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Abstract. The noncommutative Hardy spaces $H^{\infty}(\alpha)$ and $H^{1}(\alpha)$ are
introduced with respect to a $\sigma$-weakly continuous flow $\alpha=\{\alpha_{t}\}$ of $*$ -auto-
morphisms of a von Neumann algebra. In case that the algebra is $\alpha- finite$

the algebra $H^{\infty}(\alpha)$ becomes a maximal subdiagonal algebra. The concept

of $c*$ -subdiagonal algebras will also be given for $c*$ -algebras as a non-
commutative counterpart of the algebras of generalized analytic functions.
Examples of maximal $c*$ -subdiagonal algebras and their structures are
discussed.

\S 1. Introduction.

Let $B$ (resp. $M$) be a $C^{*}$ -algebra (resp. a von Neumann algebra) and $\{\alpha_{t}\}$

be a flow by which we mean a strongly continuous (resp. $\sigma$-weakly continuous)

one parameter group of $*$ -automorphisms of the algebra. Let $A(\alpha)$ be the set
of all elements of $B$ with nonnegative spectrum with respect to $\{\alpha_{t}\}$ , then it
turns out to be a closed subalgebra of $B$ such that the intersection $A(\alpha)\cap A(\alpha)^{*}$

is the $C^{*}$ -subalgebra of fixed elements of $\alpha_{t}$ . The algebra has been studied by
several authors, especially in the case where $B$ is a commutative $c*$ -algebra
as a function algebra with an analyticity ([8], [17], [18], [4] etc). A prototype
of such algebra is the classical disk algebra on the unit circle, or the algebra
of generalized analytic functions, which is determined by the rotation flow on
the unit circle (periodic), or by an almost periodic flow on the compact dual
of an ordered discrete group. Furthermore, in these cases, the Hardy spaces
$H^{\infty}’ s$ are also considered as such algebras of elements with nonnegative spec-
trums with respect to the weak $*$ continuous flows of the corresponding $L^{\infty}-$

spaces, $i$ . $e$ . of commutative von Neumann algebras. Now, a counterpart of the
$H^{\infty}$ algebra or more generally of a weak $*$ Dirichlet algebra has been studied
by Arveson [2] in the context of von Neumann algebras as a theory of sub-
diagonal algebras, in which, however, the above r\^ole of flows has not been
discussed. A subdiagonal algebra is a pair $(\mathfrak{A}, \epsilon)$ where $\mathfrak{A}$ is a subalgebra of
a von Neumann algebra $M$ such that $\mathfrak{A}\perp \mathfrak{U}^{*}$ is $\sigma$ -weakly dense in $M$, and where
$\epsilon$ is a homomorphism of $\mathfrak{A}$ into $\mathfrak{A}\cap \mathfrak{A}^{*}$ which extends in a suitable way to $M$.
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It is the purpose of this paper to show that the above circumstance of
analyticity may be carried over to the case of flows of operator algebras. We
prove (Theorem 2.4) that for a flow $\{\alpha_{t}\}$ on a von Neumann algebra $M$ the
algebra $H^{\infty}(\alpha)$ of elements with nonnegative spectrums becomes a maximal
subdiagonal algebra provided that $M$ is $\alpha- finite$ . The result provides an abun-
dance of examples of maximal subdiagonal algebras which are not covered by
these examples in [2], for by the Tomita-Takesaki theory we find enough such
flows in general as modular automorphism groups. In this connection, the
results of Takesaki [26] may be understood as the structure theory of the
subdiagonal algebra of a periodic flow of modular automorphism group. In
\S 3, we shall consider the representations of the algebra $A(\alpha)$ of analytic
elements for a flow on a $C^{*}$ -algebra. As in \S 2, our arguments here contain
a generalization of a part of Muhly [17]. In \S 4, by using flows associated
with generalized analytic functions we construct a family of examples of $H^{\infty}(\alpha)$

algebras as representations of $c*$ -subdiagonal algebras. The results here may
be regarded as generalized and sharpened versions of those corresponding
results in [2]. As we have mentioned above, they are different types of sub-
diagonal algebras from those algebras derived from modular automorphism
groups.

\S 2. Subdiagonal algebras associated with flows.

Let $M$ be a von Neumann algebra acting on a Hilbert space $H$. Let $\{\alpha_{t}\}$

be a flow on $M,$ $i$ . $e.$ , a $\sigma$-weakly continuous one parameter group of $*_{-}auto-$

morphisms of $M$. We denote by $M_{*}$ the space of all $\sigma$-weakly continuous
functionals of $M$. For each element $X$ of $M$, a functional $\varphi$ of $M_{*}$ and a
function $f$ of $L^{1}(R)$ , we define the convolution $ x*f\alpha$ in $M$ and $\varphi*f\alpha$ in $M_{*}$ by

$ x*f=\int_{-\infty}^{\infty}f(t)\alpha_{t}(x)dt\alpha$

$\langle x, \varphi*f\rangle=\langle x*\tilde{f}, \varphi\rangle\alpha\alpha$

where $f$ means the function such that $\tilde{f}(t)=f(-t)$ . The above integral exists
in the sense that

$\langle x*f, \varphi\rangle=\alpha\int_{R}f(t)\langle\alpha_{t}(x), \varphi\rangle dt$

for every $\varphi\in M_{*}$ ([4; Proposition 1.6]). Define the ideals of $L^{1}(R),$ $J(x)$ and
$J(\varphi)$ by

$ J(x)=\{f\in L^{1}(R)|x*f=0\}\alpha$ ’

$ J(\varphi)=\{f\in L^{1}(R)|\varphi*f=0\}\alpha$
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The hull of the ideal $J(x)$ (resp. $J(\varphi)$ ) is said to be the spectrum of $x$ (resp. $\varphi$)

with respect to the flow $\alpha$ and is denoted by $sp_{\alpha}(x)$ (resp. $sp_{\alpha}(\varphi)$ ). The spec-
trum is a closed subset of the real number space $R$ . In the following, when
there arise no confusion we sometimes drop the indiction $\alpha$ . Let $E$ be a closed
subset of $R$ . The spectral subspace $M^{\alpha}(E)$ of $M$ is defined to be the set of
all $x’ s$ in $M$ with $sp_{\alpha}(x)\subset E$ . For the Fourier transform we use the transform

$f(s^{\backslash })=\int_{R}e^{-ist}f(t)dt$ .

We refer the readers to [6], [4] for the elementary properties of spectrums
and spectral subspaces. Put $H^{\infty}(\alpha)=M^{\alpha}([0, \infty))$ . The space $H^{\infty}(\alpha)$ is $\sigma$-weakly
closed and moreover it is a subalgebra of $M$ by the following property of the
$\alpha$ -spectrum;

$sp_{\alpha}(xy)\subseteqq\overline{sp_{\alpha}(x)+sp_{\alpha}(y)}$ (cf. [6], [14]).

We call an element of $H^{\infty}(\alpha)$ an analytic element of $M$ with respect to the
flow $\alpha$ . Let $H^{1}(\alpha)$ be the set of all $\sigma$ -weakly continuous analytic functions of
$M$ by which we mean the closed subspace of functional of $M_{*}$ with nonnegative
spectrums. We write $H^{\infty}(\alpha)_{0}$ the $\sigma$ -weak closure of the set of elements of $M$

with positive spectrums. The spaces $H^{\infty}(\alpha)$ and $H^{1}(\alpha)$ may occupy noncom-
mutative counterpart of the usual Hardy space $H^{\infty}$ and $H^{1}$ in the $L^{\infty}$ and $L^{1}$

spaces. The following (known, but not expricitly formulated before in the
literatures) equivalence will also justify this definition. We recall that $H^{\infty}(R)$

is the class of all functions $f’ s$ in $L^{\infty}(R)$ such that $\int_{R}{\rm Im}(\frac{1}{t-z})f(t)dt$ is

holomorphic in the upper half plane. Let $H^{1}(R)$ be the corresponding Hardy
class in $L^{1}(R)$ .

PROPOSITION 2.1 (cf. [17; Proposition 2.1]). Let $x\in M$, then $x$ belongs to
$H^{\infty}(\alpha)$ if and only if the function $ F(t)=\langle\alpha_{-t}(x), \varphi\rangle$ belongs to $H^{\infty}(R)$ for every
$\varphi\in M_{*}$ .

The following lemma may also be proved in a similar way to the case of
a flows on a $C^{*}$ -algebra (cf. [4; Proposition 5.1]).

LEMMA 2.2. Let $\varphi$ be a $\sigma$-weakly continuous functional on M. Then $\varphi$ is
analytic, $i$ . $e$ . $sP(\varphi)\subset[0, \infty)$ if and only if $\varphi$ vanishes on $H^{\infty}(\alpha)_{0}$ .

We have details of the above results to the readers.
It is to be noticed that

$M(\alpha)\equiv H^{\infty}(\alpha)\cap H^{\infty}(\alpha)^{*}=\{x\in M|sp(x)\subseteqq\{0\}\}$

and it is the von Neumann subalgebra of all fixed elements of $M$ by $\alpha$ . Also,
we recall that for a functional $\varphi$ of $M_{*}$ we have $sp_{\alpha}(\varphi)\subseteqq\{0\}$ if and only if $\varphi$

is $\alpha$-invariant. The importance of the analytic functionals in the context of
$C^{*}$ or von Neumann algebras have been already discussed in the literatures in
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connection with generalizations of the $F$ and $M$. Riesz theorem on the unit
circle and of the quasi-equivalence for measures ([6], [4], [11]).

Take an element $x\in M$ and $\varphi\in M_{*}$ , and let $ F(t)=\langle\alpha_{t}(x), \varphi\rangle$ . The function
$F$ is a bounded continuous function on $R$ . For the usual spectrum of $F$ we
have

PROPOSITION 2.3. $sp(F)\subset-sp_{a}(x)\cap sp_{\alpha}(\varphi)$ .
The proposition was formulated in [6; p. 50 (30)] for a flow on the space

of continuous functions, but the proof there remains valid. We include its
proof because of the importance of the proposition in our arguments.

PROOF. Let $r$ be a real number not in $sp_{\alpha}(\varphi)$ . Then there exists a function
$f$ in $J(\varphi)$ with $f(r)=1$ . We have

$F*f(0)=\int_{R}F(-t)f(t)dt=\int_{R}\langle\alpha_{-i}(x), \varphi\rangle f(t)dt$

$=\langle x*\tilde{f,}\varphi\rangle=\langle x, \varphi*f\rangle=0\alpha\alpha$

Since the set $J(\varphi)$ is translation invariant we have $(F*f_{s})(0)=0$ for every $s\in R$ ,

where $f_{s}(t)=f(s+t)$ . Thus, we get

$(F*f)(s)=0$ for every $s\in R$ ,

and $f$ belongs to $J(F)$ . This shows that $r$ is not in $sp(F)$ . On the other hand,
let $r$ be a real number not in $-sp_{\alpha}(x)$ . There exists a function $f\in J(x)$ with
$f(-r)=1$ . We have

$ F*f\tilde{(}0)=\langle x*f, \varphi\rangle=0\alpha$

Then, as we have mentioned above,

$(F*f)(s)=0$ for every $s\in R$ .
Thus $\tilde{f}\in J(F)$ and $r$ is not in $sp(F)$ because $\tilde{f}(r)=\hat{f}(-r)=1\wedge$ . This completes
the proof.

Let $\epsilon$ be a faithful normal projection of norm one in a von Neumann algebra
$M$. Following Arveson [2] we call an algebra $\mathfrak{A}$ of $M$ with the unit of $M$ a
subdiagonal algebra with respect to the Projection $\epsilon$ if $\mathfrak{A}$ satisfies the following
conditions;

(i) $\mathfrak{A}+\mathfrak{A}^{*}$ is $\sigma$ -weakly dense in $M$,
(ii) $\epsilon(xy)=\epsilon(x)\epsilon(y)$ for $x,$ $y\in \mathfrak{A}$ , that is, $\epsilon$ is multiplicative on $\mathfrak{A}$ ,
(iii) $\epsilon(\mathfrak{A})\subset \mathfrak{A}\cap \mathfrak{A}^{*}$ .

We call the self-adjoint subalgebra $\mathfrak{A}\cap \mathfrak{A}^{*}$ the diagonal of $\mathfrak{A}$ . When the dia-
gonal of $\mathfrak{A}$ is reduced to the scalars, $\mathfrak{A}$ is said to be antisymmetric. A sub-
diagonal algebra $\mathfrak{A}$ with respect to $\epsilon$ is said to be maximal if it is contained
properly in no larger subdiagonal algebra of $M$ with respect to $\epsilon$ . For a given
subdiagonal algebra $\mathfrak{A}$ for $\epsilon$ the maximal sJbdiagonal algebra which contains



Subdiagonal algebras associated with flows 77

$\mathfrak{U}$ is determined as $\mathfrak{A}_{m}=\{x\in M|\epsilon(I\times \mathfrak{U})=\epsilon(\mathfrak{A}\times I)=0\}$ where $I$ is the kernel of
$\epsilon$ in $\mathfrak{U}$ ([2; Theorem 2.2.1]). We notice that for a $\sigma$ -weakly closed subdiagonal
algebra the range of $\epsilon$ is exactly the diagonal $\mathfrak{A}\cap \mathfrak{U}^{*}$ . It is an open question
whether or not every $\sigma$ -weakly closed subdiagonal algebra is already maximal,
whereas every maximal subdiagonal algebra is $\sigma$ -weakly closed. Now recall
that $M$ is said to be $\alpha- finite$ when the family of $\alpha$-invariant normal states of
$M$ separates the nonnegative elements of $M$. In this case, by [15; Theorem
1.2] there exists a faithful normal projection of norm one $\epsilon$ of $M$ onto $M(\alpha)$ .
Moreover, for each element $x,$ $\epsilon(x)$ is given as the only one element of the
intersection $K(x, \alpha)\cap M(\alpha)$ , where $K(x, \alpha)$ denotes the $\sigma$-weakly closed convex
hull of $\{\alpha_{t}(x)\}$ .

THEOREM 2.4. Let $M$ be a von Neumann algebra with a flow $\{\alpha_{t}\}$ . Then,

if $M$ is $\alpha$ -finite, the algebra $H^{\infty}(\alpha)$ is a maximal subdiagonal with resPect to the
projection of norm one $\epsilon$ induced by the $\alpha$ -finiteness.

The theorem shows a systematic way to construct maximal subdiagonal
algebras in von Neumann algebras. In one way, the result may be regarded
as a noncommutative version of Muhly [17; Theorem 1] for a weak $*$ Dirichlet
algebra determined by a flow (and actually his theorem follows from the above
theorem in commutative cases). In the other way, our theorem introduces a
new class of maximal subdiagonal algebras which are not covered by those
examples in [4], that is, a class of maximal subdiagonal algebras determined
by the modular automorphism groups of Tomita-Takesaki theorem [25]. In
fact, according to the theory each faithful normal state $\varphi$ of $M$ gives rise the
modular automorphism group $\sigma_{t}^{\varphi}$ for which $\varphi$ is invariant, that is, $M$ is $\sigma_{t}^{\varphi}$ -finite.
Thus, as we have already mentioned in the introduction, the results of Take-
saki [26] is the structure theory of the algebra $H^{\infty}(\alpha)$ associated with a periodic
modular automorphism group. The structure of $H^{\infty}(\alpha)$ for a general periodic
flow has been recently given by Saito [23] as well as that of the space $H^{1}(\alpha)$ .
It is worth noticing, however, that in a commutative von Neumann algebra
every modular automorphism group is reduced to the identity, so that flows
associated to the usual analyticity fall into another category. We note that in
the commutative case the theorem says that for an ergodic flow $\alpha$ the algebra
$H^{\infty}(\alpha)$ is maximal as a weak $*$ Dirichlet algebra, though more general result
is known in the literature ([10; III, Theorem 2.2]). As for the maximality of
a a-weakly closed subdiagonal algebra, the only systematic result known before
was the result of Kamei [13; Theorem 3].

PROOF OF THE THEOREM. We show first that $H^{\infty}(\alpha)$ is subdiagonal. Suppose
that a functional $\varphi$ of $M_{*}$ vanish on $H^{\infty}(\alpha)+H^{\infty}(\alpha)^{*}$ . By Lemma 2.2, we have
$sp(\varphi)\subset(0, \infty)$ . Moreover, since $sp(x^{*})=-sp(x)$ for every $x\in M,$ $sp(\varphi)$ is also
contained in $(-\infty, 0$]. Hence, $sP(\varphi)\subseteqq\{0\}$ and $\varphi$ is $\alpha$ -invariant. Therefore,
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since the image $\epsilon(x)$ belongs to the $\sigma$-weakly closed convex hull of $\{\alpha_{t}(x)\}$ we
have that $\varphi\circ\epsilon=\varphi$ . As $\varphi$ vanishes on the algebra $M(\alpha)$ , we conclude that $\varphi=0$

namely, $H^{\infty}(\alpha)+H^{\infty}(\alpha)^{*}$ is $\sigma$-weakly dense in $M$. To show that $\epsilon$ is multiplica-
tive on $H^{\infty}(\alpha)$ , we shall show that

$\{x\in H^{\infty}(\alpha)|\epsilon(x)=0\}=H^{\infty}(\alpha)_{0}$ ,

an ideal of $H^{\infty}(\alpha)$ . Take an element $x$ with positive spectrum and let $\varphi$ be an
arbitrary normal state of $M(\alpha)$ . Then, $\varphi\circ\epsilon$ is an invariant normal state and
hence by Lemma 2.2 one concludes that $\langle x, \varphi\circ\epsilon\rangle=\langle\epsilon(x), \varphi\rangle=0$ . Hence $\epsilon(x)=0$

and
$H^{\infty}(\alpha)_{0}\subset\{x\in H^{\infty}(\alpha)|\epsilon(x)=0\}$ .

Next suppose that there exist an element $a$ of $H^{\infty}(\alpha)$ such that $\epsilon(a)=0$ and
$a\not\in H^{\infty}(\alpha)_{0}$ . We can find a functional $\varphi$ in $M_{*}$ such that $\langle a, \varphi\rangle=1$ and
$\langle H^{\infty}(\alpha)_{0}, \varphi\rangle=0$ . Let $ F(t)=\langle\alpha_{t}(a), \varphi\rangle$ . Then by Lemma 2.2 and Proposition 2.3
we have

$sp(F)\subset-sp_{\alpha}(a)\cap sp_{\alpha}(\varphi)\subset(-\infty, 0]\cap[0, \infty)=\{0\}$ .
Hence, by $[$22; 7.8.3 $(e)]F$ is constant in $R$ . That is, $\langle\alpha_{t}(a), \varphi\rangle=\langle a, \varphi\rangle=1$ .
Therefore, $\langle x, \varphi\rangle=1$ for every $x\in K(x, \alpha)$ and this implies that $\langle\epsilon(a), \varphi\rangle=1$ .
This is a contradiction. Hence $H^{\infty}(\alpha)_{0}$ coincides with the kernel of $\epsilon$ in $H^{\infty}(\alpha)$

and $\epsilon$ is multiplicative on $H^{\infty}(\alpha)$ .
Now suppose that $H^{\infty}(\alpha)$ is not maximal subdiagonal with respect to $\epsilon$ .

Then there exists an element $a$ in the maximal subdiagonal algebra $H^{\infty}(\alpha)_{m}$

with $sP(a)$ a $[0, \infty]$ . By [2; Theorem 2.2.1] $H^{\infty}(\alpha)_{m}$ is an $\alpha_{t}$ -invariant $\sigma$-weakly
closed subalgebra. Hence for every $f$ in $L^{1}(R),$ $a*f$ belongs to $H^{\infty}(\alpha)_{m}$ . We
choose a function $f$ of $L^{1}(R)$ such that $a*f\neq 0$ and $sP(a*f)\subset(-\infty, 0)$ . Then
the element $(a*f)^{*}$ belongs to $H^{\infty}(\alpha)_{0}$ and hence

$\epsilon((a*f)^{*}(a*f))=\epsilon((a*f)^{*})\epsilon(a*f)=0$ ,

which implies that $a*f=0$ , a contradiction. This completes all proofs.
In this paper we do not enter into the discussions for the construction of

another noncommutative Hardy spaces $H^{p}(\alpha)$ except for $H^{\infty}(\alpha)$ and $H^{1}(\alpha)$ . It
would be interesting to investigate their features in the generalized $L^{p}$-spaces
canonically associated to a semifinite von Neumann algebra as the first candi-
date in the theory of noncommutative Hardy spaces.

Let $H^{1}(\alpha)_{0}$ be the norm closure of the set of elements with positive spec-
trums. The following is a dual version of Lemma 2.2.

LEMMA 2.5. An element $a$ of $M$ has nonnegative spectmm if and only if
every functional of $H^{1}(\alpha)_{0}$ vanishes at $a$ .

PROOF. Suppose that $\langle a, H^{1}(\alpha)_{0}\rangle=0$ . Let $f$ be a function of $L^{1}(R)$ such
that $f$ vanishes on a neighbourhood of $[0, \infty]$ . For any functional $\varphi$ of $M_{*}$ ,
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we have
$\langle a*f, \varphi\rangle=\langle a, \varphi*f\rangle=0$

because $sp(\varphi*f)\subset supp\tilde{f}\subset\wedge[\epsilon, \infty)$ for some positive $\epsilon$ . Hence, $a*f=0$ and
$sp(a)\subset[0, \infty)$ by [4; Proposition 2.2]. Next, suppose that $sp(a)\subset[0, \infty)$ and
take a functional $\varphi$ of $M_{*}$ with positive spectrum, say $sp(\varphi)\subset[\epsilon, \infty)$ . We may
assume that $sp(\varphi)$ is a compact subset of $R$ . Choose a function $f$ of $L^{1}(R)$

such that $f\hat{(}r$ ) $=1$ on a neighborhood of $-sp(\varphi)$ and $\hat{f}(r)=0$ for $r\geqq---\epsilon 31$ .
Then, we have

$\langle a, \varphi\rangle=\langle a, \varphi*f\rangle=\langle a*f, \varphi\rangle=0$ .
This completes the proof.
THEOREM 2.6. Let $M$ be a von Neumann algebra with a flow $\alpha=\{\alpha_{t}\}$ .

Then, if $M$ is $\alpha- finite$ the sPace $H^{1}(\alpha)+H^{1}(\alpha)^{*}$ is norrn dense in $M_{*}$ .
PROOF. Let $a$ be an element of $M$ such that

$\langle a, H^{1}(\alpha)+H^{1}(\alpha)^{*}\rangle=0$ .
We assert that $a=0$ . From the above lemma we have that $sp(a)\subset[0, \infty)$ and
$sp(a^{*})\subset[0, \infty)$ . Hence, $sP(a)\subset\{0\}$ and $a$ is $\alpha$-invariant. Let $\varphi$ be a normal
invariant state of $M$. Then, the functional $ L_{a}^{*}\varphi$ is also $\alpha$-invariant, where
$ L_{a}^{*}\varphi$ is defined as $\langle x, L_{a}^{*}\varphi\rangle=\langle a^{*}x, \varphi\rangle$ . Hence,

$\langle a^{*}a, \varphi\rangle=\langle a, L_{a}^{*}\varphi\rangle=0$ ,

which implies that $a=0$ .
We conclude this section with the following observation. Recall that a

subdiagonal algebra $(\mathfrak{A}, \epsilon)$ in a finite von Neumann algebra $M$ is said to be
finite if there exists a faithful normal trace for which $\epsilon$ is invariant. The
structure of a finite subdiagonal algebra has been extensively studied in [2].

PROPOSITION 2.7. Let $M$ be a finite von Neumann algebra on a separable
Hilbert sPace with a flow $\alpha$ and let $Z$ be the center of M. Then if $Z$ is $\alpha- finite$ ,
$H^{\infty}(\alpha)$ is a finite maximal subdiagonal algebra.

PROOF. Let $\Phi$ be the faithful normal center-valued trace of $M$. Then,
for every $t,$ $\Phi_{t}(a)=\alpha_{t}^{-1}\Phi(\alpha_{t}(a))$ is also a center-valued trace and hence the
unicity of the trace implies that $\alpha_{t}\Phi(a)=\Phi(\alpha_{t}(a))$ . Let $\{\varphi_{\alpha}\}$ be a separating
family of invariant normal states of $Z$. The above equality for $\Phi$ shows that
$\{\varphi_{\alpha}\circ\Phi\}$ is a separating family of invariant normal traces of $M$. Therefore we
get a faithful $\alpha$ -invariant normal trace and by Theorem 2.4 the algebra $H^{\infty}(\alpha)$

is a Pnite maximal subdiagonal algebra.
The proposition includes the case where $\alpha$ is a group of automorphisms

leaving the center elementwise fixed such as modular automorphism groups.
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\S 3. Dirichlet subalgebras and $C^{*}$-subdiagonal algebras.

In this section we shall consider a subalgebra of a $C^{*}$-algebra corresponding
to a subdiagonal algebra in a von Neumann algebra, as a noncommutative
version of the algebra of generalized analytic functions. Let $B$ be a $c*$ -algebra
with unit. We say that a closed subalgebra $d$ of $B$ with the unit of $B$ is a
Dirichlet subalgebra if $A+d^{*}$ is norm dense in $B$ . Let $\epsilon$ be a faithful pro-
jection of norm one in $B$ . A Dirichlet subalgebra $d$ of $B$ is said to be $C^{*}-$

subdiagonal if the pair $(c\emptyset, \epsilon)$ satisfies the following conditions;
(i) $\epsilon$ is multiplicative on $A$ ,
(ii) $\epsilon(\cup q)=d\cap d^{*}$ .

We call the $C^{*}$ -subalgebra $d\cap d^{*}$ the diagonal of $d$ . Let $I=\{x\in \mathcal{A}|\epsilon(x)=0\}$

and put

$d_{m}=\{x\in B|\epsilon(Ixd)=\epsilon(dxI)=0\}$ .
Then as in the case of a subdiagonal algebra, the set $d_{m}$ turns out to be the
maximal $c*$-subdiagonal algebra which contains $\llcorner fl$ . This can be proved along
with the lines of the proof of Theorem 2.2.1 in [2] with some technical modi-
fications. We include the result in

THEOREM 3.1. For a given $C^{*}$ -subdiagonal algebra $d$ of $B$ with respect to
$\epsilon$ , the set $d_{m}$ is the maximal $c*$ -subdiagonal algebra with resPect to $\epsilon$ which
contains $d$ .

PROOF. Let $A_{1}$ be a $c*$ -subdiagonal algebra which contains $\leftrightarrow q$ . Then, for
every $a\in \mathcal{A},$ $b\in I$ and $c\in d_{1}$ we have $\epsilon(acb)=\epsilon(bca)=0$ . Hence, $d_{m}\supset \mathcal{A}_{1}$ and
$d_{m}+d_{m}^{*}$ is norm dense in $B$ . We shall show that $d_{m}$ is an algebra and $\epsilon$ is
multiplicative on $d_{m}$ . Note that $\epsilon$ is a projection of norm one of $B$ to the
$C^{*}$ -subalgebra $d\cap \mathcal{A}^{*}$ . Let $\{\varphi_{a}\}$ be a faithful family of states of $\mathcal{A}\cap \mathcal{A}^{*}$ and
put $\hat{\varphi}_{\alpha}=\varphi_{\alpha}\circ\epsilon$ . Let $\pi$ be the Gelfand-Neumark-Segal (GNS) representation of
$B$ by $\hat{\varphi}_{\alpha}$ on the Hilbert space $H_{\alpha}$ and consider the (isomorphic) representation
$\pi=\sum_{\alpha}\pi_{a}$ on the space $H=\sum_{\alpha}H_{\alpha}$ . Let $\eta_{\alpha}$ be the canonical map of $B$ into $H_{a}$ .
We define the following closed subspaces of $H_{\alpha}$ ;

$\mathcal{M}_{\alpha}=[\eta_{\alpha}(d)]$ , $\mathcal{M}_{\alpha}^{*}=[\eta_{\alpha}(\leftrightarrow q*)]$ ,

$\mathfrak{N}_{\alpha}=[\eta_{\alpha}(I)]$ , $\mathfrak{N}_{a}^{*}=[\eta_{\alpha}(I^{*})]$ ,

and consider the subspaces of $H$ ;

$\mathcal{M}=\sum_{\alpha}\mathcal{M}_{\cap}$ , $\mathcal{M}^{*}=\sum_{\alpha}\mathcal{M}_{\alpha}^{*}$ ,

$\mathfrak{N}=\sum_{\alpha}\mathfrak{N}_{\alpha}$ , $\mathfrak{N}^{*}=\sum_{\alpha}\mathfrak{N}_{\alpha}^{*}$ .
Let
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$d_{M}=\{x\in B|\pi(x)\mathcal{M}\subset \mathcal{M}, \pi(x)^{*}\mathcal{M}^{*}\subset \mathcal{M}^{*}\}$ .
Clearly, $d_{M}$ is a closed subalgebra of $B$ . We assert that $d_{m}=d_{M}$ and $\epsilon$ is
multiplicative on $\llcorner fl_{M}$ . Since, the set $d+d^{*}=\mathcal{A}+I^{*}=d^{*}+I$ is norm dense
in $B$ the same argument in the proof of [2; Theorem 2.2.1] shows that

$H_{\alpha}=\mathcal{M}_{\alpha}\oplus \mathfrak{N}_{a}^{*}=\mathcal{M}_{a}^{*}\oplus \mathfrak{N}_{\alpha}$ .
Hence,

$H=\mathcal{M}\oplus \mathfrak{N}^{*}=\mathcal{M}^{*}\oplus \mathfrak{N}$ .
Take an element $x\in \mathcal{A}_{m}$ , then for every $a\in d$ and $b\in I^{*}$ we have that

$(\pi_{\alpha}(x)\eta_{\alpha}(a), \eta_{\alpha}(b^{*}))=\phi_{\alpha}(bxa)=\varphi_{\alpha}\circ\epsilon(bxa)=0$

and
$(\pi_{\alpha}(x^{*})\eta_{\alpha}(a^{*}), \eta_{\alpha}(b))=\phi_{\alpha}(b^{*}x^{*}a^{*})=\varphi_{\alpha^{\circ}}\epsilon(axb)^{*}=0$

by the definition of $d_{m}$ . Hence, $\pi_{\alpha}(x)\eta_{\alpha}(d)\perp\eta_{\alpha}(I^{*})$ and $\pi_{\alpha}(x^{*})\eta_{\alpha}(d^{*})\perp\eta_{\alpha}(I)$ .
Therefore,

$\pi_{\alpha}(x)\mathcal{M}_{\alpha}\subset \mathcal{M}_{\alpha}$ and $\pi_{\alpha}(x^{*})\mathcal{M}_{a}^{*}\subset \mathcal{M}_{\alpha}^{*}$ ,

which implies that

$\pi(x)\mathcal{M}\subset \mathcal{M}$ and $\pi(x^{*})\mathcal{M}^{*}\subset \mathcal{M}^{*}$ .

Thus, $d_{m}$ is contained in $d_{M}$ . Next, let $p_{\alpha}$ be the projection of $H$ onto the
subspace of $H_{\alpha}$ determined by $\eta_{\alpha}(\epsilon(B))$ . By [2; Proposition 6.11],

$p_{\alpha}\eta_{\alpha}(x)=\eta_{\alpha}(\epsilon(x))$ for every $x\in B$ .

Now, for every element $a$ and $b$ in $\mathcal{A}$ , we have

$p_{\alpha}\pi(a)^{*}\eta_{a}(b^{*})=p_{\alpha}(\eta_{\alpha}(a^{*}b^{*}))=\eta_{\alpha}(\epsilon(a^{*}b^{*}))$

$=\eta_{\alpha}(\epsilon(a^{*})\epsilon(b^{*}))=\pi(\epsilon(a^{*}))P_{\alpha}\eta_{\alpha}(b^{*})$ ,

which says that $p_{\alpha}\pi(a^{*})|\mathcal{M}_{\alpha}^{*}=\pi(\epsilon(a^{*}))p_{\alpha}|\mathcal{M}_{\alpha}^{*}$ . Therefore, if $a\in d,$ $x\in A_{M}$ , for
every index $\alpha$ we get

$\eta_{\alpha}((\epsilon(x)\epsilon(a))^{*})=\eta_{\alpha}(\epsilon(a^{*})\epsilon(x^{*}))=\pi(\epsilon(a^{*}))P_{\alpha}\eta_{\alpha}(x^{*})$

$=p_{\alpha}\pi(a^{*})\eta_{\alpha}(x^{*})=\eta_{\alpha}(\epsilon(a^{*}x^{*}))$

because $\eta_{\alpha}(x^{*})=\pi_{\alpha}(x^{*})\eta_{\alpha}(1)\in \mathcal{M}_{a}^{*}$ . Hence,

$\eta_{\alpha}((\epsilon(x)\epsilon(a))^{*}-\epsilon(a^{*}x^{*}))=0$

and
$\phi_{\alpha}((\epsilon(a^{*})\epsilon(x^{*})-\epsilon(a^{*}x^{*}))^{*}(\epsilon(a^{*})\epsilon(x^{*})-\epsilon(a^{*}x^{*})))=0$ for every $\alpha$ .

Therefore, $\epsilon(a^{*})\epsilon(x^{*})=\epsilon(a^{*}x^{*})$ , that is, $\epsilon(x)\epsilon(a)=\epsilon(xa)$ . Thus,

$P_{\alpha}\pi(x)\eta_{\alpha}(a)=\eta_{\alpha}(\epsilon(xa))=\eta_{\alpha}(\epsilon(x)\epsilon(a))=\pi_{\sigma}(\epsilon(x))p_{\alpha}\eta_{\alpha}(a)$ for every $\alpha$ ,
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which means that $p_{\alpha}\pi(x)|\mathcal{M}_{\alpha}=\pi(\epsilon(x))p_{\alpha}|\mathcal{M}_{\alpha}$ . If $x,$
$y\in\leftrightarrow q_{M}$ then $\eta_{\alpha}(y)=\pi(y)\eta_{\alpha}(1)$

$\in \mathcal{M}_{\alpha}$ , so that

$\eta_{\alpha}(\epsilon(xy))=P_{\alpha}\eta_{\alpha}(xy)=p_{\alpha}\pi(x)\eta_{\alpha}(y)$

$=\pi(\epsilon(x))p_{\alpha}\eta_{\alpha}(y)=\pi(\epsilon(x))\eta_{a}(\epsilon(y))$

$=\eta_{\alpha}(\epsilon(x)\epsilon(y))$ for every $\alpha$ .
Therefore, the same arguments as above show that $\epsilon(xy)=\epsilon(x)\epsilon(y)$ . Hence, $d_{M}$

is a $C^{*}$ -subdiagonal algebra which contains $d$ , and $\mathcal{A}_{M}=\leftrightarrow q_{m}$ .
Let $\alpha=\{\alpha_{t}\}$ be a strongly continuous one parameter group of $*_{-}auto-$

morphisms of $B$ , a flow. We denote by $A(\alpha)$ the algebra of all elements with
nonnegative $\alpha$-spectrums (the same relation for the spectrum $sp_{\alpha}(xy)$ as in the
case of a flow on a von Neumann algebra enables the set $A(\alpha)$ to be a sub-
algebra of $B$). Then as in Theorem 2.4 if $A(\alpha)$ turns out to be a $C^{*}$ -sub-
diagonal algebra we can show that it is the maximal $C^{*}$ -subdiagonal algebra
by the above theorem. Put $B(\alpha)=A(\alpha)\cap A(\alpha)^{*}$ and write $A(\alpha)_{0}$ as the norm
closure of the set of elements with positive spectrums.

Let $\varphi$ be an $\alpha$-invariant state of $B$ . Then the GNS-representation $\pi$ of $\varphi$

becomes a covariant representation in the sense that there exists a strongly
continuous one parameter unitary group $u_{t}$ in $H$ such that $u_{t}\pi_{\varphi}(a)u_{t}^{*}=\pi(\alpha_{t}(a))$

for every $a\in B$ . Thus $\{u_{t}\}$ induces a flow $\beta_{t}$ on $ M=\pi_{\varphi}(B)\sim$ . Let $H^{\infty}(\beta)$ be the
algebra of analytic element of $M$ for $\beta$ .

THEOREM 3.2. The $\sigma$-weak closure of $\pi_{\varphi}(A(\alpha)_{0})$ coincides with $H^{\infty}(\beta)_{0}$ .
PROOF. Take a positive number $\epsilon$ and an element $a$ of $B$ with $sP.(a)$

$\subset[\epsilon, \infty)$ . Let $f$ be an arbitrary function of $J(a)$ , then $\pi_{\varphi}(a)*f=\pi_{\varphi}(a*f)=0\beta\alpha$

Hence, $sp_{\beta}(\pi_{\varphi}(a))\subseteqq sp_{\alpha}(a)\subset[\epsilon, \infty)$ . This shows that $\pi_{\varphi}(A(\alpha)_{0})$ is contained in
$H^{\infty}(\beta)_{0}$ . Next, take an element $x$ with $sp_{\beta}(x)\subset[\epsilon, \infty)$ and let $\{\pi_{\varphi}(a_{i})\}$ be a net
of $\pi_{\varphi}(B)$ converging $\sigma$-weakly to $x$ . Note that $x$ is $\sigma$-weakly approximated by
$ x*f_{r}\beta$ for the approximate identity $\{f_{r}\}$ of $L^{1}(R)$ whose Fourier transforms have
compact supports. We may assume that $sp_{\beta}(x)$ is compact. Then let $f$ be a
function of $L^{1}(R)$ such that $f=1$ on a neighborhood of $sp(x)$ and supp $ f\subset$

$[--2\epsilon\infty]$ . We have $x=x*f$ and since the map $ y\rightarrow y*f\beta$ is $\sigma$-weakly continuous

by [4; Proposition 1.6], we get

$ x=\lim\pi_{\varphi}(a_{i})*f=\lim\pi_{\omega}(a_{i}*f)\beta\alpha$

where $ a_{i}*f\in A(\alpha)_{0}\alpha$ Hence, $H^{\infty}(\beta)_{0}$ is contained in $\pi_{\varphi}(A(\alpha)_{0})$ .
Let $\omega$ be a normal state of $M$ such that $\omega\circ\pi=\varphi$ . We have the following
PROPOSITION 3.3. SuppOse that $M$ is $\beta- finite$ and $fhe\sigma$-weak closure of

$\pi_{\varphi}(B(\alpha))$ coincides with $M(\beta)$ . Then, $H^{\infty}(\beta)$ is the $\sigma$-weak closure of $\pi_{\varphi}(A(\alpha))$ .
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The proposition is an easy consequence of the Theorem 1.2 and the fact
$\{x\in H^{\infty}(\beta)|\epsilon(x)=0\}=H^{\infty}(\beta)_{0}$ .

Corresponding to the definition in a commutative dynamics, we say that
a flow $\alpha$ on a $c*$ -algebra $B$ is strictly ergodic if there exists only one $\alpha-$

invariant state $\varphi_{s}$ on $B$ . The following result is a generalization of Muhly
[17; Theorem 2].

PROPOSITION 3.4. If $(B, \alpha)$ is sirictly ergodic, then the algebra $A(\alpha)$ is a
Dirichlet subalgebra of $B$ .

PROOF. Let $\varphi$ be a bounded functional of $B$ vanishing on $A(\alpha)+A(\alpha)^{*}$ .
Then, $sP(\varphi)\subseteqq\{0\}$ and $\varphi$ is $\alpha$-invariant. By [5; 12.3.4], $\varphi$ is uniquely decomposed
into the sum of nonnegative linear functionals in which

$\varphi=\varphi_{1}-\varphi_{2}+i(\varphi_{3}-\varphi_{4})$ , $\Vert\varphi_{1}-\varphi_{2}\Vert=\Vert\varphi_{1}\Vert+\Vert\varphi_{2}\Vert$

and
$\Vert\varphi_{3}-\varphi_{4}\Vert=\Vert\varphi_{3}\Vert+\Vert\varphi_{4}\Vert$ .

Since $\varphi$ is invariant, the unicity implies that all $\varphi_{i}’ s$ are invariant. Therefore,
we can write as $\varphi_{i}=\Vert\varphi_{i}\Vert\varphi_{s}(i=1,2,3,4)$ and hence $\varphi=\lambda\varphi_{s}$ for some scalar $\lambda$ .
However, since the unit of $B$ is in $A(\alpha)$ one sees that

$\lambda=\lambda\langle 1, \varphi_{s}\rangle=\langle 1, \varphi\rangle=0$ and $\varphi=0$ .
Thus, $A(\alpha)+A(\alpha)^{*}$ is norm dense in $B$ .

Let $\pi$ be the GNS-representation of $B$ by $\varphi$ and write $\varphi=\omega\circ\pi_{\varphi}$ . In com-
mutative cases, the functional $\omega$ becomes a faithful invariant state on $\pi_{\varphi}(B)$

and one may conclude without difficulty that the algebra $A_{\pi}(\beta)$ of analytic
elements of $\pi_{\varphi}(B)$ for the induced flow $\beta$ from $\alpha$ turns out to be a maximal
$C^{*}$ -subdiagonal algebra with the projection $\epsilon(\pi_{\varphi}(x))=\langle\pi_{\varphi}(x), \omega\rangle 1=\langle x, \varphi\rangle 1$ .

\S 4. Examples.

Let $\Gamma$ be a discrete abelian group with an archimedian order and let $G$ be
the dual of $\Gamma$ . As it is well known, $\Gamma$ is isomorphic to the integer group or
to a dense subgroup of the additive group of real numbers $R$ . In both cases,
every real number $t$ gives rise a character $e_{t}$ of $\Gamma$ by $\langle e_{t}, \gamma\rangle=e^{t+\gamma}$ . In the
latter case, $e_{t}$ is a character of $\Gamma$ which is continuous on $\Gamma$ with respect
to the usual topology of $R$ restricted to $\Gamma$ . Now the translation $T_{t}(g)=g+e_{t}$

defines a flow on the compact dual $G$ . Let $C(G)$ be the algebra of all complex
valued continuous functions on $G$ . The flow $\{T_{t}\}$ induces naturally a strongly
continuous one-parameter group $\{\alpha_{t}\}$ of $*$ -automorphisms of $C(G)$ defined by
$\alpha_{t}f(y)=f(g-e_{t})$ . Here the algebra $A(\alpha)=A(G)$ is simply the disk algebra or
the algebra of generalized analytic functions on $G$ (cf. [9; Chap. VII]). The
flow $\alpha$ is strictly ergodic with the unique invariant faithfull state $\mu$ , the
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normalized Haar measure on $G$ . Hence, as we have mentioned in \S 3 the algebra
$A(G)$ is a maximal $C^{*}$ -subdiagonal algebra with respect to the faithful projection
$\epsilon(f)=\langle f, \mu\rangle=\int_{G}f(g)d\mu$ . Let $M$ be a von Neumann algebra on a separable

Hilbert space $H$. We denote by $B$ the $C^{*}$ -tensor product $C(G)\bigotimes_{\alpha}M$ of $C(G)$

and $M$. Since the cross norm $\alpha$ coincides with the least cross norm $\lambda$ by [24;

Proposition 2] the algebra $B$ is also regarded as the algebra $C(G, M)$ of all
M-valued continuous functions on $G$ . Set $\tilde{\alpha}_{t}=\alpha_{t}\otimes 1$ . We get a flow $\tilde{\alpha}=\{\tilde{\alpha}_{t}\}$

on $B$ . We shall investigate first the structure of the algebra of analytic ele-
ments, $A(\tilde{\alpha})$ . Let $L_{\varphi}$ be the left Fubini mapping associated with a bounded
linear functional $\varphi$ of $M$ (cf. [28]), that is, $L_{\varphi}$ is a bounded linear mapping of
$B$ to $C(G)$ such that

$L_{\varphi}(\sum_{t=1}^{m}f_{i}\otimes a_{i})=\sum_{i=1}^{n}\langle a_{i}, \varphi\rangle f_{i}$ .

LEMMA 4.1. For each elemcnt $x$ of $B$ , we have

$sP_{\alpha}^{\sim}(x)=\overline{\bigcup_{\varphi\in M_{*}}sp_{a}(L_{\varphi}(x))}=\overline{\bigcup_{\varphi\in M^{\aleph}}sp_{\alpha}(L_{\varphi}(x))}$ .

PROOF. Take a real number $\gamma$ such that $\gamma\not\in\overline{\bigcup_{\varphi\in M_{*}}sp_{\alpha}(L_{\varphi}(x))}$ . There exists

a function $f$ of
$L^{1}(R)andf(\gamma)=l.Then$

,

such that $f$ vanishes on a neighborhood of $\overline{\bigcup_{\varphi\in M_{*}}sp_{\alpha}(L_{\varphi}(x))}$

$ L_{\varphi}(x\sim*f)=\int_{R}L_{\varphi}(\tilde{\alpha}_{t}(x))f(t)dt=\int_{R}\alpha_{t}(L_{\varphi}(x))f(t)dt\alpha$

$=L_{\varphi}(x)*f=0\alpha$ for every $\varphi\in M_{*}$ .

It follows that $ x*f=0a\sim$ and $\gamma\not\in sp_{\alpha}\sim(x)$ . Thus,

$sp_{a}\sim(x)\subset\overline{\bigcup_{\varphi\in M_{*}}sp_{\alpha}(L_{\varphi}(x))}\subset\overline{\bigcup_{\varphi\in M^{*}}sp_{\alpha}(L_{\varphi}(x))}$ .
On the other hand, if $\gamma\not\in sp_{\alpha}\sim(x)$ we can find a function $f\in J(x)$ with $\hat{f}(\gamma)=1$ .
Then, $ x\star\sim f=0\alpha$ which implies that $ L_{\varphi}(x)*f=0\alpha$ for every $\varphi\in M^{*}$ . Hence, $\gamma\not\in$

$sP_{\alpha}(L_{\varphi}(x))$ and

$\bigcup_{\varphi\in M_{*}}sp_{\alpha}(L_{\varphi}(x))\subset Usp_{\alpha}(L_{\varphi}(x))\subset sp_{a}^{\sim}(x)\varphi\in M^{*}$

Since $sp_{a}\sim(x)$ is closed we get the desired inclusion.
Let $\{p_{\tau}\}$ be an approximate identity consisting of trigonometric polynomials

on $G$ by which we mean a net of polynomials,

$ l_{r}(g)=\sum_{\gamma\in\Gamma}\lambda_{\tau}(\gamma)\langle g, \gamma\rangle$

satisfies the following conditions;
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(i) $P_{\tau}\geqq 0$ ,

(4.2) (ii) $\int_{G}p_{\tau}(g)d\mu=1$ ,

(iii) $\lim\sup_{g\not\in U}|p(g)|=0$ for every neighborhood $U$ of the identity.

Take an element $x$ of $B$ and consider its “ Fourier transform “
$\hat{x}(\gamma)$ which is

defined by $\hat{x}(\gamma)=\int_{G}x(g)\langle g, \gamma\rangle d\mu$ for $\gamma\in\Gamma$ .
Put $x_{\tau}(g)=\sum_{\gamma\in\Gamma}\lambda_{r}(\gamma)\langle g, \gamma\rangle\hat{x}(\gamma)$ . Clearly $x_{\tau}$ belongs to $B$ .
LEMMA 4.3. The function $x_{\tau}(g)$ converges uniformly to $x(g)$ , this is $x_{\tau}\rightarrow x$

in $B$ .
PROOF. We have

$ x(g)=\sum_{\gamma\in 1^{\tau}}\lambda_{\tau}(g)\langle g, \gamma\rangle\int_{G}x(h)\langle h, \gamma\rangle d\mu$

$=\int_{G}\sum_{\gamma\in\Gamma}\lambda_{r}(\gamma)\langle g-h, \gamma\rangle x(h)d\mu(n)$

$=\int_{G}\sum_{\gamma\in\Gamma}\lambda_{\tau}(\gamma)\langle h, \gamma\rangle x(g-h)d\mu(n)$

$=\int_{G}p_{\tau}(h)x_{h}(g)d\mu(h)$ where $x_{h}(g)=x(g-h)$ .
Hence,

$\Vert x_{\tau}(g)-x(g)\Vert=\Vert\int_{G}p_{\tau}(g)(x_{h}(g)-x(g))d\mu(h)\Vert$

$\leqq\sup_{h\in U}\Vert x_{h}(g)-x(g)\Vert+\sup_{h\not\in U}|p_{r}(h)|\cdot 2\Vert x\Vert$

and
$\Vert x-x_{\tau}\Vert\leqq\sup_{h\in U}\Vert x-x_{h}\Vert+2\Vert x\Vert\sup_{h\in}|p_{\tau}(h)|$

for every neighborhood $U$ of the identity. Now the map $h\rightarrow x_{h}$ is a continuous
map of $G$ into $C(G, M)=B$ so that the first term will be small for an appro-
priate $U$ , where as the second term will become smaller for that $U$ by the
property (iii) of (4.2).

LEMMA 4.4. If $x$ is an analytic element of $B$ , then $\hat{x}(\gamma)=0$ for every $\gamma<0$ .
PROOF. For every $\varphi\in M^{*},$ $L_{\varphi}(\mathfrak{r})\in A(\alpha)$ by Lemma 4.1. Hence,

$\int_{G}L_{\varphi}(x)(g)\langle g, \gamma\rangle d\mu=0$ for every $\gamma<0$ .
It follows that

$\langle\hat{x}(\gamma), \varphi\rangle=\int_{G}\langle x(g), \varphi\rangle\langle g, \gamma\rangle d\mu$

$=\int_{G}L_{\varphi}(x)(g)\langle g, \gamma\rangle d\mu=0$ for every $\varphi\in M^{*}$ .
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Hence, $\hat{x}(\gamma)=0$ .
Let $R_{\mu}$ be the right Fubini mapping of $B$ to $M$ associated to the state $\mu$ .

Then, if we identify $M$ with the subalgebra $1\otimes M$ in $B,$ $R_{\mu}$ is a faithful pro-
jection of norm one of $B$ to $M$ because $\mu$ is a faithful state on $C(G)$ . Denote
this projection by $\epsilon_{\mu}$ .

THEOREM 4.5. $A(\tilde{\alpha})=A(G)\bigotimes_{\lambda}M$ and it is a maximal $C^{*}$ -subdiagonal algebra

with $resPect$ to $\epsilon_{\mu}$ with the diagonal $M$.
PROOF. It is apparent that $A(G)\bigotimes_{\lambda}M\subset A(\tilde{\alpha})$ . Let $x$ be an analytic element

of $B$ , then by Lemma 4.3 and 4.4 $x$ is approximated uniformly by the elements
of $A(G)\bigotimes_{\lambda}M$. Hence $A(\tilde{\alpha})=A(G)\bigotimes_{\lambda}M$, which implies that $\epsilon_{\mu}$ is multiplicative

on $A(\tilde{\alpha})$ because $\mu$ is multiplicative on $A(G)$ . Finally, since $A(\tilde{\alpha})$ is a $C^{*}-$

subdiagonal algebra defined by a flow, by Theorem 3.1 the same argument as
in Theorem 2.4 shows that $A(\tilde{\alpha})$ is the maximal $C^{*}$ -subdiagonal algebra for $\epsilon_{\mu}$ .

It is worth noticing that if we denote by $A(G)_{0}$ the kernel of the multi-
plicative state $\mu$ in $A(G)$ then the kernel of $\epsilon_{\mu}$ in $A(\tilde{\alpha})$ coincides with $A(\alpha)_{0\ovalbox{\tt\small REJECT}}M$

$=\{x\in A(\tilde{\alpha})|\hat{x}(e)=0\}$ , the uniform closure of the set of elements of $B$ with
positive spectrums. The authors do not know whether or not this latter thing
holds for an arbitrary $C^{*}$ -subdiagonal algebra.

Now let us consider $C(G)$ as a $C^{*}$ -algebra of bounded (multiplication)

operators on the Hilbert space $L^{2}(G)$ . Let $\mathcal{M}=L^{\infty}(G)\overline{\otimes}M$ be the tensor product
of $L^{\infty}(G)$ and $M$ on $L^{2}(G)\bigotimes_{\sigma}H$ as von Neumann algebras. The flow $\tilde{\alpha}$ of $B$

and the projection $\epsilon_{\mu}$ can be naturally extended to $\mathcal{M}$ as a ( $\sigma$-weakly continuous)

flow $\tilde{\alpha}$ (use the same letter) and a faithful normal projection $\epsilon_{\mu}$ of $\mathcal{M}$ to $M$.
The predual of $\mathcal{M}$ is expressed as the tensor product $L^{1}(G)\bigotimes_{\sigma}M_{*}$ with the

greatest cross norm $\gamma$ . Let $H^{\prime}(G)$ be the Hardy class associated to $A(G)$ . Then,
since the predual $\mathcal{M}_{*}$ is identified with $L^{1}(G, M_{*})$ , the product space $H^{1}(G)\bigotimes_{\gamma}M_{*}$

may be viewed as a closed subspace of $\mathcal{M}_{*}$ . Thus, we have
THEOREM 4.6. In the von Neumann algebra $\mathcal{M}$ ; the algebra $H^{\infty}(\tilde{\alpha})$ is the

a-weak closure of $A(\tilde{\alpha})$ and the maximal subdiagonal algebra with respect to $\epsilon_{\mu}$ .
The space of analytic functionals $H^{1}(\tilde{\alpha})$ is the tensor product $H^{1}(G)\bigotimes_{\gamma}M_{*}$ .

The first assertion corresponds to Theorem 5.3.2 in [2]. The result means ’

that $H^{\infty}(\tilde{\alpha})$ is the $\sigma$-weak closure of the finite combinations, $\{\sum_{\gamma\geqq 0}\langle\cdot, \gamma\rangle a_{\gamma}|a_{\gamma}\in M\}$ .
PROOF. The Prst assertion is an easy consequence of Proposition 3.3. For

the second assertion one can easily see that the algebraic tensor product of
the Hardy class $H^{1}(G)$ and $M_{*}$ is contained in $H^{1}(\tilde{\alpha})$ . Let $\varphi$ be an element of
$H^{1}(\tilde{\alpha})$ and regard it as an $M_{*}$-valued integrable function $\varphi(g)$ of $G$ . Take an
element $a$ of $M$ and consider the left Fubini mapping $L_{a}$ associated to the
functional $a$ on $M_{*}$ . Then, the same arguments as in Lemma 4.2 show that
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La $(\varphi)\in H^{1}(G)$ .
Hence,

$\int_{G}L_{a}(\varphi)(g)\langle g, \gamma\rangle d\mu=0$ for every $\gamma<0$ .

Now consider “ the negative coefficients of the Fourier transform $\hat{\varphi}$

“ of $\varphi$ which

is defined by $\hat{\varphi}(\gamma)=\int_{G}\varphi(g)\overline{\langle g,\gamma\rangle}d\mu$ . We have;

$\langle a,\hat{\varphi}(\gamma)\rangle=\int_{G}\langle a, \varphi(g)\rangle\overline{\langle g,\gamma\rangle}d\mu$

$=\int_{G}L_{a}(\varphi)(g)\langle g, \gamma\rangle d\mu=0$

for every $\gamma<0$ and every $a\in M$. Thus, $\hat{\varphi}(\gamma)=0$ for $\gamma<0$ . Put $\varphi_{\tau}(g)=$

$\sum_{\gamma\in\Gamma}\lambda_{r}(g)\langle g, \gamma\rangle\hat{\varphi}(\gamma)$ for the approximate identity $p_{r}(g)$ . As in the proof of

Lemma 4.3 we have

$\varphi_{\tau}(g)=\int_{G}p_{\tau}(h)\varphi(g-h)d\mu=\int_{G}p_{\tau}(h)\varphi_{h}(g)d\mu(h)$ .
Hence,

$\Vert\varphi_{\tau}-\varphi\Vert=\int_{G}\Vert\varphi_{\gamma}(g)-\varphi(g)\Vert d\mu$

$\leqq\int_{G}\int_{G}\Vert p_{\gamma}(h)(\varphi_{h}(g)-\varphi(g))\Vert d\mu(h)d\mu(g)$

$\leqq\sup_{h\in U}\Vert\varphi_{h}-\varphi\Vert+2\Vert\varphi\Vert\sup_{h\in}|p_{r}(h)|$

for every neighborhood $U$ of the identity. Since the map $h\rightarrow\varphi_{h}$ is a continuous
map of $G$ into $L^{1}(G, M_{*})$ , the same reason as in the proof of Lemma 4.3 says
that $\varphi_{\tau}$ converges to $\varphi$ in norm. Therefore, $\varphi$ belongs to $H^{1}(G)\otimes M_{*}$ . This
completes the proof.

It may be worth noticing that as the flow $\alpha$ extends to $L^{2}(G)$ as a flow
of unitary operators we can define a flow $\hat{\alpha}$ in $L^{2}(G)\bigotimes_{\sigma}H$ and that if we con-
sider the noncommutative Hardy class $H^{2}(\hat{\alpha})$ then $H^{2}(\hat{\alpha})$ coincides with the
tensor product $H^{2}(G)\bigotimes_{\sigma}H$.

Let $N$ be a von Neumann subalgebra of $M$ and let $\gamma\rightarrow u_{\gamma}\in M$ be a unitary
representation of $\Gamma$ into $M$ such that the mapping $x\rightarrow a_{\gamma}(x)=u_{\gamma}xu_{\gamma}^{*}$ defines a
group of $*$ -automorphisms of $N$. For the moment we need not specify the
action of $\sigma_{\gamma}$ of finite combinations $\{ \sum_{\gamma\in\Gamma}\langle\cdot, \gamma\rangle a_{\gamma}u_{\gamma}|a_{\gamma}\in N\}$ forms a $*$ -algebra in
$\mathcal{M}$ . Let $B_{1}$ be its uniform closure and $\mathcal{M}_{1}$ be the a-weak closure of $B_{1}$ . One
easily sees that $B_{1}$ is an $\alpha$ -invariant $C^{*}$ -algebra. Put $A_{1}(\tilde{\alpha})=A(\hat{\varphi})\cap B_{1}$ , the
algebra of analytic elements of $B_{1}$ for the restricted flow $\tilde{\alpha}$ . We denote by
$H_{1}^{\infty}(\tilde{\alpha})$ the algebra of analytic elements in $\mathcal{M}_{1}$ .
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THEOREM 4.7. $A_{1}(\tilde{\alpha})$ is the norm closure of the set $\{\sum_{\gamma\geqq 0}\langle\cdot, \gamma\rangle a_{\gamma}u_{\gamma}|a_{\gamma}\in N\}$

and it is the maximal $C^{*}$ -subdiagonal algebra of $B_{1}$ with respect to the pr0jecti0n
$\epsilon_{\mu}|B_{1}$ with the diagonal N. Furthermore, $H_{1}^{\infty}(\tilde{\alpha})$ is the $\sigma$-weak closure $A_{1}(\tilde{\alpha})$ ,
which is the maximal subdiagonal of $\mathcal{M}_{1}$ for the projection $\epsilon_{\mu}|\mathcal{M}_{1}$ with the dia-
gonal $N$.

PROOF. Note first that $\epsilon_{\mu}$ maps $\mathcal{M}_{1}$ to $N$. In fact, we have, for an element
$x=\sum_{\gamma\in\Gamma}\langle\cdot, \gamma\rangle a_{\gamma}u_{\gamma}$ ,

$\epsilon_{\mu}(x)=\sum_{\gamma\in\Gamma}\epsilon_{\mu}(\langle\cdot, \gamma\rangle a_{\gamma}u_{\gamma})=\sum_{\gamma\in\Gamma}a_{\gamma}u_{\gamma}\int_{G}\langle g, \gamma\rangle d\mu=a_{e}$ ,

and hence $\epsilon_{\mu}(\mathcal{M}_{1})\subset N$. It follows that $A_{1}(\tilde{\alpha})$ is a $C^{*}$ -subdiagonal algebra with
the diagonal $N$, and so because it is dePned by a flow it is the maximal $C^{*}-$

subdiagonal algebra by Theorem 3.1. Take an element $x$ of $A_{1}(\tilde{\alpha})$ . By Theorem
4.5, $x$ is approximated in norm by $\{x_{\tau}\}$ where $x_{f}=\sum_{\gamma\geqq 0}\lambda_{\tau}(\gamma)\langle\cdot, \gamma\rangle x(\gamma)$ . For $\gamma\in\Gamma$ ,

we have

$\langle\cdot, \gamma\rangle\hat{x}(\gamma)=\langle\cdot, \gamma\rangle\int_{G}\overline{\langle g,\gamma\rangle}x(g)d\mu$

$=\langle\cdot’\gamma\rangle(\int_{G}\overline{\langle g,\gamma\rangle}x(g)u_{\gamma}^{*}d\mu)u_{\gamma}$

$=\langle\cdot\rangle\epsilon_{\mu}(\langle\cdot-\gamma\rangle xu_{-\gamma})u_{\gamma}$ .
Here one may easily see that $\epsilon_{\mu}(\langle\cdot, -\gamma\rangle xu_{-\gamma})$ belongs to $N$ and we get the
first half of the theorem. The rest of the theorem is an easy consequence of
the fact that the diagonal of $H_{1}^{\infty}(\tilde{\alpha})$ is also $N$.

We notice that, as in the case of $A(\tilde{\alpha})$ , the kernel of $\epsilon$ in $A_{1}(\tilde{\alpha})$ coincides
with the norm closure of those elements of $B_{1}$ with positive spectrums, $i$ . $e$ . the
norm closure of $\{\sum_{r>0}\langle\cdot, \gamma\rangle a_{\gamma}u_{\gamma}|a_{\gamma}\in N\}$ .

Now let us assume that $\Gamma$ is countable such as the additive group of
rational numbers. As it was described in Arveson [3] the above von Neumann
algebra $\mathcal{M}_{1}$ is shown to be spatially isomorphic to the discrete crossed product
$ N\times\Gamma$ of $N$ by $\Gamma$ with the automorphism group $\{\sigma_{\gamma}\}$ . We sketch these argu-
ments in the following in terms of tensor products with some additional infor-
mations for $C^{*}$ -subdiagonal algebras.

Let $\mathcal{F}$ be the usual Fourier transform of $L^{2}(G)$ onto $l_{2}(\Gamma)$ and put $U=\mathcal{F}\otimes 1$ .
Then, $U$ is an isometry between the Hilbert space $L^{2}(G)\bigotimes_{\sigma}H$ and $l_{2}(\Gamma)\bigotimes_{\sigma}H$

such that $U^{*}(l_{\gamma}\otimes x)U=\langle\cdot, \gamma\rangle x$ for $x\in B(H)$ , where $l_{7}$ . means the left regular
representation of $\gamma$ . Therefore, the isometry $U$ induces an isomorphism be-
tween the $C^{*}$ -algebra $B_{1}$ and the $c*$ -algebra $C^{*}(N, \Gamma)$ on $l_{2}(\Gamma)\bigotimes_{\sigma}H$ generated

by those elements $\{l_{\gamma}\otimes au_{\gamma}|a\in N, \gamma\in\Gamma\}$ . The latter is nothing but the reduced
$c*$ -crossed product of $N$ by $\Gamma$ , and as $\Gamma$ is amenable it coincides with the $C^{*}-$
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crossed product $C^{*}(N, \Gamma)$ (cf. [30]). Thus, the von Neumann algebra $\mathcal{M}_{1}$ is
also isomorphic to the discrete crossed product $ N\otimes\Gamma$ , in which the subdiagonal
algebra of the a-weak closure of the set $\{\sum_{\gamma\geqq 0}l_{\gamma}\otimes au_{\gamma}|a\in N\}$ is the image of

subdiagonal algebra $H_{1}^{\infty}(\tilde{\alpha})$ . Furthermore, in some case one sees that $B_{1}$ is also
$*$ -isomorphic to the covariant algebra $C^{*}(N, u_{\gamma}|\gamma\in\Gamma)$ by [30; Theorem 5.2].

Thus, in this sense the $C^{*}$ -subdiagonal algebra $A(\beta)$ in Arveson [3] is seen to
be the transform of the algebra $A_{1}(\tilde{\alpha})$ of $B_{1}$ with $B(\beta)$ as the image of $B_{1}$ where
$N=L^{\infty}[0,1]$ on the space $H=L^{2}[0,1],$ $\Gamma=the$ group of integers and $\beta$ is an
ergodic automorphism of $N$ preserving the Lebesgue measure, so that some of
the results in [3] are understood as natural consequences of our arguments
here for $C^{*}$ -subdiagonal algebras. It is to be noticed that in this case the
algebra should be a $c*$ -subdiagonal and not a a-weakly closed subdiagonal
algebra because the $\sigma$-weak closure of the algebra $A(\beta)$ is generally too big
to settle down the problem.

Quite recently, Loebl and Muhly [16] has pointed out that in some cases
the algebra $H^{\infty}(\alpha)$ happens to be a reductive algebra. The authors believe that
an investigation for $H^{\infty}(\alpha)$ from the point of view of invariant subspaces (both

simply and doubly) will be fruitful.
Additions. After this paper was written the authors have found the

notice; R. I. Loebl and P. S. Muhly, Flows on von Neumann algebras, Noticies
of American Mathematical Society, 21 (1974), $74T-B176$ , in which our Theorem
2.4 has been announced. The authors suspect that some of other results here
may overlap with theirs in their forthcoming paper, though all works in the
present paper have been investigated independently with theirs.

References

[1] R. Arens and I. M. Singer, Generalized analytic function, Trans. Amer. Soc., 81
(1956), 379-393.

[2] W. B. Arveson, Analyticity in operator algebras, Amer. J. Math., 89 (1967), 578-
642.

[3] W. B. Arveson, Operator algebras and measure preserving automorphisms, Acta
Math., 118 (1967), 95-109.

[4] W. B. Arveson, On groups of automorphisms of operator algebras, J. Functional
Analysis, 15 (1974), 217-243.

[5] J. Dixmier, Les $C^{*}$ -algebres et leurs repr\’esentation, Gauthier-Villars, Paris, 1969.
[6] F. Forelli, Analytic and quasi-invariant measures, Acta Math., 118 (1967), 33-59.
[7] F. Forelli, Measures orthogonal to polydisc algebra, J. Math. Mech., 17 (1968),

1073-1086.
[8] F. Forelli, A maximal algebra, Math. Scand., 30 (1972), 152-158.
[9] T. Gamelin, Uniform algebra, Printice-Hall, Englewood Cliffs. N. J. 1969.
[10] T. Gamelin and G. Lumer, Theory of abstract Hardy spaces and the universal

Hardy class, Advances in Math., 2 (1968), 118-174.



90 S. KAWAMURA and J. TOMIYAMA

[11] A. Guichardet and D. Kastler, D\’esintegration des etats quasi-invariants des $C^{*}-$

alg\’ebres, J. Math. Pures APpl., 49 (1970), 349-380.
[12] R. V. Kadison and I. M. Singer, Triangular operator algebras, Amer. J. Math., 82

(1960), 227-259.
[13] N. Kamei, Simply invariant subspace theorems for antisymmetric finite subdi-

agonal algebras, T\^ohoku Math. J., 21 (1969), 467-473.
[14] S. Kawamura, On the commutation relation and the spectral condition of weakly

continuous representations of a locally compact abelian group on Banach spaces,
Bull. Yamagata Univ. Natur. Sci., 8 (1975), 479-489.

[15] I. Kov\’acs and J. Sz\"ucs, Ergodic type theorems in von Neumann algebras, Acta
Sci. Math., 27 (1966), 233-246.

[16] R. I. Loebl and P. S. Muhly, Reductive algebras and automorphism groups of von
Neumann algebras, Bull. Amer. Math. Soc., 81 (1975), 759-761.

[17] P. S. Muhly, Function algebras and flows I, Acta Sci. Math., 35 (1973), 111-121.
[18] P. S. Muhly, Function algebras and flows II, Ark. Math., 11 (1973), 203-213.
[19] P. S. Muhly, Eunction algebras and flows III, Math. Z., 136 (1974), 253-260.
[20] P. S. Muhly, Function algebras and flows VI, to aPpear.

[21] D. Olesen, On spectral subspaces and their aPplications to automorphism groups,
CNRS Notes, Marseille, 1974.

[22] W. Rudin, Fourier analysis on groups, Interscience Publishers, Inc., New York,
1962.

[23] K. H. Saito, The Hardy spaces associated with a periodic flow on a von Neumann
algebra, to appear.

[24] M. Takesaki, A note on the cross-norm of the direct product of operator algebras,
Kodai Math. Sem. Rep., 10 (1958), 137-140.

[25] M. Takesaki, Tomita’s theory of modular Hilbert algebras and its aPplications,
Lecture Notes in Math, 128, Springer-Verlag, 1970.

[26] M. Takesaki, The structure of a von Neumann algebra with a homogeneous
periodic state, Acta Math., 131 (1973), 79-121.

[27] J. Tomiyama, Applications of Fubini type theorem to the tensor products of
$C^{*}$ -algebras, T\^ohoku Math. J., 19 (1967), 213-226.

[28] J. Tomiyama, APplication of Fubini maPpings ot tensor products of Banach
algebras, Seminar (1971), University of Copenhagen, Copenhagen, Denmark.

[29] J. Tomiyama, Function algebra and flow, S\^ugaku, 28 (1976), 35-48 (Japanese).
[30] G. Zeller-Meier, Produits croises d’une $c*$ -alg\‘ebre Par un groupe d’automor-

phismes, J. Math. Pures APpl., 47 (1968), 101-239.

Shinz\^o KAWAMURA Jun TOMIYAMA
Department of Mathematics Department of Mathematics
Faculty of Science Faculty of Science
Yamagata University Yamagata University
Koshirakawa.machi, Yamagata Koshirakawa-machi, Yamagata
Japan Japan


	THEOREM 2.4. ...
	THEOREM 2.6. ...
	THEOREM 3.1. ...
	THEOREM 3.2. ...
	THEOREM 4.5. ...
	THEOREM 4.6. ...
	THEOREM 4.7. ...
	References

