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The purpose of this note is to make clear the relationship between two
types of signatures defined for a non-singular real bilinear or complex sesqui-
linear form, and then, to get a result in the algebraic topology.

Let [: VXV—C be a complex sesqui-linear form of finite dimension; a
matrix representation x*I'v is used and a symbol “*” stands for the transpose
of the conjugate of the matrix or the vector. Let t be an indeterminant which
may be thought either as an automorphism or as a variable ranging over the
complex numbers. We call I'({)=I"—I"*t an Alexander matrix and det I'(f)
the Alexander polynomial. The first series of signatures consists of the signature
7, of the hermitian form [,=x*I",y with I',=(1/2){(1—&)["+(1—w)['*}. Since
rz=sign (1—Re &)z, with w=—(1—¢&)/(1—£), the only interesting case is when
® is on the unit circle, where I, reduces to I',=(1/2)(1—a)] (w).

A hermitian form [,=x*Ay where A=(1/2)(I"+I"*) and a skew-hermitian
form [_=x*(—Q)y where Q=(1/2)(I"*—1I") are considered; then I'=A—Q and
of course 2A=1I"_,. If the form [ is non-singular, then the matrix P=(I"*)"'I"
gives an automorphism t of [, i.e., P*I'P=1I", and hence of [,, [, and [_. The
eigen-values a of the automorphism ¢ associate another series of signatures
0 which are defined by the hermitian form [, ; where [, is restricted to the
a-root subspaces V,={xcV; (t—a)*x=0 for some k}. Note that dimV,>0 if
and only if a is a root of the Alexander polynomial and we have a generalized
Cayley transformation Q(/+P)=A(/—P). Moreover, we can remark that, if
a#+=x1, on=sign(V,;!l,) is equal to sign(Im «a)sign(V,;il.). (Cf. §1, case
(b).) We define ;. by Esign(V_,;il).

THEOREM 1 (Complex case). For w=exp (ip) and a=exp (10) with —x<¢
<r and —w<6<m,

() 7, = sign (Im w){\ | 124 1Sign (p—0)0w 014000}
holds, provided either the automorphism t is semi-simple, or @ is not a root of
the Alexander polynomial.

REMARK. If w=-—1, (¥)is replaced by (*) sign(([,)=2o(|a]=1, a#—1).
The formula, (*) or (*), does not always hold. The excluded cases will be
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studied in the § 3.

If [ is a real non-singular bilinear form, then we shall deduce the following
theorem with the more appropriate notation: ¢,=a, and for 0<0<m, gp=
O +0 where a=exp (i6).

TuEOREM 2 (Real case). For w=exp (Fip) with 0<¢=m,

(**) To= 2 oot o

0=6<¢p 2 ¢
holds, provided either the automorphism t is semi-simple, or w is not a root of
the Alexander polynomial.

The study on the classification of sesqui-linear forms is summarized in [4].
And the reader can find a definition of oy for a knot in [2], which can be seen
to be equal to g, for the non-singular Seifert matrix. The hermitian form [,
is defined and used by Levine and Tristram [3] in the algebraic topology
of knots and links. In the last section we are concerned with the calculation
of o, for some algebraic links and we generalize the Brieskorn criterion [5].

Finally we mention a totally elementary proof of the result of Rokhlin [ 8] in
an interesting special case.

§1. Proof of Theorem 1.

Since [,(f(1)x, y)=Il(x, ftDy) for any complex polynomial f(t), V, is
orthogonal to Vg with respect to the hermitian form [, unless @3=1. It follows
that the only contributions to the signature arise from V, with |a|=1.

On the other hand by the generalized Cayley transformation Q(/+P)
=A(I—P), we know that if det (/+P)+0 then I',=A(1l—&)(P—w)(I+P)™* and
if det /—P)+#0 then I',=Q(1—a@)(P—w)(I—P)™ "

(a) The case when t is semi-simple, that is, V,={xcV; (t—a)x=0}: If x, ¥
eV_,, then [, (x, y)=(0—»)_(x,y). Hence sign(V_,; [,)=sign (Im w) sign (V_;
i),

If la]=1 and a#—1, we have [,(x,y)=1—&)(1—aw)(1+a) ', (x, ),
provided x, yeV,. Noting that (1+a&)(1+a)=24+(a+a&)>0, we have only to
study the sign of the following function f.

f=1—o)(1—ao)(1+a)=—8sin (—¢/2) sin ((¢—8)/2) cos (6/2) .

We get sign f=sign (Im ) sign (¢p—§@), provided —n <0, p<.

(b) The case when [(x,y) is a general non-singular sesqui-linear form: We
restrict I to V, with |a!|=1, and then perturb it. Assuming a# —1, we have
Q=A(I—P)(I+P)™' and another skew-hermitian matrix @ =A(l—a)(1+a)™".
A family of skew-hermitian matrices ;Q=sQ-+(1—s),Q, 0=s=1, is considered
and we get a family of sesqui-linear forms  /=x*I"y, 0=<s=<1 by defining
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J=A—,Q. It follows that ['=2A((1—s)a+(s+a)P)I+P)'(1+a)™* is non-
singular and ;P—a=I+sa+(1—s)P) 's(1+a)(P—a) is nilpotent for the auto-
morphism P=(A+,Q) (A—,Q). Hence, for any s with 0=<s=1, the Alexander
polynomial ;I'(t) associated to ./ does not vanish except t=a, that is, the
hermitian form  ,=x*[',y is non-degenerate unless w—=wa. Therefore, if
la|=1, a#—1 and w+«, then sign (V,; ol,)=sign(V,;!,). This follows from
the perturbation invariance of the signature of non-degenerate hermitian forms.
Note also that ,/,=![,. As a consequence, if w=exp (ip) and a=exp (i) with
—r<@+#0<x, then sign(V,; [,)—sign (Im w) sign (¢—@) sign (V,; [,)=sign (V,;
olw)—sign (Im w) sign (¢p—@) sign (V; o/4); the latter vanishes, because P=al.
If » is not a root of the Alexander polynomial, then V,=0 and this completes
the proof for a#—1. Remark also that @ are non-degenerate for 0=<s<1],
then we get sign(V,;(,)=sign(Im a)sign(V,; i(—,Q))=sign(Im a)sign(V,; —iQ).

If a=—1, we use the inverse Cayley transformation A=Q(+P)([—P)*
and put (A=sA. Then, ['=;A—Q, 0=s=<1, are non-singular and so are ,/,(x, y).
Note that ,/,(x, y)=sign(Im w)i/_(x,y). Therefore, we get sign(V_,[,)=
sign (Im w) sign (V_,, i[.).

§2. Proof of Theorem 2.

In view of the theorem 1 and the remark, it is sufficient to prove g.,,=0s
for any real bilinear form with a=-exp (i0), 0<0<7 and 0. 4+0:;=0. But this
is also deduced from the theorem 1 as follows. Because I is a real matrix,
the transpose of I, is equal to I’z and hence 7,=sign (transpose of [,)=1g.
Let «. denote exp (i(f+¢)) for a small positive number &. Then, from the
theorem 1, we get

Oy =Ta+—Ta- =Tp+—T3- =0, where B.=a..

Therefore, 7,=>0s+(1/2)0,+sign (Im @)o_ 144 But 7,=75 implies g4, =0
from that.

§3. Excluded cases.

We use the notation of the § 1. By decomposing V, into t-invariant sub-
spaces, we may assume P is the triangular matrix of rank r: P, ;=a, P, ;,,=1
and otherwise P;;=0. Then, the fact that P*AP=A and a@=1 implies that
A is the triangular matrix: A; ;=0 if i+j=r. We investigate the case w=«a
and a#+—1. (The case a=—1 is treated in the same way by using Q instead
of A). Remember the matrix I, is AX with X=1—a)I—aP)(I+P)'. The
matrices X and hence AX are the strongly triangular matrices: X; ;=0 if i>j
and (AX);;=0 if i+j<r+1. The non-degeneracy of I'=A—Q=2AP(I+P)™*
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implies that rank A=r and rank AX=r—1. If r=o0dd, we have sign(AX)=0
and (*). (Note: |sign A| =1 in the case r=3). If r=even, we have |sign (AX)|
=1. So in this case (*) does not hold.

If we note that I'PI" may be transformed to a real matrix, we understand
that (**) has also counterexamples.

§4. Signatures of algebraic links.

We shall give a criterion to calculate o, for the algebraic links of Fermat-
Pham-Brieskorn type:
{z81F - Hzin =01 S* .

The Seifert matrix with integral coefficients is described as I'=(—1)""*"2["(a,)
& ---Pl{a,), where ['(a,) denotes a triangular matrix of rank a,—1 with
I'(a,);,;=0;,;—0i41,;, 151, j=a,—1 (cf. [T]). The intersection matrix and the
monodromy matrix of the Milnor fiber are

—(L+(—=1D)"*T*) and (—1)"UI™)
respectively. They have the same real bases (cf. [6]). It is enough to know

the case when n=o0dd, because I’ becomes either I' or —I" after we add the
term z2,.,. Now, for 0=<60=m, Ay denotes the finite set of integers,

Ag={(Jy, =+, Jn); 1=7,=a,—1 and n+2r2(j,/a,) =60 or —6 mod 2z} .

PROPOSITION 3. Suppose n is odd. The partial signatures cy—oj—op and
the nullity n of I'+1™ are given as follows: If 0=0<=m, then

o5 =number of (AsN{0<2(j,/a,)<1mod2}),

o =number of (AgN\{1<X(j,/a,)<2mod 2})
and
n=rank of V_,=number of A..

The signatures 7, are given by the sum formula in the theorem 2, because
the monodromy is semi-simple. We shall give an outline of the proof of the
proposition 3.

Let T(a) be the transformation matrix with 7(a);;=1—&Y and &=
exp (2r ~/—1/a). (The bases must be written as x,=(1—&°)X &%’ (0<i<a—1)
in the notation of and changes to x,=—& 3% in that of [5]) Then,
T*(a)I'(a)T(a) is a diagonal matrix (a(1—&7")d; ;). Therefore, the transformed
matrix T*['T and the transformed automorphism T *(/™)'I'T by T=T(a,)®H
-+ P T(a,) are

(=)o 1a, TI(1—&,")116s,,;,) and ((—1)"TIEXTI0,,,;,)

respectively. Since these are diagonal matrices, it is easy to deduce the
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proposition by the same technique of the calculation of sign of the function
f in the proof of the theorem 1 (cf. p. 12 of [5]).

As a final remark it is noticed that the result of Rokhlin [8] in the case

M=CP? has an elementary proof: Apply the direct calculation in this note
for the algebraic link {z¢+2z¢=0}\S® to the inequality of Tristram with
respect to 7,; w=—1 if d=even and w=exp (mr+v/—1/2m-+1) if 2m-+1 is an
odd prime power which divides d.
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