R_{τ} and $R_{\tau'}$ $(0 < \tau, \tau' < 2)$ are equivalent if and only if $\tau = \tau'$. Representations R_{τ} and $R^{(2m,\rho)}$ are never equivalent. It is known that any non-trivial irreducible unitary representation of G_1 is equivalent either to $R^{(2m,\rho)}$ $(m \in \mathbb{Z}, \rho \in \mathbb{R})$ or to R_{τ} $(0 < \tau < 2)$. An irreducible unitary representation R of G_1 is said to be self-conjugate if R is equivalent to $R^{\sigma}: g \mapsto R(g^{\sigma})$. It is easy to see that representations $R^{(0,\rho)}$ $(\rho \in \mathbb{R})$, $R^{(2m,0)}$ $(m \in \mathbb{Z})$ and R_{τ} $(0 < \tau < 2)$ are all self-conjugate and that any non-trivial self-conjugate irreducible representation of G_1 is equivalent to one of them.

Denote by I_{σ} a unitary operator of order 2 on \mathfrak{F}^0 (or \mathfrak{F}_{τ}) given by

$$(13) (I_{\sigma}f)(u) = f(\bar{u}).$$

We extend representation $R^{(0,\rho)}$ (resp. R_{τ}) of G_1 to a representation $T_{\pm}^{(0,\rho)}$ (resp. $T_{\tau\pm}$) of G_1 by setting $T_{\pm}^{(0,\rho)}((g,\sigma)) = \pm I_{\sigma}R^{(0,\rho)}(g)$ (resp. $T_{\tau\pm}((g,\sigma)) = \pm I_{\sigma}R_{\tau}(g)$).

Let m, n and r be integers which satisfy inequalities: $n \ge |m|$, |r|. Denote by $C_{m,r}^n$ the function on $SU(2)/\pm 1$ given by

$$\sqrt{2n+1} C_{m,r}^{n}(u) = \sum_{\max(0, -m-r) \le k \le \min(n-r, n-m)} {n-r \choose k} {n+r \choose n-m-k} a^{k+m+r} \times (-\bar{b})^{n-m-k} b^{n-r-k} \bar{a}^{k}$$

for $u = \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix}$. Namely, $\sqrt{2n+1} \ C_{m,r}^n(u)$ is the coefficient of $X^{n+m}Y^{n-m}$ in $(aX - \bar{b}Y)^{n+r}(bX + \bar{a}Y)^{n-r}$. It is well known that $\{C_{m,r}^n(u); n = |m|, |m|+1, \cdots, r = -n, \cdots, n\}$ forms a complete orthonormal base of the Hilbert space \mathfrak{P}^{2m} .

LEMMA 13. Set
$$\Phi_s^{2m}(u) = |u_{21}|^{-2m-2+2s} u_{21}^{2m}$$
 for $u = \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix}$. If Re $s \ge 1$,

$$\begin{split} \int_{PU(2)} & \varPhi_s^{2m}(vu^{-1}) C_{m,r}^n(u) du \\ &= (-1)^{n+m} {\binom{n+m-1}{\prod_{k=0}^{n-1} \frac{s-n+k}{s-m+k}}} \frac{1}{s+n} C_{-m,r}^n(v) \,. \end{split}$$

PROOF. Making use of the change of variable: $u \mapsto uv$, we see that the above integral is equal to

$$\begin{split} & \int_{PU(2)} u_{12}^{-2m} |u_{12}|^{2m+2s-2} C_{m,r}^{n}(uv) du \\ & = \int_{PU(2)} u_{12}^{-2m} |u_{12}|^{2m+2s-2} \int_{|t|=1} C_{m,r}^{n} \left(u {t \choose t-1} v \right) t^{2m} dt du , \end{split}$$

(where dt is the normalized Haar measure on the unit circle)

$$= C_{-m,r}^{n}(v) \int_{PU(2)} u_{12}^{-2m} |u_{12}|^{2m+2s-2} C_{m,-m}^{n}(u) du \sqrt{2n+1} .$$

Set $u_{11} = \sqrt{1-t} \ e^{i\varphi_1}$ and $u_{12} = \sqrt{t} \ e^{i\varphi_2}$ $(0 \le t \le 1, \ 0 \le \varphi_1, \ \varphi_2 \le 2\pi)$. Then $du = \frac{1}{4\pi^2} dt d\varphi_1 d\varphi_2$ and

$$\sqrt{2n+1} \ C_{m,-m}^n(u) = t^m e^{2mi\varphi_2} \frac{d^{n+m}}{dt^{n+m}} (1-t)^{n+m} t^{n-m} \times (n+m) \,!^{-1} \,.$$

Thus the integral is equal to

$$\begin{split} C^n_{-m,r}(v)\{(n+m)!\}^{-1} &\int_0^1 t^{m+s-1} \frac{d^{n+m}}{dt^{n+m}} (1-t)^{n+m} t^{n-m} dt \\ &= C^n_{-m,r}(v) (-1)^{n+m} {n+m-1 \choose k=0} \frac{s-n+k}{s-m+k} \frac{1}{s+n} \; . \end{split}$$

Lemma 13 shows that if m>0, for a smooth function φ in \mathfrak{F}^{2m} the integral $\int_{PU(2)} \Phi_s^{2m}(v^{\sigma}u^{-1})\varphi(u)du$, which is absolutely convergent for $\mathrm{Re}s\geq 1$, gives rise to a holomorphic function of s in the domain $\{s: \mathrm{Re}s>-|m|\}$. Set

(14)
$$I_{\sigma}^{(2m)}(\varphi)(v) = (-1)^m m \int_{PU(2)} \Phi_s^{2m}(v^{\sigma} u^{-1}) \varphi(u) du \Big|_{s=0}.$$

Since $C_{m,r}^n(u^{\sigma}) = (-1)^{m+r}C_{-m-r}^n(u)$, Lemma 13 shows that $I_{\sigma}^{(2m)}$ is a unitary operator of order 2 of \mathfrak{F}^{2m} . Furthermore, it is easy to see that $I_{\sigma}^{(2m)}R^{(2m,0)}(g) = R^{(2m,0)}(g^{\sigma})I_{\sigma}^{(2m)}$ ($\forall g \in G_1$). We extend a representation $R^{(2m,0)}(m>0)$ of G_1 to a representation $T_{\pm}^{(2m,0)}$ of G_1 by setting

$$T_{\pm}^{(2m,0)}(g,\sigma) = \pm I_{\sigma}^{(2m)}R^{(2m,0)}(g)$$
.

So far, we have proved the following proposition.

PROPOSITION 14. Notations being as above, any non-trivial irreducible unitary representation of G_1^{\sim} of the first kind is equivalent to $T_{\pm}^{(0,\rho)}$ ($\rho \ge 0$) or $T_{\tau\pm}$ (0< τ <2) or to $T_{\pm}^{(2m,0)}$ ($m=1,2,\cdots$).

3. If T is an irreducible unitary representation of G_1^{\sim} of the first kind, for any $f \in C_0^{\infty}(G_1)$, the linear operator $\int_{G_1} f(g) T(g, \sigma) dg$ is known to be of trace class. In the following we calculate the trace of this operator for each representation T. We use notations introduced in 2 without further comment.

PROPOSITION 15. (i) Notations being as above, for $f \in C_0^{\infty}(G_1)$, the trace of the linear operator

(15)
$$\int_{G} f(g) I_{\sigma} R^{(0,\rho)}(g) dg$$

on $\mathfrak{F}^{(0)}$ is given by $\int_{G_1} f(g) S^{(0,\rho)}(g) dg$, where $S^{(0,\rho)}$ is a function on G_1 given as follows:

$$S^{(0,\rho)}(g) = \begin{cases} \frac{t^{i\rho/2} + t^{-i\rho/2}}{|t - t^{-1}|}, & \text{if } g \text{ is } \sigma\text{-twistedly conjugate to } a_t \ (t > 0), \\ 0 & \text{otherwise.} \end{cases}$$

(ii) The trace of the linear operator $\int_{G_1} f(g) I_{\sigma} R_{\tau}(g) dg$ on \mathfrak{F}_{τ} is given by $\int_{G_1} f(g) S_{\tau}(g) dg$, where $S_{\tau}(g)$ is given by

$$S_{r}(g) = \begin{cases} \frac{t^{r/2} + t^{-r/2}}{|t - t^{-1}|}, & \text{if } g \text{ is } \sigma\text{-twistedly conjugate to } a_{t} \ (t > 0). \\ 0 & \text{otherwise.} \end{cases}$$

PROOF. (i) For $\varphi \in \mathfrak{P}^0$,

$$\left(\int_{G_1} f(g) I_{\sigma} R^{(0,\rho)}(g) dg \varphi\right)(u)$$

$$= \int_{G_1} f(g) t(u^{\sigma} g)^{i\rho-2} \varphi(k(u^{\sigma} g)) dg$$

$$= \int_{R_+ \times C \times PU(2)} f((u^{\sigma})^{-1} a_t n(z) v) t^{1-i\rho/2} \varphi(v) \frac{dt}{t} dz dv$$

$$= \int_{PU(2)} K(u, v) \varphi(v) dv,$$

where K(u, v) is a smooth function on $PU(2) \times PU(2)$ given by

$$K(u, v) = \int_{R_{+} \times C} f((u^{\sigma})^{-1} a_{t} n(z) v) t^{-i\rho/2+1} \frac{dt}{t} dz$$
.

Hence, the trace of the operator (15) is given by

$$\begin{split} \int_{PU(2)} &K(u, u) du = \int_{\mathcal{R}_+} t^{-i\rho/2} F_{f,\sigma}^1(a_t) \frac{dt}{t} & \text{(see (3))} \\ &= \int_{\mathcal{G}} f(g) S^{(0,\rho)}(g) dg & \text{(see Proposition 2)}. \end{split}$$

The second part of the proposition is proved in a similar manner.

For $z \in C$, put $\chi(z) = \exp 2\pi \sqrt{-1} \operatorname{Re} z$. For $f \in C_0^{\infty}(G_1)$ and $(x, y) \in C^2$, set

$$I_f(x, y) = \int_{G_1 \times T} f(g) \chi(t\{(a\bar{x} + c\bar{y})y - (b\bar{x} + d\bar{y})x\}) t^{-2m} dg dt$$

 $\left(g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, m = 1, 2, \cdots \right)$, where T is the unit circle and dt is the normalized Haar measure on T.

PROPOSITION 16. Notations being as above, the integral

$$\int_{\mathbf{c}\times\mathbf{c}} I_f(x, y) dx dy$$

is absolutely convergent and is equal to the trace of the linear operator $\frac{1}{2} \int_{\sigma_{c}} I_{\sigma}^{(2m)} R^{(2m,0)}(g) f(g) dg \text{ on } \mathfrak{H}^{2m}.$

PROOF. Set
$$c(s, m) = (-1)^m \frac{\pi^{-2s}}{2} \frac{\Gamma(s+m)}{\Gamma(1+m-s)}$$
. Then

$$\int_{T} \chi(tz) t^{-2m} dt = \frac{z^{2m} |z|^{-2m}}{\pi i} \int_{\text{Res}=a_0} c(s, m) |z|^{-2s} ds,$$

 $(-m < \sigma_0 < 0)$, the integral is absolutely convergent. Put (x, y) = r(0, 1)u $(r \ge 0, u \in SU(2))$. We denote by u' the image of u in $SU(2)/\pm 1$. We have

$$I_f(x, y) = \frac{1}{\pi i} \int_{\text{Re}s = \sigma_0} c(s, m) \left\{ \int_{PU(2)} F_f(v, u', s) r^{-4s} \times \Phi_{1-s}^{2m}(u'^{\sigma}v^{-1}) dv \right\} ds,$$

where we put

$$F_f(v, u', s) = \int_{R_+ \times C} f\left(v^{-1} \begin{pmatrix} 1 & z \\ & 1 \end{pmatrix} a_t u'\right) t^{-s} \frac{dt}{t} dz$$

and

$$\Phi_s^{2m}(u) = u_{21}^{2m} |u_{21}|^{-2m-2+2s}$$
.

Set

$$\Phi_f^{(2m)}(u', s) = \int_{PU(2)} F_f(v, u', s) \Phi_{1-s}^{2m}(u'^{\sigma}v^{-1}) dv$$
.

It follows from Lemma 13 that

$$\Phi_f^{(2m)}(u', s) = \sum_{\substack{n \ge m \\ n \ge |k|}} \int_{PU(2)} F_f(v, u', s) \overline{C_{m,k}^n(v)} dv C_{-m,k}^n(u'^\sigma) a_{m,n} (1-s),$$

where
$$a_{m,n}(s) = (-1)^{n+m} {n+m-1 \choose k=0} \frac{s-n+k}{s-m+k} \frac{1}{s+n}$$
.

It is now easy to see that for any polynomial P(s) in s, $|\Phi_f^{(2m)}(u',s)P(s)|$ is bounded, uniformly with respect to u', when s remains in the strip $\left\{s \in C; -1 < \operatorname{Re} s < \frac{3}{2}\right\}$. We have, for (x,y) = r(0,1)u,

$$I_f(x, y) = \frac{1}{\pi i} \int_{\text{Re}s = \sigma_0} c(s, m) \Phi_f^{(2m)}(u', s) r^{-4s} ds$$
.

Thus, the function $I_f(x, y)$ is integrable on $C \times C$ and

$$\begin{split} &\int_{c\times c} I_f(x,y) dx dy \\ &= \frac{2\pi^2}{\pi i} \int_0^\infty r^{3-4s} dr \Big[\int_{\text{Res}=\sigma_0} c(s,m) \Big\{ \int_{PU(2)} \Phi_f^{(2m)}(u',s) du' \Big\} ds \Big] \\ &= \frac{2\pi^2}{\pi i} \frac{2\pi i}{4} c(1,m) \int_{PU(2)} \Phi_f^{(2m)}(u',1) du' \\ &= \frac{1}{2} \operatorname{trace} \int_{G_1} I_\sigma^{(2m)} R^{(2m,0)}(g) f(g) dg \,. \end{split}$$

PROPOSITION 17. Assume that the support of $f \in C_0^{\infty}(G_1)$ is contained in the following set:

(16)
$$G'_{\sigma} = \{ g \in G_1; \operatorname{tr} g^{\sigma} g \neq \pm 2 \}.$$

Then

$$\int_{c \times c} I_f(x, y) dx dy = \frac{1}{2} \int_{G_1} f(g) S^{(2m,0)}(g) dg,$$

where

$$S^{(2m,0)}(g) = \begin{cases} -\frac{e^{mi\theta} - e^{-mi\theta}}{e^{i\theta} - e^{-i\theta}} & \text{if g is } \sigma\text{-twistedly conjugate to } k_{\theta}, \\ \frac{2t^{-m}}{t - t^{-1}} & \text{if g is } \sigma\text{-twistedly conjugate to } a_{t} \ (t > 1). \end{cases}$$

PROOF. It follows from Proposition 16 that

$$\int_{C\times C} I_f(x, y) dx dy$$

$$= \lim_{\varepsilon \downarrow 0} \int_{C\times C} \exp\left\{-\pi \varepsilon (|x|^2 + |y|^2)\right\} I_f(x, y) dx dy.$$

We note that for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G_1$,

$$\begin{split} \varepsilon(|x|^2 + |y|^2) - 2i \mathrm{Re} t &\{ (a\bar{x} + c\bar{y})y - (b\bar{x} + d\bar{y})x \} \\ &= (\varepsilon + ibt + i\bar{b}t^{-1})|x|^2 - i(at - \bar{d}t^{-1})\bar{x}y - i(\bar{a}t^{-1} - dt)x\bar{y} + \\ &+ (\varepsilon - ict - i\bar{c}t^{-1})|y|^2 \,. \end{split}$$

Changing the orders of integrations, we have

$$\begin{split} &\int_{c\times c} I_f(x,y) dx dy \\ &= \lim_{\varepsilon \downarrow 0} \int_G \int_T \frac{f(g) t^{-2m}}{\{\varepsilon^2 + i\varepsilon(bt + \bar{b}t^{-1} - ct - \bar{c}t^{-1}) + trg^{\sigma}g - t^2 - t^{-2}\}} dg dt \,. \end{split}$$

We note that the set of roots of the following equation in t is invariant under the transformation: $t \mapsto -(\bar{t})^{-1}$.

(17)
$$t^4 - i\varepsilon(\bar{b} - \bar{c})t^3 - (\varepsilon^2 + \operatorname{tr} g^{\sigma}g)t^2 - i\varepsilon(b - c)t + 1 = 0.$$

For $\varepsilon>0$, the above equation has no root on the unit circle. Denote by $\{\lambda_{\varepsilon}(g),\ \mu_{\varepsilon}(g),\ -\bar{\lambda}_{\varepsilon}^{-1}(g),\ -\bar{\mu}_{\varepsilon}^{-1}(g)\}\ (|\lambda_{g}(\varepsilon)|<1,\ |\mu_{g}(\varepsilon)|<1)$ the set of roots of the above equation (17). By the assumption, if g is in the support of f, the matrix $g^{\sigma}g$ has two different eigenvalues $\{e^{i\theta},\ e^{-i\theta}\}\ (\sin\theta \neq 0)$ or $\{\lambda,\ \lambda^{-1}\}\ (\lambda>1)$. In the former case, we may assume

$$\lim_{\varepsilon \downarrow 0} (\lambda_{\varepsilon}(g), \ \mu_{\varepsilon}(g)) = (e^{i\theta/2}, \ e^{-i\theta/2})$$

or

$$\lim_{\epsilon \to 0} (\lambda_{\epsilon}(g), \ \mu_{\epsilon}(g)) = (e^{i\theta/2}, \ -e^{-i\theta/2}).$$

In the latter case, we may assume that $\lim_{\epsilon \downarrow 0} (\lambda_{\epsilon}(g), \ \mu_{\epsilon}(g)) = (\sqrt{\lambda}^{-1}, -\sqrt{\lambda}^{-1})$. Since the support of f is a compact subset of (16), there exists a positive number η such that $\lambda_{\epsilon}(g) \neq \mu_{\epsilon}(g)$ if $0 < \epsilon \leq \eta$ and $f(g) \neq 0$. Thus, for $0 < \epsilon \leq \eta$, if $f(g) \neq 0$,

$$\begin{split} &\int_{T} \frac{t^{-2m}dt}{\{\varepsilon^{2}+i\varepsilon(bt+\bar{b}t^{-1}-ct-\bar{c}t^{-1})+\operatorname{tr}g^{\sigma}g-(t^{2}+t^{-2})\}} \\ &= -\frac{2\pi}{2\pi} \Big\{ \frac{\lambda_{\varepsilon}(g)^{2m+1}}{(\lambda_{\varepsilon}(g)+\bar{\lambda}_{\varepsilon}^{-1}(g))(\lambda_{\varepsilon}(g)-\mu_{\varepsilon}(g))(\lambda_{\varepsilon}(g)+\bar{\mu}_{\varepsilon}^{-1}(g))} \\ &\quad + \frac{\mu_{\varepsilon}(g)^{2m+1}}{(\mu_{\varepsilon}(g)-\lambda_{\varepsilon}(g))(\mu_{\varepsilon}(g)+\bar{\lambda}_{\varepsilon}^{-1}(g))(\mu_{\varepsilon}(g)+\bar{\mu}_{\varepsilon}^{-1}(g))} \Big\} \,. \end{split}$$

Thus,

$$I_f(x, y) = \frac{1}{2} \int_{G_1} f(g) S^{(2m,0)}(g) dg$$

under our assumption that the support of f is contained in the set (16). PROPOSITION 18. For $m=1, 2, \dots$, the trace of linear operator

$$\int_{\mathcal{G}_1} f(g) I_{\sigma}^{2m} R^{(2m,0)}(g) dg$$

on \mathfrak{H}^{2m} $(f \in C_0^{\infty}(G))$ is given by $\int_{G_1} f(g) S^{(2m,0)}(g) dg$.

PROOF. Set

$$T_{1}(f) = \operatorname{trace} \int_{G_{1}} f(g) I_{\sigma}^{2m} R^{(2m,0)}(g) dg$$
,

$$T_2(f) = \int_{G_1} f(g) S^{(2m,0)}(g) dg$$
.

Then, both T_1 and T_2 are σ -twistedly invariant distributions on G_1 (see 3, § 1). Moreover, by Proposition 16 and Proposition 17, the support of T_1-T_2 is contained in the set $S_{\sigma} = \{g \in G : \text{tr } g^{\sigma}g = \pm 2\}$. Let Ω be the Casimir operator on G_1 given by (10). It is well-known that $\Omega T_1 = 4m^2T_1$. We will show that $\Omega T_2 = 4m^2T_2$. By Proposition 2, we have

$$T_{2}(\Omega f) = \int_{1}^{\infty} \frac{(t-t^{-1})}{t} \frac{2t^{-m}}{t-t^{-1}} F_{\Omega f,\sigma}^{1}(t)dt$$
$$+ \frac{4}{2\pi} \int_{0}^{2\pi} \sin\theta \left(-\frac{\sin m\theta}{\sin\theta}\right) F_{\Omega f,\sigma}^{2}(\theta)d\theta.$$

By Proposition 6,

$$F_{\mathcal{Q}_{f,\sigma}}^{1}(a_t) = 4\left(t - \frac{d}{dt}\right)^2 F_{f,\sigma}^{1}(t)$$

and

$$F_{\,\mathbf{Q}_{f},\sigma}^{\,2}(k_{\theta}) = -4\,\frac{d^{2}}{d\theta^{2}}\,F_{\,f,\sigma}^{\,2}(\theta)\,. \label{eq:force_force}$$

Hence, in view of Proposition 1 (i),

$$2\int_{1}^{\infty} t^{-m} F_{\Omega f,\sigma}^{1}(t) \frac{dt}{t} = 8m \int_{1}^{\infty} t^{-m} \left(t \frac{t}{dt}\right) F_{f,\sigma}^{1}(t) \frac{dt}{t}$$
$$= 8(m^{2}) \int_{1}^{\infty} t^{-m} F_{f,\sigma}^{1}(t) - 8m \cdot 4 \delta_{\sigma}^{3}(f).$$

On the other hand, by (ii) of Proposition 1,

$$\begin{split} -\frac{2}{\pi} \int_0^{2\pi} \sin m\theta F_{\mathcal{Q}_{f,\sigma}}^2(\theta) d\theta &= -\frac{8m}{\pi} \int_0^{2\pi} \cos m\theta \frac{d}{d\theta} F_{f,\sigma}^2(\theta) d\theta \\ &= -\frac{8m}{\pi} (-2\pi - 2\pi) \delta_{\sigma}^2(f) - \frac{8m^2}{\pi} \int_0^{2\pi} \sin m\theta F_{f,\sigma}^2(\theta) d\theta \;. \end{split}$$

Thus, again by Proposition 2,

$$\begin{split} T_{2}(\Omega f) &= 8m^{2} \int_{1}^{\infty} t^{-m} F_{f,\sigma}^{1}(t) \frac{dt}{t} - \frac{8m^{2}}{\pi} \int_{0}^{2\pi} \sin m\theta F_{f,\sigma}^{2}(\theta) d\theta \\ &= 4m^{2} T_{2}(f) \,. \end{split}$$

Hence, T_1-T_2 is a σ -twistedly G-invariant distribution on G_1 with support concentrated to the set S_{σ} and satisfies the differential equation $\Omega(T_1-T_2)=4m^2(T_1-T_2)$. Thus, by Corollary to Lemma 12, $T_1=T_2$.

4. For an $f \in C_0^{\infty}(G_1)$, set

$$S_n(f) = \operatorname{trace} \int_{G_1} f(g) I_{\sigma}^{(2n)} R^{(2n,0)}(g) dg \qquad (n=1, 2, \dots)$$

and

$$T_{\lambda}(f) = \operatorname{trace} \int_{\mathcal{G}_{\mathbf{1}}} f(g) I_{\sigma} R^{(2\lambda i,0)}(g) dg$$
.

The following formula is quite analogous to the Plancherel formula for $SL(2, \mathbf{R})$.

PROPOSITION 19. Notations being as above, we have

$$4\pi\delta_{\sigma}^{1}(f) = \sum_{n=1}^{\infty} nS_{n}(f) + \frac{1}{2} \int_{-\infty}^{\infty} \lambda \frac{ch \,\pi\lambda}{sh \,\pi\lambda} \, T_{\lambda}(f) d\lambda \qquad \text{(cf. (5))}.$$

PROOF. It follows from Proposition 18, Proposition 17 and Proposition 2 that

$$\begin{split} \sum_{n=1}^{N} n S_n(f) &= -\frac{4}{2\pi} \int_0^{2\pi} \sum_{n=1}^{N} n \sin n\theta F_{f,\sigma}^2(\theta) d\theta + 2 \int_1^{\infty} \sum_{n=1}^{N} n t^{-n} F_{f,\sigma}^1(t) \frac{dt}{t} \\ &= \frac{1}{\pi} \int_0^{2\pi} F_{f,\sigma}^2(\theta) \left\{ -\frac{d}{d\theta} \frac{\sin\left(N + \frac{1}{2}\right)\theta}{\sin\frac{\theta}{2}} \right\} d\theta \\ &- \int_1^{\infty} F_{f,\sigma}^1(t) \frac{d}{dt} \frac{1 + t^{-1} - 2t^{-N-1}}{1 - t^{-1}} dt \,. \end{split}$$

Proposition 1 suggests that

$$\begin{split} &\int_{0}^{2\pi} F_{f,\sigma}^{2}(\theta) \left\{ \frac{d}{d\theta} \frac{\sin\left(N + \frac{1}{2}\right)\theta}{\sin\frac{\theta}{2}} \right\} d\theta \\ &= -4\pi (2N + 1)\delta_{\sigma}^{3}(f) - \int_{0}^{2\pi} \left(\frac{d}{d\theta} F_{f,\sigma}^{2}(\theta)\right) \frac{\sin\left(N + \frac{1}{2}\right)\theta}{\sin\frac{\theta}{2}} d\theta \end{split}$$

and

$$\int_{1}^{\infty} F_{f,\sigma}^{1}(t) \frac{d}{dt} \frac{1+t^{-1}-2t^{-N-1}}{1-t^{-1}} dt$$

$$= -(2N+1)4\delta_{\sigma}^{3}(f) - \int_{1}^{\infty} \left(\frac{d}{dt} F_{f,\sigma}^{1}(t)\right) \frac{1+t^{-1}-2t^{-N-1}}{1-t^{-1}} dt.$$

Thus, we have

$$\sum_{n=1}^{N} n S_n(f) = -\frac{1}{\pi} \int_0^{2\pi} \frac{\sin\left(N + \frac{1}{2}\right)\theta}{\sin\frac{\theta}{2}} \frac{d}{d\theta} F_{f,\sigma}^2(\theta) d\theta$$
$$+ \int_1^{\infty} \frac{1 + t^{-1} - 2t^{-N-1}}{1 - t^{-1}} \frac{d}{dt} F_{f,\sigma}^1(t) dt.$$

It follows from Proposition 1 that

$$\sum_{n=1}^{\infty} n S_n(f) = 4\pi \delta_{\sigma}^{1}(f) + \int_{1}^{\infty} \frac{1+t^{-1}}{1-t^{-1}} \frac{d}{dt} F_{f,\sigma}^{1}(t) dt.$$

In view of Proposition 15, we have

$$T_{\lambda}(f) = \int_{0}^{\infty} F_{f,\sigma}^{1}(t) t^{i\lambda} \frac{dt}{t}$$

Hence,

$$\int_{1}^{\infty} \frac{1+t^{-1}}{1-t^{-1}} \frac{d}{dt} F_{f,\sigma}^{1}(t) dt = -\frac{1}{2} \int_{-\infty}^{\infty} \lambda \frac{ch \pi \lambda}{sh \pi \lambda} T_{\lambda}(f) d\lambda.$$

Thus we get the Proposition.

5. Set $G=GL(2,\mathbf{C})$ and let \widetilde{G} be the semi-direct product of G with $\langle \sigma \rangle$ (for details, see the introduction). We are going to construct (up to equivalence) all the irreducible unitary representations of the first kind of \widetilde{G} . In the following we use notations in § 2, 2. without further comment. Let $L^2(\mathbf{C})$ be the Hilbert space of square-integrable functions on \mathbf{C} . We denote by $X(\mathbf{R}^\times)$ the character group of \mathbf{R}^\times . For $(\mu_1, \mu_2) \in X(\mathbf{R}^\times) \times X(\mathbf{R}^\times)$, let $H_{\pm}^{(\mu_1, \mu_2)}$ be the representation of \widetilde{G} on $L^2(\mathbf{C})$ given by the following formula:

$$\begin{split} &\Pi_{\pm}^{(\mu_{1},\mu_{2})}(g,1)f(z) \\ &= f\Big(\frac{az+c}{bz+d}\Big)\mu_{1}\Big(\Big|\frac{ad-bc}{bz+d}\Big|^{2}\Big)\mu_{2}(|bz+d|^{2}) - \frac{|ad-bc|}{|bz+d|^{2}} - \Big(g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G\Big), \\ &\Pi_{\pm}^{(\mu_{1},\mu_{2})}(g,\sigma) = \pm I_{\sigma}\Pi_{\pm}^{(\mu_{1},\mu_{2})}(g,1). \end{split}$$

where J_{σ} is a unitary operator on $L^2(\mathbb{C})$ given by $(J_{\sigma}f)(z) = f(z^{\sigma})$. Denote by $T_{\pm}^{(\mu_1,\mu_2)}$ the representation of \widetilde{G} given by

$$T_{\pm}^{(\mu_1,\mu_2)}(g,\lambda) = (\mu_1\mu_2)^{-1}(|\det g|) \Pi_{\pm}^{(\mu_1,\mu_2)}(g,\lambda) \qquad (g \in G, \lambda \in \langle \sigma \rangle).$$

The representation $T_{\pm}^{(\mu_1,\mu_2)}$ is naturally regarded as a representation of \tilde{G}_1 . Take a real number ρ such that $\mu_1^{-1}\mu_2(t)=(t)^{i\rho}$ (t>0). Denote by $M_{i\rho}$ a linear

mapping from \mathfrak{F}^0 into $L^2(\mathbf{C})$ given by the following formula:

$$M_{i\rho}(F)(z) = \frac{1}{\sqrt{\pi}} (1 + |z|^2)^{i\rho-1} F(u(z)) \quad (F \in \mathfrak{F}^0),$$

where
$$u(z) = \begin{pmatrix} \bar{\alpha} & -\bar{\beta} \\ \beta & \alpha \end{pmatrix}$$
 $\left(\alpha = \frac{1}{\sqrt{1+|z|^2}}, \beta = \frac{z}{\sqrt{1+|z|^2}}\right)$.

It is easy to see that $M_{i\rho}$ is an isometric linear mapping from \mathfrak{G}^0 onto $L^2(C)$ such that $M_{i\rho}(I_{\sigma})=J_{\sigma}M_{i\rho}$ and

$$M_{io}T^{(0,2\rho)}(g) = T^{(\mu_1,\mu_2)}(g)M_{io} \quad (\forall g \in \widetilde{G}_1).$$

For a positive integer m, denote by $M^{(m)}$ the linear mapping from \mathfrak{G}^{2m} into $L^2(\mathbb{C})$ given by the following formula:

$$M^{(m)}F(z) = \frac{1}{\sqrt{\pi}} (1+|z|^2)^{-1}F(u(z)) \qquad (F \in \mathfrak{F}^{2m}).$$

Let $J_{\sigma}^{(2m)}$ be the linear operator on $L^2(C)$ given by the following:

$$J_{\sigma}^{(2m)}f(z) = \frac{(-1)^m m}{\pi} \lim_{s \to +0} \int_C |z^{\sigma} - w|^{-2m-2+s} (z^{\sigma} - w)^{2m} f(w) dw.$$

It is easy to see that $M^{(m)}$ is an isometric linear mapping from \mathfrak{P}^{2m} onto $L^2(\mathbb{C})$ and that $J_{\sigma}^{(2m)}M^{(m)}=M^{(2m)}I_{\sigma}^{(2m)}$ (cf. (14)).

Hence, $J_{\sigma}^{(2m)}$ is a unitary operator of order 2 on $L^2(C)$. For a $\mu \in X(\mathbf{R}^{\times})$ and a positive integer m, let $\Pi_{m\pm}^{\mu}$ be the representation of \widetilde{G} on $L^2(C)$ given by the following formula:

$$\prod_{m=1}^{\mu}(g,1)f(z)$$

$$=\mu(|ad-bc|^2)\frac{(ad-bc)^m}{|ad-bc|^{m-1}}\frac{|bz+d|^{2m-2}}{(bz+d)^{2m}}f(\frac{az+c}{bz+d}) \quad (g=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G),$$

$$\Pi_{m\pm}^{\mu}(g,\sigma) = \pm J_{\sigma}^{(2m)} \Pi_{m\pm}^{\mu}(g,1)$$
.

Denote by $T^{\mu}_{m\pm}$ the representation of \widetilde{G} given by

$$T^{\mu}_{m\pm}(g,\lambda) = \mu^{-1}(|\det g|^2) \Pi^{\mu}_{m\pm}(g,\lambda) \qquad (g \in G, \lambda \in \langle \sigma \rangle).$$

The representation $T_{m\pm}^{\mu}$ is naturally regarded as a representation of the group \widetilde{G}_{1} . Moreover, it is easy to see that

$$T^{\mu}_{m\pm}(g)M^{(m)} = M^{(m)}T^{(2m,0)}_{\pm}(g) \qquad (\forall g \in \widetilde{G}_1).$$

For each $\tau(0 < \tau < 1)$, denote by H_{τ} the space of measurable functions on C such that

$$\int_{C^2} |z_1 - z_2|^{2(\tau - 1)} f(z_1) \overline{f(z_2)} dz_1 dz_2 < \infty.$$

Then the space H_{τ} is a Hilbert space with the inner product

$$(f_1, f_2) = \int_{C^2} |z_1 - z_2|^{2(\tau - 1)} f_1(z_1) \overline{f_2(z_2)} dz_1 dz_2.$$

For a $\mu \in X(\mathbf{R}^{\times})$ and a τ (0< τ <1), denote by $\Pi_{\tau^{\pm}}^{\mu}$ the representation of \widetilde{G} on H_{τ} given by the following formula:

$$\Pi^{\mu}_{\tau\pm}(g,1)f(z)$$

$$=\mu(|ad-bc|^2)\left|\frac{ad-bc}{(bz+d)^2}\right|^{r+1}f\left(\frac{az+c}{bz+d}\right) \qquad \left(g=\begin{pmatrix}a&b\\c&d\end{pmatrix}\in G\right),$$

$$\Pi^{\mu}_{\tau\pm}(g,\sigma) = \pm J_{\sigma}\Pi^{\mu}_{\tau\pm}(g,1)$$
.

Set

$$\Pi_{\tau_{\pm}}^{\mu}(g,\lambda) = \mu(|\det g|^2) T_{\tau_{\pm}}^{\mu}(g,\lambda) \qquad (g \in G, \lambda \in \langle \sigma \rangle).$$

Then $T^{\mu}_{\tau\pm}$ is naturally regarded as a representation of \widetilde{G}_1 . Let L_{τ} be a linear mapping from \mathfrak{H}_{τ} into H_{τ} given by

$$L_{\tau}F(z) = \frac{1}{\sqrt{\pi}}(1+|z|^2)^{-1-\tau}F(u(z)) \qquad (F \in \mathfrak{F}_{2\tau}).$$

Then it is easy to see that L_{τ} is an isometric linear mapping from $\mathfrak{F}_{2\tau}$ onto H_{τ} which satisfies

$$L_{ au}T_{2 au\pm}(g)=T^{\mu}_{ au\pm}(g)L_{ au} \qquad (orall g\in \widetilde{G}_{ au})$$
 .

The next proposition is now an easy consequence of Prop. 14, Prop. 15, Prop. 18 and the classification theory of irreducible unitary representations of $GL(2, \mathbb{C})$.

Proposition 20. Let notations be as above,

- (i) Any infinite dimensional irreducible unitary representation T of \tilde{G} of the first kind is equivalent to a suitable $\Pi_{\pm}^{(\mu_1,\mu_2)}((\mu_1,\mu_2)\in X(\mathbf{R}^{\times})^2)$ or to $\Pi_{m\pm}^{\mu}(\mu\in X(\mathbf{R}^{\times}), m=1, 2, \cdots)$ or to $\Pi_{\tau\pm}^{\mu}(\mu\in X(\mathbf{R}^{\times}), 0<\tau<1)$.
- (ii) For each $F \in C_0^{\infty}(G)$, the trace of the operator $\int_{\mathbf{g}} F(g)T(g,\sigma)dg$ is equal to $\int_{\mathbf{g}} F(g) \operatorname{trace} T(g,\sigma)dg$, where $\operatorname{trace} T(.,\sigma)$ is a locally integrable function on G given by the following formulas:
 - a) If $T = \prod_{+}^{(\mu_1, \mu_2)}$.

trace
$$T(g, \sigma) = \begin{cases} \pm |\det g| \frac{\mu_1(\lambda_1)\mu_2(\lambda_2) + \mu_1(\lambda_2)\mu_2(\lambda_1)}{|\lambda_1 - \lambda_2|}, & \text{if } gg^{\sigma} \text{ has} \\ & \text{distinct positive eigenvalues } \lambda_1 \text{ and } \lambda_2 \\ 0, & \text{otherwise.} \end{cases}$$

b) If
$$T = \prod_{\tau \pm}^{\mu}$$

$$\operatorname{trace} T(g, \sigma) = \begin{cases} \pm \mu(|\det g|^2) |\det g|^{1-\tau} \frac{\lambda_1^{\tau} + \lambda_2^{\tau}}{|\lambda_1 - \lambda_2|}, & \text{if } gg^{\sigma} \text{ has two} \\ & \text{distinct positive eigenvalues } \lambda_1 \text{ and } \lambda_2, \\ 0, & \text{otherwise.} \end{cases}$$

c) If
$$T = \prod_{m,\pm}^{\mu}$$
,

$$\operatorname{trace} T(g,\sigma) = \left\{ \begin{array}{ll} \pm \mu(|\det g|^2) |\det g|^{1-m} \frac{2\lambda_1^m}{|\lambda_2 - \lambda_1|}, & \text{if } gg^{\sigma} \text{ has two} \\ & \text{distinct positive eigenvalues } \lambda_1 \text{ and } \lambda_2 \ (\lambda_1 < \lambda_2) \\ & \pm \mu(|\det g|^2) \Big(-\frac{\sin m\theta}{\sin \theta} \Big), & \text{if } gg^{\sigma} \text{ has complex} \\ & \text{eigenvalues } re^{i\theta}, \ re^{-i\theta}. \end{array} \right.$$

6. Let us recall a description of irreducible unitary representations of $G_R = GL(2, \mathbf{R})$. For $(\mu_1, \mu_2) \in X(\mathbf{R}^{\times})^2$, $r^{(\mu, \mu_2)}$ is a representation of G_R on $L^2(\mathbf{R})$ (=the Hilbert space of square integrable functions on \mathbf{R}) given by

$$r^{(\mu_1,\mu_2)}(g)f(x)$$

$$=\mu_1\left(\frac{ad-bc}{bx+d}\right)\mu_2(bx+d)\frac{|ad-bc|^{1/2}}{|bx+d|}f\left(\frac{ax+c}{bx+d}\right)\qquad \left(g=\begin{pmatrix}a&b\\c&d\end{pmatrix}\in G_R\right).$$

For a τ (0< τ <1), let h_{τ} be the space of measurable functions on **R** such that

$$\int_{\mathbf{R}_{2}\times\mathbf{R}}|x_{1}-x_{2}|^{\tau-1}f(x_{1})\overline{f(x_{2})}dx_{1}dx_{2}<\infty.$$

Then h_{τ} is a Hilbert space with the inner product

$$(f_1, f_2) = \int_{R \times R} |x_1 - x_2|^{\tau - 1} f_1(x_1) \overline{f_2(x_2)} dx_1 dx_2$$
.

For a $\mu \in X(\mathbf{R}^*)$ and a τ (0< τ <1), the representation r_{τ}^{μ} of $G_{\mathbf{R}}$ on h_{τ} is given by

$$r_{\tau}^{\mu}(g)f(x) = \mu(ad-bc)\left|\frac{ad-bc}{(bx+d)^2}\right|^{(\tau+1)/2}f\left(\frac{ax+c}{bx+d}\right) \qquad \left(g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G_{\mathbf{R}}\right).$$

For a positive integer m, denote by \mathcal{H}_m the space of holomorphic functions on C-R such that

$$\int_{\mathcal{S}} |f(z)|^2 |\operatorname{Im} z|^{m-1} dz < \infty.$$

For $\mu \in X(\mathbb{R}^{\times})$ and a positive integer m, the representation $r^{\mu,m}$ of $G_{\mathbb{R}}$ on \mathcal{H}_m is given by

$$r^{\mu,m}(g)f(z) = \mu(ad-bc)|ad-bc|^{(m+1)/2}f(\frac{az+c}{bz+d})(bz+d)^{-m-1}$$
.

The next theorem is now an immediate consequence of Prop. 20 and the

well-known character formulas for irreducible unitary representations of $GL(2, \mathbf{R})$.

We employ notations in the introduction, § 2, 4. and in § 2, 5.

THEOREM. For each irreducible unitary representation T of \tilde{G} of the first kind, there exists an irreducible unitary representation r of G_R such that

trace
$$T(g, \sigma) = \varepsilon$$
 trace $r(gg^{\sigma})$ $(\forall g \in GL(2, C))$,

where $\varepsilon = \pm 1$ does not depend upon g.

More precisely, for $T=\Pi_{\pm}^{(\mu_1,\mu_2)}$, one may put $\varepsilon=\pm 1$, $r=r^{(\mu_1,\mu_2)}$, for $T=\Pi_{m\pm}^{\mu}$, one may put $\varepsilon=\pm 1$, $r=r^{\mu,m}$ and for $T=\Pi_{r\pm}^{(\mu)}$ one may put $\varepsilon=\pm 1$, $r=r^{\mu}$.

References

- [1] Harish-Chandra, Plancherel formula for the 2×2 real unimodular group, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 337-342.
- [2] Harish-Chandra, The characters of semi-simple Lie groups, Trans. Amer. Math. Soc., 83 (1956), 98-163.
- [3] Naimark, Linear Representation of the Lorentz group (Russian), Moscow, 1958.
- [4] H. Saito, Automorphic forms and algebraic extensions of number fields, Lectures in Math. 8, Dept. of Math. Kyoto University.
- [5] T. Shintani, Two remarks on irreducible characters of finite general linear groups, J. Math. Soc. Japan, 28 (1976), 396-414.

Takuro SHINTANI
Department of Mathematics
Faculty of Science
University of Tokyo
Hongo, Bunkyo-ku
Tokyo, Japan