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Introduction.

A Riemannian regular s-manifold $(M, g, s)$ is defined in essentially the same
way as a Riemannian symmetric space but without the condition that the
symmetry at each point should have order 2. In addition a regularity condi-
tion (trivially satisfied for symmetric spaces) is imposed on the composition of
symmetries. A tensor field $S$ of type $(1, 1)$ is determined by the structure of
$(M, g, s)$ and, in turn, characterises it locally (cf. [2]). If there exists a Rie-
mannian regular s-manifold structure $(M, g, s)$ , then $M$ is a homogeneous space;
thus, such structures provide one of the few known examples of a geometric
condition on a manifold which implies homogeneity.

A regular s-manifold is called quadratic if its (orthogonal) symmetry tensor
field $S$ has a quadratic minimal polynomial; thus,

$S^{2}-2(\cos\theta)S+I=0$ for $ 0<\theta<\pi$ ,

where $\theta$ is called the angular Parameter. In [5] we have given a classification
for the compact case.

The purpose of this paper is to investigate those $(M, g, s)$ for which the
symmetry tensor field $S$ is integrable in the sense that its Nijenhuis tensor
vanishes; thus, for all $X,$ $Y\in \mathfrak{X}(M)$

$S^{2}[X, Y]-S[SX, Y]-S[X, SY]+[SX, SY]=0$ .
In the next section we give the definitions and basic properties for metri-

sable regular s-manifolds. (A more detailed account of the theory can be
found in [5], but for completeness we include a summary in the present paper.)

The subsequent section gives a statement of our results. Briefly Theorem A
shows that integrability of $S$ is equivalent to $S$ being parallel; then the full

\dagger This research was done at the University of Liverpool during 1973-74 while the
second author was a Postdoctoral Fellow suPported by the National Research Council
of Canada.
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classification of metrisable regular $(M, s)$ with integrable $S$ (Theorem C) is
obtained via the simply connected case treated in Theorem B. Moreover, for
integrable $S$ it turns out that the Riemannian manifold $(M, g)$ underlying
$(M, g, s)$ is Riemannian symmetric (Corollary to Theorem C). This last pro-
perty is not shared by all Riemannian regular s-manifolds, as we show in an
example concluding the final section of proofs.

Definitions and basic Properties.

A regular s-manifold $(M, s)$ is a smooth, connected manifold $M$ together
with a map $s$ from $M$ into the group Diff $M$ of all diffeomorphisms of $M$, with
the following properties:

(i) for each $p\in M$, the point $p$ is an isolated fixed point of the diffeo-
morphism $s(p)$ (written $s_{p}$),

(ii) $s_{p}\circ s_{q}=s_{s_{p}(q)}\circ s_{p}$ for all $p,$ $q\in M$,

(iii) the tensor field $S:M\rightarrow T_{1}^{1}(M)$ defined by $p\rightarrow S_{p}=(s_{p_{*}})_{p}$ is smooth.
The diffeomorphism $s_{p}$ is referred to as the symmetry at $p$ , and $S$ as the

symmetry tensor field. Any smooth map $\phi:M\rightarrow M$ is called $s$-preserving (resp.
$S$-preserving) if $\phi\circ s_{p}=s_{\Phi^{(p)}}\circ\phi$ for all $p\in M$ (resp. $\phi_{*}(SX)=S(\phi_{*}X)$ for all smooth
vector fields $X$ on $M$ ). Similarly any tensor field on $M$ is called s-invariant if
it is invariant under the action of $s_{p}$ for each $p\in M$. In particular, a Reiman-
nian regular s-manifold $(M, g, s)$ is a regular s-manifold together with an s-
invariant Riemannian metric $g$. For many purposes only the existence of such
a metric is important, and we say $(M, s)$ is a metrisable regular s-manifold if
it admits an s-invariant metric.

An important special case arises when there is a smallest integer $k\geqq 2$

such that for each $p\in(M, s),$ $s_{p}$ has order $k,$ $i$ . $e$ . $(s_{p})^{k}=identity$ . We then call
$(M, s)$ a k-symmetric space. Thus for the Riemannian case, we may regard the
symmetric spaces of E. Cartan as metrisable 2-symmetric spaces.

We say $(M, s)$ and $(M^{\prime}, s^{\prime})$ are equivalent if there exists a diffeomorphism
$\phi$ : $M\rightarrow M^{\prime}$ such that for all $p\in M,$ $\phi\circ s_{p}=s_{\Phi^{(p)}}^{\prime}\circ\phi$ . Similarly, $(M, g, s)$ and $(M^{\prime}$ ,
$g^{\prime},$

$s^{\prime}$ ) are equivalent if there exists an isometry $\phi:(M, g)\rightarrow(\Lambda I^{\prime}, g^{\prime})$ with the
above property. Classification of such manifolds is usually considered within
this equivalence.

By analogy with symmetric spaces, it is often useful to consider the simply
connected covering space of $(M, g, s)$ . We say $(M, g, s)$ is covered by $(\tilde{M},\tilde{g}, s\sim)$

if the Projection $\pi:\tilde{M}\rightarrow M$ satisfies $\tilde{g}=\pi^{*}g$ and $\pi cs_{p}=s_{\Gamma(p)}\circ\pi\sim$ for all $p\in\tilde{M}$ . For
each $(M, g, s)$ there exists $(\tilde{M},\tilde{g}, s\sim)$ , unique up to equivalence, such that $\tilde{M}$ is
simply connected and $(M, g, s)$ is covered by $(\tilde{M},\tilde{g}, s\sim)$ (cf. Remark 1.8(b) of
[5]). Conversely, consider any simply connected $(\tilde{M},\tilde{g}, s\sim)$ and any covering



670 A. J. LEDGER and R. B. PETTITT

$\pi:\tilde{M}\rightarrow M$ with group $\Gamma$ of deck transformations. Then $M$ admits a structure
$(M, g, s)$ covered by $(\tilde{M},\tilde{g}, s\sim)$ if and only if $\Gamma$ is a group of $ s\sim$-preserving iso-
metries of $(\tilde{M},\tilde{g}, s\sim)$ and is normalised by each $s_{p}\sim,$

$p\in\tilde{M}$ (cf. Proposition 1.6 of
[5]).

Consider now $(M, g, s)$ covered by $(\tilde{M},\tilde{g}, s\sim)$ , where $(\tilde{M},\tilde{g})$ is a real Euclidean
vector space and the symmetry tensor field $\tilde{S}$ is parallel. Then the group $\Gamma$

of deck transformations is just a discrete translation group on $\tilde{M}$ such that
the orbit $\Gamma(0)$ is invariant by $ s_{0}\sim$ , where $0$ is the origin of $\tilde{M}$ . Let $\tilde{V}_{1}$ be the
subspace of $\tilde{M}$ generated by $\Gamma(0)$ and $V_{2}$ its orthogonal complement. Now $V_{1}$

and $V_{2}$ are invariant under $s_{0}$ ;$\sim$ consequently $(\tilde{M},\tilde{g}, s\sim)$ and $(V_{1},\tilde{g}_{1}, s_{1}\sim)\times(\tilde{V}_{2},\tilde{g}_{2}, s_{2}\sim)$

are equivalent, where for $i=1,2,\tilde{g}_{i}$ and $ s_{i}\sim$ are the restrictions to $\nu_{i}$ of $\tilde{g}$ and
$ s\sim$ respectively. Since the restriction of $\Gamma$ to $V_{2}$ is trivial, it follows that
$(M, g, s)$ is equivalent to $(V_{1}, g_{1}, s_{1})\times(\tilde{V}_{2},\tilde{g}_{2}, s_{2}\sim)$ , where $(V_{1}, g_{1}, s_{1})$ is compact
and covered by $(\tilde{V}_{1},\tilde{g}_{1}, s_{1}\sim)$ .

Statement of results.

THEOREM A. Let $(M, s)$ be a metrisable regular s-manifold with symmetry
tensor field S. If $S$ is integrable, then $\nabla(S)=0$ for the Riemannian connection
$\nabla$ of any s-invariant metric $g$ on M. Conversely, if $\nabla(S)=0$ for some s-invariant
metric, then $S$ is integrable.

THEOREM B. (a) Let $(\tilde{M}_{0},\tilde{g}_{0}, S_{0})$ be a simply connected Riemannian sym-
metric space with symmetry tensor field $\tilde{S}_{0}=-I$. For $\lambda=1,2,$ $\cdots$ , $r$ let $(\tilde{M}_{\lambda}, S_{\lambda}, \theta_{\lambda})$

be a simply connected quadratic $g_{\lambda}$ -manifold associated with a Hermitian sym-
metric space $(\tilde{M}_{\lambda},\tilde{g}_{\lambda})^{t}$ with complex structure $\tilde{J}_{\lambda}(i$ . $e.\tilde{g}_{\lambda}$ is $\zeta_{\lambda}$-invariant and the
symmetry tensor field is given by $\tilde{S}_{\lambda}=(\cos\theta_{\lambda})I+(\sin\theta_{\lambda})\tilde{J}_{\lambda})$ , where $ 0<\theta_{1}<\theta_{2}<\ldots$

$<\theta_{r}<\pi$ are the respective angular Parameters. Then the direct product

$(\tilde{M}, s\sim)=(\tilde{M}_{0}\times\tilde{M}_{1}\times\cdots\times\tilde{M}_{r}, s_{0}\times s_{1}\times\sim\sim\ldots\times s_{r}\sim)$

is a simply connected metrisable regular $g$-manifold with integrable symmetry
tensor field $S=S_{0}\oplus S_{1}\oplus\cdots\oplus S_{r}$ . Pariicular, In $\tilde{g}=\tilde{g}_{0}\times\tilde{g}_{1}\times\cdots\times\tilde{g}_{r}$ is an S-invari-
ant metric and $(\tilde{M},\tilde{g}, S)$ is a Riemannian regular S-manifold.

(b) Conversely, any simply connected Riemannian regular s-manifold with
integrable symmetry tensor field is equivalent to an $(\tilde{M},\tilde{g}, S)$ constructed as in (a).

For the statement of Theorem $C$ we require the following notation:
$(R^{n\sim}\tilde{g}_{0}, s_{0})$ is Riemannian symmetric of Euclidean type and $Z^{n}$ denotes the

integer lattice in $R^{n}$ .
$(C^{m_{1}\sim}\tilde{g}_{1}, s_{1}),$ $(C^{m_{2}},\tilde{g}_{2}, s_{2}\sim)$ , and $(C^{m_{3}\sim}\tilde{g}_{3}, s_{3})$ are Riemannian 3-, 4-, 6-symmetric

\dagger We sometimes denote a Riemannian symmetric space simply by $(M, g)$ , since
its symmetries (of order 2) are uniquely determined.
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spaces respectively (cf. Definition 1.2 of [5]), associated with Euclidean Her-
mitian symmetric spaces $(C^{m_{i}},\tilde{g}_{i})$ with complex structures $\tilde{J}_{i}$ for $i=1,2,3$ .
Again for $i=1,2,3,$ $\{\epsilon_{in},\tilde{J}_{i}(\epsilon_{i\alpha})\}_{\alpha=1,2,\cdots,mi}$ denotes the natural basis of the real
vector space $R^{2m_{i}}$ underlying $C^{m_{i}}$ ; then

$\Delta^{m_{1}}=$ the lattice generated by $\{\epsilon_{1\alpha}$ , exp $(\pi/3\tilde{J}_{1})\epsilon_{1\alpha}\}_{\alpha=1,2,\cdot\cdot,m1}$ ,

$\Sigma^{m_{2}}=$ the lattice generated by $\{\epsilon_{2\prime\prime},\tilde{J}_{2}(\epsilon_{2\cap})\}_{\sigma=1,2,\cdot\cdot,m_{2}}$ ,

$\Delta^{m_{3}}=$ the lattice generated by $\{\epsilon_{3’ t}$ , exp $(\pi/3\tilde{J}_{3})\epsilon_{3\alpha}\}_{\alpha=1,2,\cdots,m_{3}}$ .
Define

$(\tilde{M}^{\prime},\tilde{g}^{\prime}, s^{\prime}\sim)=(R^{n},\tilde{g}_{0}, s_{0}\sim)\times(C^{m_{1}},\tilde{g}_{1}, s_{1}\sim)\times(C^{m_{2}},\tilde{g}_{q},, s_{2}\sim)\times(C^{m_{3}},\tilde{g}_{3}, s_{3}\sim)$ ,

$D^{\prime}=Z^{n}\times\Delta^{m_{1}}\times\Sigma^{m_{2}}\times\Delta^{m_{3}}$ .
$(\tilde{M}^{+},\tilde{g}^{+}, s^{+}\sim)$ denotes a simply connected Riemannian symmetric space of

compact type, and $D^{+}$ is the centraliser of $I_{0}(\tilde{M}^{+},\tilde{g}^{+})$ in $I(\tilde{M}^{+},\tilde{g}^{+})$ .

$D=D^{+}\times D^{\prime}$ and $\pi^{\prime}$ is the projection of $D$ onto $D^{\prime}$

THEOREM C. (a) With the above notation, let $\Gamma$ be a subgroup of $D$ such
that $\pi^{\prime}(\Gamma)=D^{\prime}$ . Then the manifold $\overline{M}=\tilde{M}^{+}\times\tilde{M}^{\prime}/\Gamma$ admits a unique metrisable
regular s-manifold structure $(\overline{M},\overline{s})$ covered by $(\tilde{M}‘ \times\tilde{M}^{\prime}, S^{+}\times S^{\prime})$ and $(\overline{M},\overline{s})$ has
integrable symmetry tensor field S.

(b) Conversely, any metrisable regular $(M, s)$ with integrable $S$ is equivalent
to the pr0duct of an $(\overline{M},\overline{s})$ constructed as in (a) and a simply connected $(\tilde{M}, S)$

described as in Theorem $B^{t}$

By Theorem 8.3.12 of [8], the following corollary is an immediate con-
sequence of Theorem C.

COROLLARY. Let $(M, g, s)$ be any Riemannian regular s-manifold with inte-
grable symmetry tensor field. Then $(M, g)$ is Riemannian symmetric.

In general, if $(M, g, s)$ is a Riemannian regular s-manifold, then $(M, g)$ need
not be Riemannian symmetric; in fact, we conclude the following section with
an example of a Riemannian 3-symmetric space not even homeomorphic with
any Riemannian symmetric space.

Proofs.

PROOF OF THEOREM A. Let $\nabla$ be the Riemannian connection of an s-
invariant metric $g$ on the metrisable regular s-manifold $(M, s)$ . Let $G=I_{0}(M, g, s)$

be the connected group of s-preserving isometries of $(M, g, s)$ as in Definition

\dagger We allow the possibility of $\tilde{M},\tilde{M}^{+}$ or any factor of $\tilde{M}^{\prime}$ being a point.
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1.10 of [5], and let $H$ be the isotropy group of $G$ at some point in $M$ ; then
the reductive homogeneous space $G/H$ is diffeomorphic to $M$ (cf. Proposition
1.11 of [5]). Consider the canonical connection of the second kind V on $G/H$

[6]. Since $S$ and $g$ are G-invariant tensor fields we have $\overline{\nabla}(S)=0$ and $\overline{\nabla}(g)=0$ .
The torsion $T$ of V is given by $T(X, Y)=\overline{\nabla}_{X}Y-\overline{\nabla}_{Y}X-[X, Y]$ for $X,$ $Y\in X(M)$ ,
and a short calculation now shows that $S$ is integrable if and only if $T=0$ .
Consequently, if $S$ is integrable, V is a torsion-free metric connection for $g$,

whence $\overline{\nabla}=\nabla$ and so $\nabla(S)=\overline{\nabla}(S)=0$ .
The converse is obvious.
PROOF OF THEOREM B. (a) Since each $\tilde{J}_{\lambda}$ is parallel on $(\tilde{M}_{\lambda},\tilde{g}_{\lambda})$ , so $\tilde{S}_{\lambda}$ is

parallel, $\tilde{S}$ is parallel on $(\tilde{M},\tilde{g})$ and the conclusion of (a) follows from Theorem A.
(b) Consider any simply connected Riemannian regular s-manifold $(\tilde{M},\tilde{g}, s\sim)$

$withintegrable\tilde{S}For\lambda=l,2thedistincteigenvaluesof\tilde{S}different$

from $-1$ . Define the distributions $T_{0},$ $T_{\overline{\chi}}$

, $r$ let $e^{\pm i\theta_{\lambda}}$ (with $ 0<\theta_{1}<\theta_{2}<\ldots<\theta_{r}<\pi$ ) be

as follows:
$(T_{0})_{p}=\{X\in M_{p} : \tilde{S}(X)=-X\}$

$(T_{\lambda})_{p}=\{X\in Al_{p} : (\tilde{S}^{2}-2(\cos\theta_{\lambda})\tilde{S}+I)X=0\}$

for $p\in M,$ $\lambda=1,2,$ $\cdots$ , $r$. We observe that the complexification of $(T_{\lambda})_{p}$ is the
sum of the eigenspaces of $\tilde{S}_{p}$ for the eigenvalues $e^{\pm i\theta_{\lambda}}$ . By Theorem $A,\tilde{S}$ is
parallel and so $T_{0},$ $T_{1},$ $\cdots$ , $T_{r}$ are parallel distributions on $(\tilde{M},\tilde{g})$ .

Choose apoint $P^{\prime}\in\tilde{M}$ and for $\alpha=0,1,$
$\cdots,$

$r$ let $M_{\alpha}$ be the maximal integral
manifold of $T_{\alpha}$ through $p^{\prime}$ . Since $(\tilde{M},\tilde{g})$ is complete (being Riemannian homo-
geneous [4]) and also simply connected, then by the de Rham decomposition
theorem (cf. [3]) there exists an isometry $\phi$ : $(\tilde{M},\tilde{g})\rightarrow(\tilde{M}_{0},\tilde{g}_{0})\times(\tilde{M}_{1},\tilde{g}_{1})\times\cdots$

$\times(\tilde{M}_{r},\tilde{g}_{r})$ where $\tilde{g}_{\alpha}$ is the restriction of $\tilde{g}$ to $M_{\alpha}$ .
Consider any $\tilde{M}_{\alpha},$ $\alpha=0,1,$ $\cdots$ , $r$ , and any point $q\in\tilde{M}_{\alpha}$ . Because $(\tilde{M}_{\alpha},\tilde{g}_{\alpha})$ is

a complete, totally geodesic, topological submanifold of $(\tilde{M},\tilde{g})$ and $(s_{q^{*}}\sim)_{q}=\tilde{S}_{q}$

preserves $(T_{\alpha})_{q}$ , then $s_{q}\sim|_{\tilde{M}_{\alpha}}$ is an isometry of $(M_{\alpha},\tilde{g}_{\alpha})$ with $q$ as an isolated
fixed point. Defining $(s_{\alpha}\sim)_{q}=s_{q}\sim|_{\tilde{M}_{\alpha}}$ , we obtain the Riemannian regular $ s_{\sigma}\sim$-mani-
fold $(M_{\alpha},\tilde{g}_{\alpha}, s_{\alpha}\sim)$ with parallel symmetry tensor field $\tilde{S}_{\alpha}(=the$ restriction of $\tilde{S}$

to $\tilde{M}_{\alpha}$). Observe that $\phi_{*}\tilde{S}\phi_{*}^{-1}$ is parallel on $(\tilde{M}_{0},\tilde{g}_{0})\times(\tilde{M}_{1},\tilde{g}_{1})\times\cdots\times(\tilde{M}_{\gamma},\tilde{g}_{r})$

and agrees with the parallel tensor field $\tilde{S}_{0}\oplus\tilde{S}_{1}\oplus\cdots\oplus\tilde{S}_{r}$ at $\phi(p^{\prime})$ ; consequently,
$\phi_{*}S\phi_{*}^{-1}=\tilde{S}_{0}\oplus\tilde{S}_{1}\oplus\cdots\oplus\tilde{S}_{r}$ , and so $\phi\circ s_{p}\sim\circ\phi^{-1}=(s_{0}\sim)_{p_{0}}\times(s_{1}\sim)_{p_{1}}\times\cdots\times(s_{r}\sim)_{p_{r}}$ for all $p\in\tilde{M}$

(where $\phi(p)=(p_{0},$ $p_{1},$ $\cdots$ , $p_{r})$ ). Thus $(\tilde{M},\tilde{g}, s\sim)$ is equivalent to $(\tilde{M}_{0},\tilde{g}_{0}, s_{0}\sim)\times$

$(\tilde{M}_{1},\tilde{g}_{1}, s_{1}\sim)\times\cdots\times(\tilde{M}_{\tau},\tilde{g}_{r}, s_{\gamma}\sim)$ .
Now $(\tilde{M}_{0},\tilde{g}_{0}, s_{0}\sim)$ is a Riemannian symmetric space, because $T_{0}$ is the $(-1)-$

eigenspace distribution. For $\lambda=1,2,$ $\cdots$ , $r,$
$(\tilde{M}_{\lambda}, \theta_{\lambda})$ is a quadratic $s_{\lambda}$ -manifold

with angular parameter $\theta_{\lambda}$ ; moreover, the almost complex structure $\tilde{J}_{\lambda}=$

$(\sin\theta_{\lambda})^{-1}(\tilde{S}_{\lambda}-(\cos\theta_{\lambda})I)$ is integrable (because $\tilde{S}_{\lambda}$ is integrable), hence $\tilde{J}_{\lambda}$ defines
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a Hermitian complex structure on $(\tilde{M}_{\lambda},\tilde{g}_{\lambda})$ (Hermitian because $\tilde{S}_{\lambda}$ is orthogonal
for $\tilde{g}_{\lambda}$). Since $\tilde{S}_{\lambda}$ is parallel, $(\tilde{M}_{\lambda},\tilde{g}_{\lambda})$ is locally symmetric [4]; but being simply
connected and complete, $(\tilde{M}_{\lambda},\tilde{g}_{\tilde{\Lambda}})$ is therefore (globally) Riemannian symmetric.
For each $q\in\tilde{M}_{\lambda}$ the 2-symmetry $(\sigma_{\lambda})_{q}$ preserves $\tilde{J}_{\text{{\it \‘{A}}}}$ , because $(\sigma_{\lambda})_{q^{*}}\circ\tilde{J}_{\lambda^{\circ}}(\sigma_{\lambda})_{q^{*}}^{-1}$ is a
parallel tensor field agreeing with $\tilde{J}_{\lambda}$ at $q$ . Thus, for $\lambda=1,2,$ $\cdots$ , $r,$

$(\tilde{M}_{\lambda},\tilde{g}_{\lambda})$ is
a Hermitian symmetric space with respect to $\tilde{J}_{\lambda}$ . This completes the proof of

$(/\backslash b)$ of Theorem B.
PROOF OF THEOREM C. (a) With the hypotheses of (a), $\Gamma$ acts properly

discontinuously on $(\tilde{M}^{+}\times\tilde{M}^{\prime},\tilde{g}^{+}\times\tilde{g}^{\prime})$ as a group of Clifford translations; more-
over, $\Gamma$ is $(s^{+}\sim\times s^{\prime}\sim)$ -preserving and is normalised by the $(s^{+}\sim\times s^{\prime}\sim)$ -symmetries.
The result of (a) now follows from earlier remarks.

(b) Let $(\tilde{M},\tilde{g}, s\sim)$ be the simply connected covering space of $(M, g, s)$ where
$g$ is an s-invariant metric on $M$ ; let $\Gamma$ be the group of deck transformations
of the covering. Since $S$ is integrable, the symmetry tensor field $S$ of $(\tilde{M},\tilde{s})$

is integrable. Decompose $(\tilde{M},\tilde{g}, s\sim)$ as in Theorem B. Now for $\alpha=0,1,$ $\cdots$ , $r$,
the Riemannian symmetric space $(\tilde{M}_{\alpha},\tilde{g}_{\alpha})$ decomposes into the direct produt
$|(\tilde{M}_{\alpha}^{0},\tilde{g}_{a}^{0})\times(\tilde{M}_{\alpha}^{+},\tilde{g}_{\alpha}^{+})\times(\tilde{M}_{\alpha}^{-},\tilde{g}_{\overline{\alpha}})$ where (0), $(+)$ and (–) designate factors of
Euclidean, compact, and non-compact type respectively; in the Hermitian case

\langle $i$ . $e$ . $\alpha>0$) the complex structure $\tilde{J}_{\alpha}$ decomposes correspondingly as $\tilde{J}_{\alpha}^{0}\oplus\tilde{J}_{\alpha}^{+}\oplus\tilde{J}_{a}^{-}$ .
It follows that:

$\tilde{M}=\tilde{M}_{0}^{0}\times\tilde{M}_{0}^{+}\times\tilde{M}_{0}^{-}\times\tilde{M}_{1}^{0}\times\tilde{M}_{1}^{+}\times\tilde{M}_{1}^{-}\times\cdots\times\tilde{M}_{r}^{0}\times\tilde{M}_{r}^{+}\times\tilde{M}_{r}^{-}$ ,

$\tilde{g}=\tilde{g}_{0}^{0}\times\tilde{g}_{0}^{+}\times\tilde{g}_{0}^{-}\times\tilde{g}_{1}^{0}\times\tilde{g}_{1}^{+}\times\tilde{g}_{1}^{-}\times\cdots\times\tilde{g}_{\gamma}^{0}\times\tilde{g}_{r}^{+}\times\tilde{g}_{r}^{-}$ ,

$ s=s_{0}\times s_{0}^{+}\times s_{0}^{-}\times s_{1}\times s_{1}^{+}\times s_{1}^{-}\times\sim\sim 0\sim\sim\sim 0\sim\sim$ .. . $\times\tilde{s}_{r}^{0\sim}\times s_{r}^{+}\times s_{r}^{-}\sim$ .

Since $(M, g)$ is Riemannian homogeneous, $\Gamma$ must be a group of Clifford
translations of $(\tilde{M},\tilde{g})$ (cf. [9]). Then each $\gamma\in\Gamma$ may be written

$\gamma=\gamma_{0}^{0}\times\gamma_{0}^{+}\times\gamma_{0}^{-}\times\gamma_{1}^{0}\times\gamma_{1}^{+}\times\gamma_{1}^{-}\times\cdots\times\gamma_{r}^{0}\times\gamma_{r}^{+}\times\gamma_{r}^{-}$ ,

where for $\alpha=0,1,$ $\cdots$ , $r,$ $\gamma_{\alpha}^{0}$ and $\gamma_{\alpha}^{\pm}$ are Clifford translations of $(\tilde{M}_{\alpha}^{0},\tilde{g}_{\alpha}^{0})$ and
$((\tilde{M}_{\alpha}^{\pm},\tilde{g}_{\alpha}^{\pm})$ respectively. Define the projections $\rho_{\alpha}^{0},$ $\rho_{\alpha}^{\pm}$ of $\Gamma$ onto its various
factors by $\rho_{\alpha}^{0}(\gamma)=\gamma_{\alpha}^{0},$ $\rho_{\alpha}^{\pm}(\gamma)=\gamma_{\overline{\alpha}}^{\leftrightarrow}$ for each $\gamma\in\Gamma$ .

Notice immediately that for $\alpha=0,1,$ $\cdots$ , $r,$ $\rho_{a}^{-}(\Gamma)$ is trivial, because sym-
metric spaces of non-compact type have no non-trivial Clifford translations.

Since $(\tilde{M}, s\sim)$ covers $(M, s)$ , each $\gamma\in\Gamma$ is $ s\sim$-preserving (equivalently $\tilde{S}-$

preserving) and $\Gamma$ is normalised by each $ s\sim$-symmetry $ s_{p}\sim$ . Consequently, $\rho_{\alpha}^{0}(\Gamma)$

(resp. $\rho_{\alpha}^{+}(\Gamma)$ ) is both $(s_{\alpha}^{0}\sim)$ -preserving (resp. $(s_{a}^{+}\sim)$ -preserving) and also normalised
by each $(s_{\alpha}^{0}\sim)$ -symmetry (resp. $(s_{\alpha}^{+}\sim)$ -symmetry). Because a Hermitian symmetric
space of compact type admits no non-trivial Clifford translations which
preserve the complex structure, it follows that for $\alpha>0,$ $\rho_{\alpha}^{\neq}(\Gamma)$ is trivial. For
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$\alpha=0,\tilde{M}_{0}^{+}/\rho_{0}^{+}(\Gamma)$ admits a Riemannian symmetric structure covered by $(\tilde{M}_{0}^{+},\tilde{g}_{0}^{+})$ ,

whence $\rho_{0}^{+}(\Gamma)$ is a subgroup of the centraliser of $I_{0}(\tilde{M}_{0}^{+},\tilde{g}_{0}^{+})$ in $I(\tilde{M}_{0}^{+},\tilde{g}_{0}^{+})$ (cf.
[8], Theorem 8.3.12).

We now turn to the Euclidean factors. For $\alpha=0,1,$ $\cdots$ , $r,$ $\rho_{\alpha}^{0}(\Gamma)$ is an $\tilde{S}_{\alpha^{-}}$

invariant lattice in the Euclidean vector space $\tilde{M}_{a}^{0}$ , so for $\alpha>0,$ $\rho_{\alpha}^{0}(\Gamma)$ is trivial
unless $\theta_{\alpha}=\pi/3,$ $\pi/2$ or $2\pi/3$ (cf. Theorem A of [5]).

It follows that up to equivalence we have the following decomposition

$\tilde{M}=\tilde{M}_{0}^{+}\times R^{n}\times C^{m_{1}}\times C^{m_{2}}\times C^{m_{3}}\times\tilde{M}_{4}$

$\tilde{g}=\tilde{g}_{0}^{+}\times\tilde{g}_{0}\times\tilde{g}_{1}\times\tilde{g}_{2}\times\tilde{g}_{3}\times\tilde{g}_{4}$

$ s=s_{0}^{T}\times s_{0}\times s_{1}\times s_{2}\times s_{3}\times s_{4}\sim\sim\sim\sim\sim\sim\sim$ ,

where $(\tilde{M}_{0}^{+},\tilde{g}_{0}^{+}, s_{0}^{+}\sim)$ is (as above) Riemannian symmetric of compact type,
$(R^{n},\tilde{g}_{0}, s_{0}\sim)$ is a Euclidean symmetric space, $(C^{m_{1}},\tilde{g}_{1},\tilde{s}_{1}),$ $(C^{m_{2}},\tilde{g}_{2}, s_{2}\sim)$ , and $(C^{m_{3}}$ ,

$\tilde{g}_{3},$ $ s_{3}\sim$ ) are complex Euclidean 3-, 4- and 6-symmetric respectively as described
prior to the statement of Theorem $C,$ $(\tilde{M}_{4},\tilde{g}_{4}, s_{4}\sim)$ is a simply connected Rie-
mannian regular $ s_{4}\sim$ -manifold with integrable symmetry tensor field, and where
we can suppose that the restriction of $\Gamma$ to $M_{4}$ is trivial, that $\tilde{M}_{0}^{+}\times R^{n}\times C^{m_{1}}$

$\times C^{m_{2}}\times C^{m_{3}}/\Gamma$ is compact, and that the projections of $\Gamma$ onto $R^{n},$ $C^{m_{1}},$ $C^{m_{2}}$ ,
$C^{m_{3}}$ are the lattices $Z^{n},$ $\Delta^{m_{1}},$ $\Sigma^{m_{2}},$ $\Delta^{m_{3}}$ respectively. Moreover, decomposing
each $\gamma\in\Gamma$ as $\gamma=(\gamma_{0}^{+}, \gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}, id)$ where $\gamma_{0}^{+},$

$\gamma_{0},$ $\gamma_{1},$ $\gamma_{2},$ $\gamma_{3}$ are Clifford transla-
tions of the respective factors, let $\rho$ be the projection of $\Gamma$ onto $R^{n}\times C^{m_{1}}$

$\times C^{m_{2}}\times C^{m_{3}}j$ thus, $\rho(\gamma)=(\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3})$ . Since each symmetry (hence its square)

normalises $\Gamma$ and $(\tilde{S}_{0})^{2}=I$, from $(\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3})\in\rho(\Gamma)$ we deduce that

$(\gamma_{0}, (S_{1})^{2}\gamma_{1},$ $(S_{2})^{2}\gamma_{2},$ $(S_{3})^{2}\gamma_{3})\in\rho(\Gamma)$ ,

and so $(0, (I-(\tilde{S}_{1})^{2})\gamma_{1},$ $(I-(\tilde{S}_{2})^{2})\gamma_{2},$ $(I-(\tilde{S}_{3})^{2})\gamma_{3})\in\rho(\Gamma)$ . Since $\tilde{S}_{1},\tilde{S}_{2}$ and $\tilde{S}_{3}$ have
no eigenvalue $\pm 1$ , we conclude that $(0, \gamma_{1}, \gamma_{2}, \gamma_{3})\in\rho(\Gamma)$ and hence $(\gamma_{0},0,0,0)$

$\in\rho(\Gamma)$ . Likewise using $(\tilde{S}_{1})^{3}=(\tilde{S}_{2})^{4}=(\tilde{S}_{3})^{6}=I$, we conclude $(0, \gamma_{1},0,0),$ $(0,0, \gamma_{2},0)$

and $(0,0,0, \gamma_{3})\in\rho(\Gamma)$ ; thus, $\rho(\Gamma)=Z^{n}\times\Delta^{m_{1}}\times\Sigma^{m_{2}}\times\Delta^{m_{3}}$ . This completes the
proof of Theorem C.

EXAMPLE. From Theorem 6.1 of [10], $SU(3)$ admits an inner automorphism
$\theta$ of order 3 such that a maximal torus $T^{2}$ of $SU(3)$ is the fixed point set of
$\theta$ . So by Proposition 1.19 of [5], $M=SU(3)/T^{2}$ admits the structure $(M, g, s)$

of a Riemannian regular s-manifold which is 3-symmetric. We claim that $M$

is not homeomorphic with the underling manifold $M^{\prime}$ of any Riemannian sym-
metric space.

Since $M=SU(3)/T^{2}$ has dimension 6 and Euler characteristic 6, examination
of the classification of Riemannian symmetric spaces (cf. [8]) shows that the
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only possibility for $M^{\prime}$ is $P^{2}(C)\times S^{2}$ , the direct product of the complex pro-
jective space $P^{2}(C)$ (of (real) dimension 4, Euler characteristic 3, -cf. Theorem
8.10.10 of [8]) and the sphere $S^{2}$ (of dimension 2 and Euler characteristic 2).

Consider the exact homotopy sequence (cf. [7])

$\rightarrow\pi_{4}(SU(3))\rightarrow\pi_{4}(SU(3)/T^{2})\rightarrow\pi_{3}(T^{2})-$ .

Since $U(3)$ is homeomorphic to $S^{1}\times SU(3)$ (Proposition 7, \S X, Chapter II of [1])

and $\pi_{4}(S^{1})=0$ (\S 21.2 of [7]), we have by \S 17.8 and \S 25.4 of [7] that $\pi_{4}(SU(3)\rangle$

$=0$ . Moreover, $\pi_{3}(T^{2})=0$ , and so by the exactness of the above sequence we
conclude that $\pi_{4}(SU(3)/T^{2})=0$ . But $\pi_{4}(P^{2}(C)\times S^{2})=\pi_{4}(P^{2}(C))+\pi_{4}(S^{2})\neq 0$ , be.
cause $\pi_{4}(S^{2})=Z_{2}$ (\S 21.7 of [7]). This establishes the above claim.
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