On compact complex affine manifolds

By Yusuke SAKANE

(Received Feb. 12, 1976)

Introduction.

In this paper we study compact complex affine manifolds. Let $A(n, \mathbb{C})$ be the group of the affine transformations on \mathbb{C}^n and let Γ be a subgroup of $A(n, \mathbb{C})$ such that 1) Γ acts on \mathbb{C}^n properly discontinuously and freely 2) \mathbb{C}^n/Γ is compact. A compact complex manifold \mathbb{C}^n/Γ is called a compact complex affine manifold. For n=2, such manifolds have been classified by Vitter [6], Fillmore and Scheuneman [2] and Suwa [5]. The purpose of this paper is to study the complex manifold \mathbb{C}^n/Γ under certain conditions. Put

$$N(n, \mathbf{C}) = \left\{ A \in A(n, \mathbf{C}) \middle| A = \begin{pmatrix} a & \alpha \\ 0 & 1 \end{pmatrix}, a = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}, \alpha \in \mathbf{C}^n \right\}.$$

In section 1 we show that if Γ is contained in N(n,C), then every non-zero holomorphic vector field on \mathbb{C}^n/Γ has no zero point and the Lie algebra \mathfrak{a} of all holomorphic vector fields on \mathbb{C}^n/Γ is solvable and of dimension $\leq n$. In section 2 we study the case when Γ is contained in N(n,C) and the Lie algebra \mathfrak{a} is of n-dimension. In this case we show that there exist a simply connected complex nilpotent Lie subgroup G of N(n,C) which contains Γ and a biholomorphic map $\phi: \mathbb{C}^n \to G$ such that $\phi(\gamma(z)) = \gamma \phi(z)$ for any $\gamma \in \Gamma$ and any $z \in \mathbb{C}^n$. In particular, we see that there is a biholomorphic map $\phi: \mathbb{C}^n/\Gamma \to \Gamma \setminus G$. In section 3 we show that if Γ is contained in N(n,C) and \mathbb{C}^n/Γ has a Kähler metric, then \mathbb{C}^n/Γ is biholomorphic to a complex torus. In section 4 we consider the case when Γ is an abelian subgroup of A(n,C) and prove that \mathbb{C}^n/Γ is biholomorphic to a complex torus.

The auther would like to express his thanks to Professors Y. Matsushima, S. Murakami and H. Ozeki for helpful discussions.

§ 1. Preliminaries.

Let A(n, C) be the group of all affine transformations on C^n . The group A(n, C) is represented by the group of all matrices of the form $A = \begin{pmatrix} a & \alpha \\ 0 & 1 \end{pmatrix}$ where $a = (a_{ij}) \in GL(n, C)$ and $\alpha = (\alpha_i) \in C^n$ is a column vector. Let N(n, C)

denote the subgroup of all unipotent elements:

$$N(n, \mathbf{C}) = \left\{ A \in A(n, \mathbf{C}) \middle| A = \begin{pmatrix} a & \alpha \\ 0 & 1 \end{pmatrix}, \ a = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \right\}.$$

Let Γ be a subgroup of $N(n, \mathbb{C})$ such that 1) the action of Γ on \mathbb{C}^n is properly discontinuous 2) \mathbb{C}^n/Γ is compact. Since $N(n, \mathbb{C})$ has no torsion, Γ acts freely on \mathbb{C}^n , so that \mathbb{C}^n/Γ is a compact complex manifold.

Note that Γ is finitely generated, since the fundamental group $\pi_1(\mathbb{C}^n/\Gamma)$ of \mathbb{C}^n/Γ is isomorphic to Γ and \mathbb{C}^n/Γ is compact.

Let M be a connected compact complex manifold and $\operatorname{Aut}(M)$ denote the group of all holomorphic automorphisms of M. Then $\operatorname{Aut}(M)$ is a complex Lie group and the Lie algebra $\mathfrak a$ of $\operatorname{Aut}(M)$ can be identified with the Lie algebra of all holomorphic vector fields on M.

PROPOSITION 1.1. Every non-zero holomorphic vector field on \mathbb{C}^n/Γ is non-vanishing.

PROOF. Let $\pi: C^n \to C^n/\Gamma$ be the canonical map. Note that π is the covering map. Take a non-zero holomorphic vector field X on C^n/Γ . Let Y be the lift of X on C^n , that is, the holomorphic vector field Y on C^n such that $\pi_*Y=X$. Then we have $\gamma_*Y=Y$ for any $\gamma\in\Gamma$. Conversely a holomorphic vector field Y on C^n which satisfies $\gamma_*Y=Y$ for any $\gamma\in\Gamma$ defines a holomorphic vector field X on C^n/Γ such that $\pi_*Y=X$.

Let (z_1, \dots, z_n) be the canonical coordinates on \mathbb{C}^n . The vector field Y can be written uniquely in the form

$$Y = \sum_{i=1}^{n} f_{i} \frac{\partial}{\partial z_{i}}$$

where f_j $(j=1, \dots, n)$ are holomorphic functions on \mathbb{C}^n . We note that

for $\gamma \in \Gamma$, where

$$\gamma = \begin{bmatrix}
1 & a_{12}(\gamma) & \cdots & a_{1n}(\gamma) & \alpha_{1}(\gamma) \\
& 1 & a_{23}(\gamma) & \cdots & a_{2n}(\gamma) & a_{2}(\gamma) \\
& \ddots & \ddots & \vdots & \vdots \\
& 1 & a_{n-1n}(\gamma) & \alpha_{n-1}(\gamma) \\
& & 1 & \alpha_{n}(\gamma) \\
& & & 1
\end{bmatrix}.$$

Since $\gamma_*Y=Y$, we have

(1.2)
$$\sum_{j=1}^{n} f_{j} \gamma_{*} \frac{\partial}{\partial z_{j}} = \sum_{j=1}^{n} (f_{j} \circ \gamma) \frac{\partial}{\partial z_{j}}$$

where $f_j \circ \gamma$ denotes a holomorphic function on \mathbb{C}^n defined by $(f_j \circ \gamma)(z) = f_j(\gamma(z))$. By (1.1) and (1.2), $\gamma_*Y=Y$ is equivalent to

(1.3)
$$\begin{cases} f_{1} \circ \gamma = f_{1} + a_{12}(\gamma) f_{2} + \cdots + a_{1n}(\gamma) f_{n} \\ f_{2} \circ \gamma = f_{2} + a_{23}(\gamma) f_{3} + \cdots + a_{2n}(\gamma) f_{n} \\ \vdots \\ f_{n-1} \circ \gamma = f_{n-1} + a_{n-1n}(\gamma) f_{n} \\ f_{n} \circ \gamma = f_{n} \end{cases}$$

Since f_n is a holomorphic function on C^n and $f_n \circ \gamma = f_n$ for $\gamma \in \Gamma$, f_n defines a holomorphic function on a compact complex manifold C^n/Γ , so that f_n is a constant function. If the constant f_n is not zero, the vector field $Y = \sum_{j=1}^{n-1} f_j \frac{\partial}{\partial z_j} + f_n \frac{\partial}{\partial z_n}$ has no zero point, so that X has no zero point. If the constant f_n is zero, we have $f_{n-1} \circ \gamma = f_{n-1}$ for any $\gamma \in \Gamma$, so that f_{n-1} is a constant function. If the constant f_{n-1} is not zero, the vector field $Y = \sum_{j=1}^{n-2} f_j \frac{\partial}{\partial z_j} + f_{n-1} - \frac{\partial}{\partial z_{n-1}}$ has no zero point. Similarly if $f_n = f_{n-1} = \cdots = f_{j_0+1} = 0$ and $f_{j_0} \neq 0$, $f_{j_0} \circ \gamma = f_{j_0}$ for any $\gamma \in \Gamma$ by (1.3), so that f_{j_0} is a constant function and Y can be written as

$$Y = \sum_{j < j_0} f_j \frac{\partial}{\partial z_j} + f_{j_0} \frac{\partial}{\partial z_{j_0}}$$

where f_{j_0} is a non-zero constant. Therefore Y has no zero point, so that X has no zero point.

REMARK 1. The proof shows that if $Y = \sum_{j=1}^{j_0} f_j \frac{\partial}{\partial z_j}$ with $f_{j_0} \neq 0$, then f_{j_0} onstant is constant.

Corollary 1.

$$1 \leq \dim_{\mathbf{C}} \operatorname{Aut}(\mathbf{C}^n/\Gamma) \leq n$$
.

PROOF. Since the holomorphic vector field $\frac{\partial}{\partial z_1}$ on C^n satisfies $\gamma_* \frac{\partial}{\partial z_1}$ = $\frac{\partial}{\partial z_1}$ for any $\gamma \in \Gamma$, $1 \le \dim_C \mathfrak{a} = \dim_C \operatorname{Aut}(C^n/\Gamma)$. Let $T_x(C^n/\Gamma)$ denote the holomorphic tangent space at $x \in C^n/\Gamma$, and consider the linear map $E_x : \mathfrak{a} \to \mathbb{R}$ $T_x(\mathbb{C}^n/\Gamma)$ for $x \in \mathbb{C}^n/\Gamma$ defined by $E_x(X) = X_x$ for $X \in \mathfrak{a}$. Proposition 1.1 shows E_x is injective. Hence, $\dim_{\mathcal{C}} \mathfrak{a} \leq \dim_{\mathcal{C}} T_x(\mathcal{C}^n/\Gamma) = n$.

A complex manifold M of dimension n is called parallelisable if there exist n holomorphic vector fields on M which are linearly independent at every point of M.

COROLLARY 2. A compact complex manifold C^n/Γ is parallelisable if and only if $\dim_{\mathbf{C}} \operatorname{Aut}(\mathbf{C}^n/\Gamma) = n$.

PROOF. Obvious from the proof of Corollary 1.

PROPOSITION 1.2. The Lie algebra $\mathfrak a$ of all holomorphic vector fields on $\mathbb C^n/\Gamma$ is solvable.

PROOF. We identify a holomorphic vector field on \mathbb{C}^n/Γ with the corresponding vector field on \mathbb{C}^n . Let (z_1, \dots, z_n) be the canonical coordinates on \mathbb{C}^n . Define the length l(X) of a holomorphic vector field X on \mathbb{C}^n/Γ by

$$l(X) = \begin{cases} \operatorname{Max} \left\{ j \mid X = \sum_{j=1}^{n} f_{j} \frac{\partial}{\partial z_{j}}, f_{j} \neq 0 \right\} & \text{for } X \neq 0 \\ 0 & \text{for } X = 0. \end{cases}$$

Let B be a subset of \mathfrak{a} . Define the length l(B) of B by $l(B)=\operatorname{Max}\{l(X) | X \in B\}$. Let [B, B] denote the subset defined by

$$[B,B] = \{ \sum_{\text{finite sum}} a_{kl} [X_k,X_l] | a_{kl} \in C \text{ and } X_k, X_l \in B \} .$$

We claim that, for a subset $B \neq (0)$,

$$l([B, B]) \leq l(B) - 1$$
.

Take two elements $0 \neq X$, Y of B. Put $j_0 = l(X)$ and $i_0 = l(Y)$. Then

$$X = \sum_{j < j_0} f_j \frac{\partial}{\partial z_j} + f_{j_0} \frac{\partial}{\partial z_{j_0}}$$
$$Y = \sum_{i < i_0} g_i \frac{\partial}{\partial z_i} + g_{i_0} \frac{\partial}{\partial z_{i_0}}$$

where f_{i_0} and g_{i_0} are non-zero constants.

$$\begin{split} [X, Y] &= \sum_{l} \left(\sum_{k} \left(f_{k} \frac{\partial g_{l}}{\partial z_{k}} - g_{k} \frac{\partial f_{l}}{\partial z_{k}} \right) \right) \frac{\partial}{\partial z_{l}} \\ &= \sum_{l \leq \text{Max}} \left(\sum_{k} \left(f_{k} \frac{\partial g_{l}}{\partial z_{k}} - g_{k} \frac{\partial f_{l}}{\partial z_{k}} \right) \right) \frac{\partial}{\partial z_{l}}. \end{split}$$

Thus $l([X, Y] \leq \max\{l(X), l(Y)\} - 1$ for $X, Y \in B$. Obviously $l(X+Y) \leq \max\{l(X), l(Y)\}$. Therefore $l([B, B]) \leq l(B) - 1$.

Define $D_k(\mathfrak{a})$ inductively by $D_0(\mathfrak{a}) = \mathfrak{a}$, $D_k(\mathfrak{a}) = [D_{k-1}(\mathfrak{a}), D_{k-1}(\mathfrak{a})]$. Then we have $l(D_k(\mathfrak{a})) \leq l(D_{k-1}(\mathfrak{a})) - 1 \leq \cdots \leq l(\mathfrak{a}) - k \leq n - k$ for $k = 0, 1, 2, \cdots$. Hence, $l(D_n(\mathfrak{a})) = 0$, that is, $D_n(\mathfrak{a}) = (0)$.

By the same way, we can study holomorphic p-forms on \mathbb{C}^n/Γ . Let $H^{p,0}(\mathbb{C}^n/\Gamma)$ be the vector space of all holomorphic p-forms on \mathbb{C}^n/Γ . Let $h^{p,0}$ denote the dimension $\dim_{\mathbb{C}} H^{p,0}(\mathbb{C}^n/\Gamma)$.

PROPOSITION 1.3. Let θ be a holomorphic p-form on \mathbb{C}^n/Γ . If θ is non-zero, θ has no zero point, that is, $\theta_x \neq 0$ for any $x \in \mathbb{C}^n/\Gamma$.

PROOF. Let $\pi: \mathbb{C}^n \to \mathbb{C}^n/\Gamma$ be the canonical map. Put $\eta = \pi^*\theta$. Then $\gamma^*\eta = \eta$ for any $\gamma \in \Gamma$. Let (z_1, \dots, z_n) be a canonical coordinate on \mathbb{C}^n . η can be

written uniquely as $\eta = \sum_{\mathbf{J}} f_J dz_J$ where $J = (j_1, \dots, j_p)$ $(1 \leq j_1 < \dots < j_p \leq n)$, $dz_J = dz_{j_1} \wedge \dots \wedge dz_{j_p}$ and $f_J = f_{j_1 \dots j_p}$ are holomorphic function on \mathbb{C}^n .

Define C_p by $C_p = \{J = (j_1, \dots, j_p) \in \mathbb{N}^p | 1 \le j_1 < \dots < j_p \le n \}$. Let us introduce a linear order < on C_p by I < J for I, $J \in C_p$, $I \ne J$, $I = (i_1, \dots, i_p)$, $J = (j_1, \dots, j_p)$ if $i_1 = j_1, \dots, i_{k-1} = j_{k-1}, i_k < j_k$ for some k $(1 \le k \le p)$.

We have $\gamma^*dz_J=dz_J+\sum_{I\subseteq J}P_{JI}(\gamma)dz_I$ for $\gamma\in\Gamma$, where $P_{JI}(\gamma)$ is a polynomial of $a_{ij}(\gamma)$. We then have $\gamma^*\eta=\eta$ if and only if

$$(1.4) f_K \circ \gamma + \sum_{J \leq K} P_{JK}(f_J \circ \gamma) = f_K \text{for all } K \in C_p.$$

In particular, $f_{I_p} \circ \gamma = f_{I_p}$ for any $\gamma \in \Gamma$, where $I_p = (1, 2, \dots, p) \in C_p$, so that f_{I_p} is a constant function. If $f_J = 0$ for any $J \subseteq J_0$, then $f_{J_0} \circ \gamma = f_{J_0}$ for any $\gamma \in \Gamma$, so that f_{J_0} is constant. Thus, for a non-zero form η , there is a $J_0 \in C_p$ such that

$$\eta = \sum_{J \supseteq J_0} f_J dz_J + f_{J_0} dz_{J_0}$$

where f_{J_0} is a non-zero constant. Hence, θ has no zero point. q. e. d.

COROLLARY.
$$1 \le h^{p,0} \le \binom{n}{p}$$
 for $p=0, 1, \dots, n$. In particular, $h^{n,0}=1$.

PROOF. Consider the largest element J_p of C_p , that is, $J_p=(n-p+1,\cdots,n-1,n)$. Then $\gamma^*dz_{J_p}=dz_{J_p}$ for any $\gamma\in\Gamma$. Hence, $1\leq h^{p,0}$.

Take a point $x \in \mathbb{C}^n/\Gamma$. Let $\wedge^p T_x^*(\mathbb{C}^n/\Gamma)$ be the p-th exterior product of holomorphic cotangent bundle $T_x^*(\mathbb{C}^n/\Gamma)$ at x. Define a linear map ψ : $H^{p,0}(\mathbb{C}^n/\Gamma) \to \wedge^p T_x^*(\mathbb{C}^n/\Gamma)$ by $\psi(\theta) = \theta_x$ for $\theta \in H^{p,0}(\mathbb{C}^n/\Gamma)$. Then ψ is injective by Proposition 1.3, so that $h^{p,0} \leq \binom{n}{p}$.

§ 2. The case when dim Aut $(C^n/\Gamma)=n$.

In this section we prove the following theorem.

THEOREM 2.1. Let Γ be a subgroup of $N(n, \mathbb{C})$ acting freely and properly discontinuously on \mathbb{C}^n and such that \mathbb{C}^n/Γ is compact. If dim Aut $(\mathbb{C}^n/\Gamma)=n$, there exist a simply connected complex nilpotent Lie subgroup G of $N(n, \mathbb{C})$ which contains Γ and a biholomorphic map $\phi: \mathbb{C}^n \to G$ such that $\phi(\gamma(z))=\gamma \cdot \phi(z)$ for any $\gamma \in \Gamma$ and $z \in \mathbb{C}^n$. In particular, ϕ induces a biholomorphic map $\bar{\phi}: \mathbb{C}^n/\Gamma \to \Gamma \setminus G$.

Let (z_1, \dots, z_n) be the canonical coordinates on \mathbb{C}^n . We identify a holomorphic vector field on \mathbb{C}^n/Γ with the corresponding vector field on \mathbb{C}^n as in section 1. Then every holomorphic vector field X on \mathbb{C}^n/Γ can be written as

$$X = \sum_{j < k} f_j \frac{\partial}{\partial z_j} + f_k \frac{\partial}{\partial z_k}$$

where f_k is a non-zero constant and f_j is holomorphic function on \mathbb{C}^n . Let $a_{ij}(\gamma)$ $(1 \le i < j \le n)$ and $\alpha_j(\gamma)$ $(1 \le j \le n)$ denote the matrix-components of $\gamma \in \Gamma$.

LEMMA 2.2. Let $g_l(z)$ be polynomial functions of z_1, \dots, z_n and $P_l(\gamma)$ be polynomial functions of $a_{ij}(\gamma)$ and $\alpha_j(\gamma)$ $(1 \le l \le p)$. If f is a holomorphic function on \mathbb{C}^n which satisfies the relations

(2.1)
$$f(\gamma(z)) = f(z) + \sum_{l=1}^{p} P_{l}(\gamma)g_{l}(z)$$

for any $\gamma \in \Gamma$, then f is a polynomial function of z_1, \dots, z_n .

PROOF. We prove our lemma by induction on the number of variables z_1, \dots, z_n . Consider the case when f and g_l are functions depending only on z_n . We denote by m_l the degree of the polynomial g_l . Put $m=\max\{m_j|j=1,\dots,p\}$. Then we get $\frac{d^{m+1}f}{dz_n^{m+1}}(\gamma(z))=\frac{d^{m+1}f}{dz_n^{m+1}}(z)$ for any $\gamma\in\Gamma$, since

(2.2)
$$\gamma(z) = \begin{pmatrix} z_1 + a_{12}(\gamma)z_2 + \cdots + a_{1n}(\gamma)z_n + \alpha_1(\gamma) \\ \dots \\ z_k + a_{k+1}(\gamma)z_k + \cdots + a_{kn}(\gamma)z_n + \alpha_k(\gamma) \\ \dots \\ z_n + \alpha_n(\gamma) \end{pmatrix}.$$
Since C^n/Γ is a connected compact complex manifold d^n

Since C^n/Γ is a connected compact complex manifold, $\frac{d^{m+1}f}{dz_n^{m+1}}$ is constant and hence f is a polynomial function of z_n . We may assume that if f, g_l are functions depending only on z_2, \dots, z_n and f satisfies the relation (2.1) for some $P_l(\gamma)$ then f is a polynomial function of z_2, \dots, z_n . Let m_l^1 denote the degree of the polynomial g_l with respect to z_1 and $m_1 = \max\{m_j^1 \mid j=1,\dots,p\}$. By (2.1) and (2.2), we get

$$\frac{\partial^{m_1+1} f}{\partial z_1^{m_1+1}}(\gamma(z)) = \frac{\partial^{m_1+1} f}{\partial z_1^{m_1+1}}(z)$$

for any $\gamma \in \Gamma$. Therefore

(2.3)
$$f(z) = a_{m_1+1} z_1^{m_1+1} + \sum_{j=0}^{m_1} a_j(z_2, \dots, z_n) z_1^j$$

where $a_{m_1+1}{\in} C$ and $a_j(z_2,\cdots,z_n)$ are holomorphic functions depending only on z_2,\cdots,z_n . By (2.1), (2.2) and (2.3), we see that $a_{m_1}(z_2,\cdots,z_n)$ satisfies the relation (2.1) for some polynomial functions $g_{m_1l}(z)$ of z_2,\cdots,z_n and some polynomial functions $P_{m_1l}(\gamma)$. Thus $a_{m_1}(z_2,\cdots,z_n)$ is polynomial function. Considering the coefficient of $z_1^{m_1-1}$ of (2.1) and noting that $a_{m_1}(z_2,\cdots,z_n)$ is a polynomial function, we see that $a_{m_1-1}(z_2,\cdots,z_n)$ satisfies the relation (2.1) and hence $a_{m_1-1}(z_2,\cdots,z_n)$ is a polynomial function. By the same way, we see that $a_j(z_2,\cdots,z_n)$ are polynomial functions of z_2,\cdots,z_n for $j=0,1,\cdots,m_1$. q. e. d.

 $a_j(z_2, \dots, z_n)$ are polynomial functions of z_2, \dots, z_n for $j=0, 1, \dots, m_1$. q. e. d. Corollary of Lemma 2.2. Let $X = \sum_{j < k} f_j \frac{\partial}{\partial z_j} + \frac{\partial}{\partial z_k}$ be a holomorphic vec-

tor field on \mathbb{C}^n/Γ . Then f_j are polynomial functions of z_1, \dots, z_n .

PROOF. By (1.3) in section 1, we can see that f_j satisfies the relation (2.1).

Lemma 2.3. Suppose that dim $\operatorname{Aut}(C^n/\Gamma)=n$. Then there are holomorphic vector fields X_1, \dots, X_n on C^n/Γ such that

(2.4)
$$X_{j} = \sum_{i < j} f_{ij} \frac{\partial}{\partial z_{i}} + \frac{\partial}{\partial z_{j}},$$

where f_{ij} is a polynomial function such that $f_{ij}(0)=0$. Moreover the matrix component $a_{ij}(\gamma)$ of $\gamma \in \Gamma$ satisfies

(2.5)
$$a_{ij}(\gamma) = f_{ij}(\alpha_1(\gamma), \dots, \alpha_n(\gamma)).$$

PROOF. It is easy to see that there are holomorphic vector fields Y_1, \cdots, Y_n on C^n/Γ such that $Y_j = \sum\limits_{i < j} g_{ij} \frac{\partial}{\partial z_i} + \frac{\partial}{\partial z_j}$ for some holomorphic functions g_{ij} . Put $X_j = Y_j - \sum\limits_{k < j} g_{kj}(0) X_k$ for $j = 1, \cdots, n$. Then, X_1, \cdots, X_n satisfy the conditions of Lemma 2.3 by Corollary of Lemma 2.2. By (1.3) in section 1, f_{ij} satisfies the relations

(2.6)
$$f_{ij} \circ \gamma = f_{ij} + \sum_{i < k < j} a_{ik}(\gamma) f_{kj} + a_{ij}(\gamma) .$$

By (2.2), we see that $a_{ij}(\gamma)=f_{ij}(\gamma(0))=f_{ij}(\alpha_1(\gamma),\cdots,\alpha_n(\gamma))$. q. e. d.

Lemma 2.4. Suppose that Γ is a subgroup of $A(n, \mathbb{C})$ acting on \mathbb{C}^n freely and properly discontinuously and such that \mathbb{C}^n/Γ is compact. Then the set of translational parts α of elements $\begin{pmatrix} A & \alpha \\ 0 & 1 \end{pmatrix}$ of Γ contains a basis for \mathbb{C}^n regarded as a real vector space.

PROOF. See [1], [2].

LEMMA 2.5. Let G be a subset of N(n, C) defined by

$$G = \left\{ \left(egin{array}{ccc|c} 1 & & & & & z_1 \\ 0 & & \cdot & f_{ij}(z) & dots \\ \hline 0 & & \cdot & 1 & z_n \\ \hline 0 & \cdots & \cdots & 0 & 1 \end{array} \right) \middle| z_j \in C, \ j=1, \cdots, n
ight\}.$$

Then G is a simply connected complex nilpotent Lie subgroup of $N(n, \mathbf{C})$ and contains Γ .

PROOF. By Lemma 2.4 the set of translational parts of elements $\gamma \in \Gamma$ contains a basis for C^n regarded as a real vector space, a fortiori, it contains a basis for C^n as a complex vector space. In particular, we see that if f is a polynomial function on C^n such that $f(\alpha_1(\gamma), \dots, \alpha_n(\gamma)) = 0$ for any $\gamma \in \Gamma$ then f is identically zero. We prove that G is a subgroup of N(n, C). We denote $(z_1(g), \dots, z_n(g))$ by z(g). For elements

$$g = \begin{pmatrix} 1 & & & \\ & \ddots & & f_{ij}(z(g)) \\ \mathbf{0} & & \ddots & 1 \\ \hline 0 & \cdots & \cdots & 0 \end{pmatrix} \begin{vmatrix} z_1(g) \\ \vdots \\ z_n(g) \\ 1 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & & & f_{ij}(z(h)) \\ \mathbf{0} & & \ddots & f_{ij}(z(h)) \\ \hline 0 & & \ddots & 1 \\ \hline 0 & \cdots & \cdots & 0 \\ 1 \end{pmatrix}$$

of G, the components $a_{ij}(gh)$, $\alpha_l(gh)$ of $gh \in N(n, C)$ can be written as

$$\begin{split} a_{ij}(gh) &= f_{ij}(z(h)) + \sum_{i < k < j} f_{ik}(z(g)) f_{kj}(z(h)) + f_{ij}(z(g)) \\ \alpha_l(gh) &= z_l(h) + \sum_{l < k} f_{lk}(z(g)) z_k(h) + z_l(g) \,. \end{split}$$

Since Γ is a subgroup of N(n, C), we have

$$(2.7) \qquad \begin{cases} f_{ij}(z(\gamma\delta)) = f_{ij}(z(\delta)) + \sum_{i < k < j} f_{ik}(z(\gamma)) f_{kj}(z(\delta)) + f_{ij}(z(\gamma)) \\ z_l(\gamma\delta) = z_l(\delta) + \sum_{l < k} f_{lk}(z(\gamma)) z_k(\delta) + z_l(\gamma) \end{cases}$$

for $1 \le i < j \le n$, $1 \le l \le n$, and any γ , $\delta \in \Gamma$. Define $z_l(z, y)$ for $1 \le l \le n$, and $z, y \in \mathbb{C}^n$.

$$z_l(z, y) = y_l + \sum_{l \le k} f_{lk}(z) y_k + z_l$$
.

We also define polynomial functions $P_{ij}(z, y)$ on $\mathbb{C}^n \times \mathbb{C}^n$ for $1 \leq i < j \leq n$ by

(2.8)
$$P_{ij}(z, y) = f_{ij}(z_1(z, y), \dots, z_n(z, y)) - f_{ij}(y) - \sum_{\substack{i,j,k \in \mathcal{I}}} f_{ik}(z) f_{kj}(y) - f_{ij}(z).$$

By (2.7), we have $P_{ij}(z(\gamma), z(\delta))=0$ for any $\gamma, \delta \in \Gamma$. For a fixed $\delta \in \Gamma$, $P_{ij}(z, z(\delta))$ is a polynomial function on C^n which vanishes on the set of translational parts of elements of Γ . Thus $P_{ij}(z, z(\delta))=0$ for any $z \in C^n$ and $\delta \in \Gamma$. Now for a fixed $z \in C^n$, we can see that $P_{ij}(z, y)=0$ for any $y \in C^n$ by the same way. This implies that $gh \in G$. Similarly we can see that if $g \in G$ then $g^{-1} \in G$. Thus G is a subgroup of N(n, C). The other claim in Lemma 2.5 is obvious.

PROOF OF THEOREM 2.1. We define a biholomorphic map $\phi: C^n \rightarrow G$ by

$$\phi(z) = \left(egin{array}{cccc} 1 & & & f_{ij}(z) & z_1 \ 0 & & 1 & z_n \ \hline 0 & & & 1 \ \end{array} \right) \quad ext{for} \quad z \in C^n \, .$$

Then we can see that

$$\phi(g(z)) = g \cdot \phi(z)$$

for any $g \in G$ and any $z \in C^n$. Since Γ acts on C^n properly discontinuously and freely, it follows from (2.9) that the same is true for the action of Γ on G by left-translations. Therefore Γ is a discrete subgroup of G and ϕ induces a biholomorphic map $\bar{\phi}: C^n/\Gamma \to \Gamma \setminus G$. This proves Theorem 2.1.

Example. Let Γ be a subgroup of $N(3, \mathbb{C})$ defined by

$$ec{\Gamma} = \left\{ egin{pmatrix} 1 & 0 & lpha_2 & lpha_1 \ & 1 & 0 & lpha_2 \ & & 1 & lpha_3 \ \end{pmatrix} egin{pmatrix} lpha_i \in oldsymbol{Z} + \sqrt{-1} \, oldsymbol{Z} \ & i = 1, \, 2, \, 3 \end{bmatrix}
ight.$$

Then it is easy to see that 1) Γ acts on C^3 properly discontinuously and freely 2) C^3/Γ is compact. Moreover dim $\operatorname{Aut}_0(C^3/\Gamma)=3$ and $\operatorname{Aut}_0(C^3/\Gamma)$ is not abelian. In fact, C^3/Γ is biholomorphic to G/Γ_1 where

$$G = \left\{ \begin{pmatrix} 1 & z_3 & z_1 \\ 0 & 1 & z_2 \\ 0 & 0 & 1 \end{pmatrix} \middle| z_i \in C, i = 1, 2, 3 \right\}$$

and

$$arGamma_1 = \left\{ egin{pmatrix} 1 & lpha_3 & lpha_1 \ 0 & 1 & lpha_2 \ 0 & 0 & 1 \end{pmatrix} \middle| egin{matrix} lpha_i \in m{Z} + \sqrt{-1} \, m{Z} \ i = 1, \, 2, \, 3 \end{bmatrix}
ight.$$

§ 3. The case of Kähler manifolds.

In this section we prove the following theorem.

THEOREM 3.1. Let Γ be a subgroup of $N(n, \mathbb{C})$ satisfying the conditions 1) and 2) in section 1. If a compact complex manifold \mathbb{C}^n/Γ has a Kähler metric, \mathbb{C}^n/Γ is biholomorphic to a complex torus.

We need some lemmas to prove this theorem.

LEMMA 3.2. All Chern classes $c_i(C^n/\Gamma) \in H^{2i}(C^n/\Gamma, \mathbf{R})$ $(i=1, \dots, n)$ of a compact complex manifold C^n/Γ are zero.

PROOF. Since \mathbb{C}^n/Γ has an affine structure, \mathbb{C}^n/Γ has an affine connection with zero curvature and zero torsion (cf. Matsushima [3], Vitter [6]). In particular, all Chern classes $c_i(\mathbb{C}^n/\Gamma)$ are zero. q. e. d.

Lemma 3.3. If M is a compact Kähler manifold with $c_i(M)=0$, then we have

- (1) The Lie algebra a of all holomorphic vector fields on M is abelian.
- (2) Every non-zero holomorphic vector field and every non-zero holomorphic 1-form are nonvanishing.

(3) Let $H^{1,0}(M)$ be the vector space of all holomorphic 1-forms on M. The bilinear function $B: H^{1,0}(M) \times \mathfrak{a} \to \mathbb{C}$ defined by $B(\theta, X) = \theta(X)$ is non-degenerate.

PROOF. See [4] § 9 Theorem 3.

PROOF OF THEOREM 3.1. By Corollary of Proposition 1.3, there is a holomorphic 1-form $\theta_n = dz_n$ on C^n/Γ . By (3) of Lemma 3.3, there is a holomorphic vector field $X \in \mathfrak{a}$ such that $\theta_n(X) \neq 0$ for $\theta_n \in H^{1,0}(C^n/\Gamma)$. Since $\theta_n(X) = f_n$ for $X = \sum_{i=1}^n f_i - \frac{\partial}{\partial z_i}$, there exists a holomorphic vector field $X_n \in \mathfrak{a}$ of the form $X_n = \sum_{i \leq n} f_{in} - \frac{\partial}{\partial z_i} + \frac{\partial}{\partial z_n}$.

We now claim that if there exist holomorphic vector fields X_{k+1}, \cdots, X_n on C^n/Γ and holomorphic 1-forms $\theta_{k+1}, \cdots, \theta_n$ on C^n/Γ such that

$$\begin{split} X_j &= \sum_{i < j} f_{ij} \frac{\partial}{\partial z_i} + \frac{\partial}{\partial z_j} \qquad (j = k+1, \cdots, n), \\ \theta_l &= dz_l + \sum_{i > l} g_{li} dz_i \qquad \qquad (l = k+1, \cdots, n) \end{split}$$

and

$$\theta_l(X_j) = \delta_{lj}$$
,

then there are a holomorphic vector field X_k and a holomorphic 1-form θ_k on C^n/Γ such that

$$\begin{split} X_k &= \sum_{i < k} f_{ik} \frac{\partial}{\partial z_i} + \frac{\partial}{\partial z_k}, \\ \theta_k &= dz_k + \sum_{i > k} g_{ki} dz_i \end{split}$$

and $\theta_l(X_j) = \delta_{lj}$ $(l, j = k, \dots, n)$.

By (1.3), f_{ij} satisfies the relation

(3.1)
$$\begin{pmatrix} f_{1k+1} \circ \gamma & \cdots & f_{1n} \circ \gamma \\ \vdots & & \vdots \\ f_{kk+1} \circ \gamma & \cdots & f_{kn} \circ \gamma \\ 1 & \cdots & f_{k+1n} \circ \gamma \\ \vdots & & \vdots \\ \mathbf{0} & 1 & f_{n-1n} \circ \gamma \\ & & 1 \end{pmatrix} = \begin{pmatrix} 1 & a_{12} & \cdots & a_{1n} \\ 1 & & \vdots \\ \vdots & & \vdots \\ 1 & & \ddots & \vdots \\ \mathbf{0} & & 1 & a_{n-1n} \\ 1 & & & 1 \end{pmatrix} \cdot \begin{pmatrix} f_{1k+1} & \cdots & f_{1n} \\ \vdots & & \vdots \\ f_{kk+1} & \cdots & f_{kn} \\ 1 & \cdots & \cdots & f_{kn} \\ \vdots & & \vdots \\ 1 & \cdots & \cdots & f_{kn} \\ \vdots & & \vdots \\ 0 & & 1 & f_{n-1n} \\ 0 & & & 1 \end{pmatrix}.$$

Define holomorphic functions g_{ki} $(k < i \le n)$ on C^n by $g_{ki} = -(f_{kk+1}g_{k+1i} + \cdots + f_{ki-1}g_{i-1i} + f_{ki})$ and the holomorphic 1-form θ_k by $\theta_k = dz_k + \sum_{i > k} g_{ki}dz_i$. Then f_{ij} , g_{ij} satisfy the relation

(3.2)
$$\begin{pmatrix} 1 & f_{kk+1} & \cdots & f_{kn} \\ & \ddots & & \vdots \\ & & 1 & f_{n-1n} \\ & & & 1 \end{pmatrix} \begin{pmatrix} 1 & g_{kk+1} & \cdots & g_{kn} \\ & \ddots & & \vdots \\ & & 1 & g_{n-1n} \\ & & & 1 \end{pmatrix} = 1.$$

By (3.1) and (3.2), we get

$$\begin{pmatrix}
1 & g_{kk+1} & \cdots & g_{kn} \\
& \ddots & & \vdots \\
& & & 1 & g_{n-1n} \\
& & & & 1
\end{pmatrix} = \begin{pmatrix}
1 & g_{kk+1} \circ \gamma & \cdots & g_{kn} \circ \gamma \\
& & \ddots & & \vdots \\
& & & & 1 & g_{n-1n} \circ \gamma \\
& & & & & 1
\end{pmatrix} \begin{pmatrix}
1 & a_{kk+1} & \cdots & a_{kn} \\
& & \ddots & & \vdots \\
& & & & 1 & a_{n-1n} \\
& & & & & 1
\end{pmatrix}.$$

Thus θ_k is invariant by any $\gamma \in \Gamma$ and $\theta_k \in H^{1,0}(\mathbb{C}^n/\Gamma)$. By (3) of Lemma 3.3, there is a holomorphic vector field $X \in \mathfrak{a}$ such that $\theta_k(X) \neq 0$. By Remark 1 in the section 1, there are constants C_i $(j=k+1, \dots, n)$ such that

$$X - \sum_{j=k+1}^{n} C_j X_j = \sum_{i=1}^{k} h_i \frac{\partial}{\partial z_i}$$
,

where h_k is a constant. Since $\theta_k(X) = \theta_k(X - \sum_{j=k+1}^n C_j X_j) = h_k \neq 0$, there is a holomorphic vector field $X_k = \sum_{j=1}^{k-1} f_{ik} - \frac{\partial}{\partial z_i} + \frac{\partial}{\partial z_k}$ in \mathfrak{a} . Obviously

$$\theta_b(X_b) = 1$$
, $\theta_l(X_b) = 0$ $(l > k)$ and $\theta_b(X_l) = 0$ $(l > k)$.

Therefore $\dim \mathfrak{a}=n$ and \mathbb{C}^n/Γ is a complex parallelisable manifold. Since \mathbb{C}^n/Γ is a Kähler manifold, \mathbb{C}^n/Γ is biholomorphic to a complex torus by a theorem of Wang [7].

$\S 4$. The case when Γ is abelian.

In this section we prove the following theorem.

Theorem 4.1. If Γ is an abelian subgroup of $A(n, \mathbb{C})$ acting freely and properly discontinuously on \mathbb{C}^n and such that \mathbb{C}^n/Γ is compact, then the compact complex manifold \mathbb{C}^n/Γ is biholomorphic to a complex torus.

PROOF. Let $A(\gamma)$ be the holonomy part and $\alpha(\gamma)$ the translation part of $\gamma \in A(n, \mathbb{C}^n)$. Since Γ is abelian, $\{A(\gamma) \in GL(n, \mathbb{C}) | \gamma \in \Gamma\}$ is abelian. It is well-known that there is a basis $\{v_1, \dots, v_n\}$ of \mathbb{C}^n such that

$$A(\gamma) \in \left\{ \begin{pmatrix} * & \cdot & & * \\ \mathbf{0} & \cdot & \cdot & * \end{pmatrix} \right\}$$
 for any $\gamma \in \Gamma$.

Thus we can write each element γ of Γ as

$$\gamma = \begin{pmatrix} A(\gamma) & \alpha(\gamma) \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11}(\gamma) & \cdots & a_{1n}(\gamma) & \alpha_{1}(\gamma) \\ & \ddots & \vdots & \vdots \\ \mathbf{0} & & a_{nn}(\gamma) & \alpha_{n}(\gamma) \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}.$$

By Lemma 2.4, there are elements $\delta_1, \dots, \delta_n$ of Γ such that $\{\alpha(\delta_1), \dots, \alpha(\delta_n)\}$ is a basis of C^n . Since Γ is abelian, we get

$$(4.1) \qquad \begin{pmatrix} \sum_{j=1}^{n} a_{1i}(\delta_{i})\alpha_{j}(\gamma) + \alpha_{1}(\delta_{i}) \\ \sum_{j=2}^{n} a_{2j}(\delta_{i})\alpha_{j}(\gamma) + \alpha_{2}(\delta_{i}) \\ \dots \\ a_{nn}(\delta_{i})\alpha_{n}(\gamma) + \alpha_{n}(\delta_{i}) \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^{n} a_{1j}(\gamma)\alpha_{j}(\delta_{i}) + \alpha_{1}(\gamma) \\ \sum_{j=2}^{n} a_{2j}(\gamma)\alpha_{j}(\delta_{i}) + \alpha_{2}(\gamma) \\ \dots \\ a_{nn}(\gamma)\alpha_{n}(\delta_{i}) + \alpha_{n}(\gamma) \end{pmatrix}$$

for $i=1, \dots, n$ and any $\gamma \in \Gamma$. By (4.1) we have

$$(4.2) \qquad \begin{pmatrix} \sum_{j=1}^{n} a_{1j}(\delta_{i})\alpha_{j}(\gamma) - \alpha_{1}(\gamma) \\ \sum_{j=2}^{n} a_{2j}(\delta_{i})\alpha_{j}(\gamma) - \alpha_{2}(\gamma) \\ \dots \\ a_{nn}(\delta_{i})\alpha_{n}(\gamma) - \alpha_{n}(\gamma) \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}(\gamma) - 1 & a_{12}(\gamma) & \cdots & a_{1n}(\gamma) \\ a_{22}(\gamma) - 1 \cdots & a_{2n}(\gamma) \\ \vdots \\ a_{nn}(\gamma) - 1 \end{pmatrix} \begin{pmatrix} \alpha_{1}(\delta_{i}) \\ \alpha_{2}(\delta_{i}) \\ \vdots \\ \alpha_{n}(\delta_{i}) \end{pmatrix}$$

for $i=1, \dots, n$ and any $\gamma \in \Gamma$. Thus we have

$$(4.3) \qquad \begin{pmatrix} a_{11}(\gamma) - 1 & a_{12}(\gamma) & \cdots & a_{1n}(\gamma) \\ & a_{22}(\gamma) - 1 \cdots & a_{2n}(\gamma) \\ & \ddots & \vdots \\ & a_{nn}(\gamma) - 1 \end{pmatrix} \begin{pmatrix} \alpha_1(\delta_1) & \cdots & \alpha_1(\delta_n) \\ \alpha_2(\delta_1) & \cdots & \alpha_2(\delta_n) \\ \vdots & & \vdots \\ \alpha_n(\delta_1) & \cdots & \alpha_n(\delta_n) \end{pmatrix}$$

$$= \begin{pmatrix} \cdots & (a_{11}(\delta_k) - 1)\alpha_1(\gamma) + \sum_{j=2}^n a_{1j}(\delta_k)\alpha_j(\gamma) & \cdots \\ & \cdots & (a_{22}(\delta_k) - 1)\alpha_2(\gamma) + \sum_{j=3}^n a_{2j}(\delta_k)\alpha_j(\gamma) & \cdots \\ & \vdots & & \vdots \\ \alpha_n(\delta_1) & \cdots & \alpha_n(\delta_n) \end{pmatrix}$$

$$= \begin{pmatrix} \cdots & (a_{11}(\delta_k) - 1)\alpha_1(\gamma) + \sum_{j=3}^n a_{2j}(\delta_k)\alpha_j(\gamma) & \cdots \\ & \vdots & & \vdots \\ \alpha_n(\delta_1) & \cdots & \alpha_n(\delta_n) \end{pmatrix}$$

Since $\{\alpha(\delta_1), \dots, \alpha(\delta_n)\}$ is a basis of \mathbb{C}^n , we get

(4.4)
$$\begin{cases} a_{ii}(\gamma) = 1 + \sum_{k=1}^{n} C_{ii}^{k} \alpha_{k}(\gamma) & \text{for } i = 1, \dots, n \\ a_{ij}(\gamma) = \sum_{k=1}^{n} C_{ij}^{k} \alpha_{k}(\gamma) & \text{for } 1 \leq i < j \leq n \end{cases}$$

for any $\gamma \in \Gamma$, by (4.3).

Since Γ is a subgroup of A(n, C),

$$\begin{cases} (1 + \sum_{k=1}^{n} C_{ii}^{k} \alpha_{k}(\gamma))(1 + \sum_{l=1}^{n} C_{ii}^{l} \alpha_{l}(\delta)) = 1 + \sum_{k=1}^{n} C_{ii}^{k} \alpha_{k}(\gamma \delta) \\ \alpha_{t}(\gamma \delta) = \sum_{j=t}^{n} a_{tj}(\gamma) \alpha_{j}(\delta) + \alpha_{t}(\gamma) \end{cases}$$

for i, $t=1, \cdots, n$ and any γ , $\delta \in \Gamma$.

By (4.4) and (4.5), we get

$$(4.6) \qquad \sum_{k,l=1}^{n} C_{ii}^{k} C_{ii}^{l} \alpha_{k}(\gamma) \alpha_{l}(\delta)$$

$$= \sum_{k,l=1}^{n} C_{ii}^{l} C_{ii}^{k} \alpha_{k}(\gamma) \alpha_{l}(\delta) + \sum_{k=1}^{n} \sum_{l=1}^{n} \sum_{i>l} C_{ii}^{l} C_{ij}^{k} \alpha_{j}(\delta) \alpha_{k}(\gamma)$$

for $i=1, \dots, n$ and any $\gamma, \delta \in \Gamma$.

Since $\{\alpha(\gamma)|\gamma\in\Gamma\}$ contains a basis of \mathbb{C}^n , we get

(4.7)
$$C_{ii}^{k}C_{ii}^{l} = C_{ii}^{l}C_{li}^{k} + \sum_{t < l} C_{ii}^{t}C_{li}^{k}$$

for i, k, $l=1, \dots, n$.

We now claim that $C_{ii}^k=0$ for $i, k=1, \dots, n$. Suppose that $C_{ii}^1\neq 0$ for some i. Then $C_{ii}^k=C_{i1}^k$ by (4.7). In particular, $C_{i1}^1\neq 0$. Define an element $g_0\in A(n, \mathbb{C})$ by

$$g_0 = egin{pmatrix} 1 & & \mathbf{0} & rac{1}{C_{11}^1} \ 0 & & \ddots & dots \ \mathbf{0} & & 1 & 0 \ 0 & & 1 & 0 \ \end{pmatrix}.$$

Then we have

(4.8)
$$g_{0} \cdot \begin{pmatrix} 1 + \sum_{i=1}^{n} C_{11}^{i} \alpha_{i}(\gamma) & * & \alpha_{1}(\gamma) \\ & \ddots & & \alpha_{2}(\gamma) \\ & \ddots & & \alpha_{2}(\gamma) \\ \vdots & & & \vdots \\ & & \alpha_{n}(\gamma) \end{pmatrix} \cdot g_{0}^{-1}$$

$$=egin{bmatrix} 1+\sum\limits_{i=1}^n C_{1_1}^ilpha_i(\gamma) & * & \sum\limits_{i\geqq 2} C_{1_1}^ilpha_i(\gamma) \ & \ddots & & lpha_2(\gamma) \ & \ddots & & \vdots \ & lpha_n(\gamma) \ & 0 & \cdots & 0 & 1 \end{pmatrix}$$

for any $\gamma \in \Gamma$. It is easy to see that if Γ acts freely and properly discontinuously on C^n and C^n/Γ is compact, so does $g\Gamma g^{-1}$ for any $g \in A(n,C)$. By Lemma 2.4, the translational parts of $g\Gamma g^{-1}$ contains a basis of C^n . By (4.8), the translational parts of $g_0\Gamma g_0^{-1}$ can not contain a basis of C^n . This is a contradiction. Hence, we get $C_{ii}^1=0$ for $i=1,\cdots,n$. By the same way we get $C_{ii}^k=0$ for $i=1,\cdots,n$ from (4.7) inductively. Therefore each element $\gamma \in \Gamma$ can be written in the form

$$\gamma = egin{pmatrix} 1 & & & \sum\limits_k C_{ij}^k lpha_k(\gamma) & & lpha_1(\gamma) \ & & & & dots \ 0 & & & 1 & & lpha_n(\gamma) \ & & & & 0 & 1 \end{pmatrix}.$$

We define a subset G of A(n, C) by

Then we can see that G is a simply connected complex abelian Lie group which contains Γ in the same way as for Lemma 2.5. Moreover the map $\phi: C^n \to G$ defined by

$$\phi(z) = egin{pmatrix} 1 & & & \sum\limits_k C_{ij}^k z_k & & z_1 \ & & & & dots \ 0 & & \ddots & & dots \ & & & 1 & & z_n \ \hline 0 & \cdots & & & 0 & 1 \end{pmatrix} \quad ext{ for } \quad z \in C^n$$

is biholomorphic and $\phi(g(z))=g\cdot\phi(z)$ for any $g\in G$ and any $z\in C^n$. Since Γ acts on C^n freely and properly discontinuously, Γ is a discrete subgroup of G and ϕ induces a biholomorphic map $\bar{\phi}:C^n/\Gamma\to\Gamma\backslash G$. Since C^n/Γ is compact, C^n/Γ is biholomorphic to the complex torus $\Gamma\backslash G$.

References

- [1] L. Auslander, On the group of affinities of locally affine spaces, Proc. Amer. Math. Soc., 9 (1958), 471-473.
- [2] J.P. Fillmore and J. Scheuneman, Fundamental group of compact complete locally affine complex surfaces, Pacific J. Math., 44 (1973), 487-496.
- [3] Y. Matsushima, Affine complex manifolds, Osaka J. Math., 5 (1968), 215-222.
- [4] Y. Matsushima, Holomorphic vector fields on compact Kähler manifolds, Conference Board of the Mathematical Sciences, No. 7, American Mathematical Society, 1971.
- [5] T. Suwa, Compact quotient spaces of C^2 by affine transformation group, J. Differential Geometry, 11 (1975), 239-252.
- [6] A.L. Vitter, Affine structure on compact complex manifolds, Thesis, Princeton, 1970.
- [7] H.C. Wang, Complex parallelisable manifold, Proc. Amer. Math. Soc., 5 (1954), 771-776.

Yusuke SAKANE
Department of Mathematics
Faculty of Science
Osaka University
Toyonaka, Osaka
Japan