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In this paper we study the structure of a compact complex manifold $X$ of
dimension 3 of which the 1st Betti number is equal to 1 and the 2nd Betti
number vanishes. This manifold $X$ has at most two algebraically independent
meromorphic functions. Here we restrict ourselves to the case where $X$ has
exactly two algebraically independent meromorphic functions. Then $X$ has an
algebraic net of elliptic curves. We assume furthermore that this net has no
base points, in other words, there exists a holomorphic mapping $f$ of $X$ onto
a projective algebraic (non-singular) surface whose general fibres are connected
non-singular elliptic curves. Finally we assume that $f$ is equi-dimensional.
Under these assumptions we prove the following:

(1) There exists an infinite cyclic unramified covering manifold $W$ of $X$

such that $ W\cup$ { $one$ point} is holomorphically isomorphic to an affine variety
which admits an algebraic $C^{*}$ -action (Theorem 3).

(2) Let $X_{t}$ be any small deformation of $X$ and $W_{t}$ the deformation of $W$

correspOnding to $X_{t}$ . Then, attaching one point $0_{t}$ to each $W_{t}$ , we can construct
a complex analytic family of comPlex spaces $U\iota(W_{t}\cup\{0_{t}\})$ such that, for each $t$ ,

$W_{t}\cup\{0_{t}\}$ is holomorphically isomorphjc to an affine variety (Theorem 4).

(3) $X_{t}$ is holomorPhically isomorPhic to a submanifold of $ C^{n_{C}}-\{0\}/\langle\tilde{g}_{t}\rangle$ ,

where $\tilde{g}_{t}$ is a contracting holomorPhic automorPhism of the $n_{t}$ -dimensional affine
space $C^{n_{t}}$ which fixes the origin (Theorem 5).

In proving (1) $-(3)$ , we use the following fact:
A comPlex $space^{1)}$ which admits a contracting holomorphic automorPhism is

holomorPhically isomorphic to an affine algebraic set $($Theorem $1)^{2)}$ .
As corollaries to (1) $-(3)$ , we obtain some results concerning about certain

complex structures on $S^{1}\times S^{5}$ . In connection with our investigation, we also
have some results on elliptic surfaces of which the 1st Betti numbers are odd
(Theorems 6, 7).

Some of the results of this paper were announced in $[3, 4]$ .
The author would like to express his hearty thanks to Professor K. Koda-

ira, Professor S. Iitaka and Dr. K. Akao for their valuable advices.

1) By a complex space, we mean a reduced Hausdorff complex space.
2) See footnote 3).
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\S 1. Preliminaries I.

Throughout this paper except in \S 4, we use the following notation:
For a topological space $M$,

$\pi_{1}(M)=the$ fundamental group of $M$ ,

$b_{i}(M)=the$ i-th Betti number of $M$ ,

$\chi(M)=\Sigma(-1)^{i}b_{i}(M)=the$ Euler number of $M$ .
For a compact complex manifold $Y$ of dimension $m$ ,

$a(Y)=the$ algebraic dimension of $Y$

$=the$ transcendental degree over $C$ of the field of all
meromorphic functions on $Y$ ,

$O_{Y}=the$ sheaf of germs of holomorphic functions on $Y$ ,

$\mathcal{O}_{Y}(L)=the$ sheaf of germs of holomorphic sections of a
line bundle $L$ on $Y$ ,

$q(Y)=\dim H^{1}(Y, O_{Y})$ ,

$p_{g}(Y)=\dim H^{m}(Y, O_{Y})$ ,

$c_{\iota}[Y]=the$ i-th Chern class of $Y$ ,

$c(L)=the$ Chern class of a line bundle $L$ on $Y$ .

For a compact complex manifold $X$ of dimension 3,

$p(X)=\dim H^{2}(X, O_{X})$ ,

$T(X)=(1/24)c_{1}[X]\cdot c_{2}[X]=the$ Todd genus of $X$ .

We consider the fibre space $(X, V, f)$ with the projection $f:X\rightarrow V$ which
satisfies the following three conditions;

(i) $X$ is a compact complex manifold of dimension 3,
(ii) $V$ is a non-singular pr0jective algebraic manifold of dimension 2,

(iii) $f$ is an equi-dimensional holomorphic surjective mapping whose general

fibres are connected non-singular elliptic curves.
We list up the additional conditions which will be occasionally imposed on

$(X, V, f)$ .
(a) $b_{1}(X)=1$ and $b_{2}(X)=0$ .
(b) There exists a finite set $A$ of points $a_{j}(j=1,2, \cdots , \rho)$ on $V$ such that,

for each $v\in V-A,$ $f^{-1}(v)$ is a (non-singular) elliptic curve.
(c) $q(X)\geqq q(V)+1$ .
(d) $T(X)=0$ .
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(e) $q(V)=p_{g}(V)=0$ .
(f) $\chi(X)\leqq 0$ .
If (X, $V,$ $f$ ) satisfies (a), we denote it by $(X, V, f)_{a}$ . In \S 1, we study

(X, $V,$ $f$). In \S \S 2-6 except in \S 4, we study $(X, V, f)_{a}$ .

Assume that (X, $V,$ $f$ ) satisfies (b). We denote by $F_{j}$ the fibre of $f$ over
$a_{j}\in A$ . It is well-known that under the condition (b) general fibres of $f$ are
isomorphic to each other. Define proper analytic subsets $\Sigma^{\prime},$

$\Sigma\prime\prime$ of $X$ as
follows;

$\Sigma^{\prime}=$ { $x\in X$ : rank $df(x)\leqq 1$ } ,

$\Sigma’/=$ { $x\in X$ : rank $df(x)=0$}.

Since $f$ is equi-dimensional, we have dim $\Sigma\prime\prime\leqq 1$ . By (b), $f(\Sigma\prime\prime)$ is a finite set
of points on $V$ . Let $\Sigma_{i}$ ($i=1,2,$ $\cdots$ , r) be all the irreducible 2-dimensional
components of $\sum^{\prime}$ and $\Sigma$ the union of $\Sigma_{i}s$ . The sets $C_{i}=f(\Sigma_{i})$ are irreducible
curves on $V$ . For a general point $c$ on $C_{i},$ $F=f^{-1}(c)$ is a non-singular elliptic
curve. Let $p$ be any point of $F$. Choose a system of local coordinates
$(\tilde{U}, (x, y, z))$ on $X$ with center $p$ such that $\Sigma_{i}\cap\tilde{U}=\{y=0\},$ $F\cap\tilde{U}=\{x=y=0\}$ and
such that $\tilde{U},$ $\Sigma_{i}\cap\tilde{U}$ and $F\cap\tilde{U}$ are simply connected. Let $(U, (u, v))$ be a
system of local coordinates on $V$ with center $c=f(p)$ such that $C_{i}\cap U=\{v=0\}$

and $ C_{j}\cap U=\emptyset$ for every $j\neq i$ . Let the holomorphic mapping $f$ be

$\{$

$u=f_{1}(x, y, z)$ ,

$v=f_{2}(x, y, z)$ .

There exists a certain positive integer $m$ such that

$v=f_{2}(x, y, z)=y^{m}g_{2}(x, y, z)$ ,

where $g_{2}$ is an everywhere non-vanishing holomorphic function on $U$ . Then
the Jacobian matrix of $f$ is

$df_{1}\Sigma_{i}\cap U\sim=(((\frac{\partial f_{1}0}{\partial x}\frac{\partial f_{1}}{\partial y}\frac{\partial f_{1}}{\partial x}\frac{\partial f_{1}}{\partial y}00g_{2}\frac{\partial f_{1}0}{\partial z}\frac{\partial f_{1}}{\partial z}0)_{y=0})_{y=0}$ $ifif$ $m\geqq 2m=1,$

.

On the other hand, $u_{|c_{i\cap U}}=f_{1}(x, 0, z)=x^{n}g_{1}(x, z)(n\geqq 1)$ . Since $F$ is non-singular,
we can assume that $g_{1}\neq 0$ on $\Sigma_{i}\cap\tilde{U},$ $i$ . $e.,$ $g_{1}\neq 0$ on $\tilde{U}$ , by choosing $\tilde{U}$ to be
sufficiently small. Moreover $tk_{-}/^{\backslash }$. equality $n=1$ holds, since $c=f(p)$ is a general
point of $C_{i}$ . If $m=1$ , then
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$df\sim=(g_{1}+x\frac{\partial g_{1}}{\partial x}0$
$g_{2}*$

$*0)_{y=0}$

has rank 2 in a neighborhood of $p$ . This contradicts the definition of $\Sigma_{t}$ .
Thus we obtain

$f:\{$

$u=f_{1}(x, y, z)=x\cdot g_{1}(x, z)+y\cdot h(x, y, z)$ ,

$v=f_{2}(x, y, z)=y^{m}g_{2}(x, y, z)$ $(m\geqq 2)$ ,

where $g_{1},$ $g_{2}$ and $h$ are holomorphic functions on $\tilde{U}$ and moreover $g_{1}$ and $g_{2}$

are everywhere non-vanishing on $\tilde{U}$ . Letting a new system of local coordinates
$(x^{\prime}, y^{\prime}, z^{\prime})$ on $X$ with center $p$ be

$\left\{\begin{array}{l}x^{\prime}=x\cdot g_{1}(x, z)+y\cdot h(x, y, z),\\y^{\prime}=y(g_{2}(x, y, z))^{1/m}\\z^{\prime}=z,\end{array}\right.$

we have

(0) $f:\{$

$u=x^{\prime}$

$v=y^{\prime m}$ .

Note that $m$ is constant in a small neighborhood of $c$ in $C_{i}$ .
Let $D$ and $\tilde{D}$ be open subsets of $U$ and $C^{2}$ respectively defined by

$D=\{(u, v)\in U : |u|<\epsilon, |v|<\epsilon^{m}\}$ ,

$\tilde{D}=\{(\sigma, \tau)\in C^{2} : |\sigma|<\epsilon, |\tau|<\epsilon\}$ ,

where $\epsilon$ is a small positive number. Define $M\rightarrow\tilde{D}$ to be the holomorphic fibre
bundle of elliptic curves over $D$ induced from $f^{-1}(D)\rightarrow D$ by the covering map
$\lambda:\tilde{D}\rightarrow D,$ $\lambda(\sigma, \tau)=(\sigma, \tau^{m})=(u, v)$ . Then $M$ can be represented in the form

$M=\tilde{D}\times C/G$ ,

where $G$ is the group consisting of holomorphic automorphisms

$((\sigma, \tau),$ $\zeta$ ) $-((\sigma, \tau),$ $\zeta+n_{1}\omega+n_{2}$), $n_{1},$ $n_{2}\in Z$

of $\tilde{D}\times C$. Note that the holomorphic function $\omega({\rm Im}\omega\neq 0)$ of $(\sigma, \tau)$ is constant
since the general fibres $F$ of $M$ are isomorphic to each other. We denote by
$[(\sigma, \tau), \zeta]$ the point of $M$ corresponding to $((\sigma, \tau),$ $\zeta$ ). By a similar argument

as in Kodaira [6] (pp. 767-768), we have

$f^{-1}(D)=M/\mathfrak{G}$ ,
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where $\mathfrak{G}$ is the cyclic group of order $m$ generated by the holomorphic auto-
morphism

$h:[(\sigma, \tau), \zeta]-[(\sigma, \rho\tau), \zeta+k/m]$ , $\rho=\exp(2\pi i/m),$ $k\in Z$ ,

of $M$. By the K\"unneth formula,

$H^{1}(f^{-1}(D), O_{X})=H^{1}(M, O_{M})^{\mathfrak{G}}$

$=(H^{0}(\tilde{D}, O_{D}^{\sim})\otimes H^{1}(F, O_{F}))^{\mathfrak{G}}$

$=H^{0}(\tilde{D}, O_{D}^{\sim})^{\mathfrak{G}}$

$=H^{0}(D, O_{D})$ ,

since $\mathfrak{G}$ acts on $H^{1}(F, O_{F})$ trivially. This shows that $R^{1}f_{*}O_{X1D}\cong O_{V1D}$ . Hence
we infer that $R^{1}f_{*}O_{X}$ is a locally free sheaf of rank 1 on $V$ except a finite
number of stalks.

PROPOSITION 1 (K. Akao). If (X, $V,$ $f$ ) satisfies (b) and (c), then there
exists the following exact sequence of sheaves;

$(^{*})$ $0\rightarrow 0_{V}\rightarrow R^{1}f_{*}\mathcal{O}_{X}\rightarrow \mathcal{F}\rightarrow 0$ ,

where the supp0rt of $\mathcal{F}$ is a finite set of pojnts.
PROOF. We shall prove this with the aid of the spectral sequence $E_{2}^{r,s}=$

$H^{\gamma}(V, R^{s}f_{*}O_{X})\Rightarrow E^{r+s}=H^{r+s}(X, O_{X})$ . By (c) and the equality

$q(X)=\dim H^{1}(X, O_{X})=\dim E_{2}^{1,0}+\dim E_{3}^{0,1}$

$=q(V)+\dim E_{3}^{0,1}$

we have dim $E_{3}^{0,1}\geqq 1$ . This implies that dim $E_{2}^{0,1}=\dim H^{0}(V, R^{1}f_{*}O_{X})\geqq 1$ . Then,
taking a non-zero section $\sigma\in H^{0}(V, R^{1}f_{*}O_{X})$ , we form the exact sequence

$0\rightarrow 0_{V}\rightarrow^{j}R^{1}f_{*}\mathcal{O}_{X}\rightarrow \mathcal{F}\rightarrow 0$

,
u) $\Downarrow$)

$ s\mapsto s\otimes\sigma$

where $j$ is injective since $R^{1}f_{*}\mathcal{O}_{X}$ is locally free sheaf of rank 1 except on
subvarieties of codimension $\geqq 2$ . Let $\Delta$ be a general byperplane section of $V$ .
Then, by (b), $S=f^{-1}(\Delta)$ is a non-singular elliptic surface over $\Delta$ every fibre of
which is a (non-singular) elliptic curve. Then $S$ is obtained from an elliptic
surface $s*$ free from singular fibres by means of a Pnite number of logarithmic
transformations ([6]). Note that $S^{*}$ is an elliptic bundle with the projection
$\pi$ : $ S^{*}\rightarrow\Delta$ corresponding to $f_{|S}$ : $ S\rightarrow\Delta$ . Since $R^{1}\pi_{*}O_{S}*\cong \mathcal{O}_{\Delta}$ and $R^{1}\pi_{*}O_{S^{*}}$ is in-
variant under logarithmic transformations, it follows that $0_{\Delta}\cong R^{1}(f_{|S})_{*}O_{S}\cong$
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$R^{1}f_{*}O_{X1\Delta}$ . Therefore the non-zero section $\sigma_{1\Delta}\in H^{0}(\Delta, O_{\Delta}(R^{1}f_{*}O_{X1\Delta}))=H^{0}(\Delta, O_{\Delta})$

has no zero points. Hence we infer that $\sigma$ has finitely many zero points on
V. This implies that the support of $\mathcal{F}$ is a finite set. Q. E. D.

LEMMA 1. If (X, $V,$ $f$ ) satisfies (b) and (c), then the following equality
and inequalities hold:

(i) $p_{g}(X)=p_{g}(V)$ ,
(ii) $p(X)\leqq q(V)+p_{g}(V)$ ,

(iii) $1+q(V)\leqq q(X)\leqq 1+q(V)-T(X),$ $T(X)\leqq 0$ .
PROOF. First we have $R^{s}f_{*}O_{X}=0$ for $s\geqq 2$ , since every fibre is of dimen-

sion 1. This implies $E_{t}^{r,s}=0$ for $s\geqq 2$ and $t\geqq 2$ . Also we have $E_{t}^{r,0}=0$ for $r\geqq 3$

and $t\geqq 2$ , since dim $V=2$ .
(i) By Proposition 1, we have $H^{2}(V, R^{1}f_{*}O_{X})\cong H^{2}(V, O_{V})$ . Hence

$p_{g}(X)=\dim E\frac{Q}{3}1=\dim E_{2}^{2,1}=\dim H^{2}(V, R^{1}f_{*}\mathcal{O}_{X})$

$=\dim H^{2}(V, O_{V})=p_{g}(V)$ .
(ii) By Proposition 1, we have $H^{1}(V, O_{V})\rightarrow H^{1}(V, R^{1}f_{*}\mathcal{O}_{X})\rightarrow 0$ . This implies

dim $E_{2}^{1,1}\leqq q(V)$ . Hence

$P(X)=\dim E_{3}^{2,0}+\dim E_{3}^{1,1}\leqq\dim E_{2}^{2,0}+\dim E_{2}^{1,1}$

$\leqq p_{g}(V)+q(V)$ .
(iii) By (c) and the Riemann-Roch-Hirzebruch formula, we have

$1+q(V)\leqq q(X)=1+p(X)-p_{g}(X)-T(X)\leqq 1+q(V)-T(X)$ .
Note that this implies $T(X)\leqq 0,$ $q$ . $e$ . $d$ .

LEMMA 2. If (X, $V,$ $f$) satisfies $(b)-(e)$ , then $R^{1}f_{*}O_{X}\cong \mathcal{O}_{V}$ and $q(X)=1$ .
PROOF. By $(b)-(e)$ and Lemma 1 (iii), we have $q(X)=1$ . By (e),

$1=q(X)=\dim E_{2}^{1,0}+\dim E_{3}^{0,1}=\dim E_{2}^{0,1}$ .
By $(*)$ and (e), we have the exact sequence

$0\rightarrow H^{0}(V, O_{V})\rightarrow H^{0}(V, R^{1}f_{*}\mathcal{O}_{X})\rightarrow H^{0}(V, \mathcal{F})\rightarrow 0$ .

It follows that dim $H^{0}(V, \mathcal{F})=0$ , therefore $\mathcal{F}=0$ , since the support of $\mathcal{F}$ is a
set of finite points. Consequently we obtain $R^{1}f_{*}O_{X}\cong O_{V},$ $q$ . $e$ . $d$ .

LEMMA 3. If (X, $V,$ $f$) satisfies (b) and (f), then
(i) $\chi(X)=0$ ,

(ii) for each $j,$ $b_{2}(F_{j})=1$ and $b_{1}(F_{j})=2$ , and $F_{j}$ is irreducible.
PROOF. For each $i$ , we have $\chi(F_{j})\geqq 0$ , since $b_{2}(F_{j})\geqq 1,$ $b_{1}(F_{j})\leqq 2$ and $b_{0}(F_{j})$

$=1$ . Hence $\chi(X)=\sum_{j=1}^{\rho}\chi(F_{j})\geqq 0$ . Therefore (f) implies $\chi(F_{j})=0$ for each $i$.
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Thus we obtain $b_{2}(F_{j})=1$ and $b_{1}(F_{j})=2,$ $q$ . $e$ . $d$ .
LEMMA 4. If (X, $V,$ $f$) satisfies $(b)-(f)$ , then each $F_{j}$ is a non-singular

elliptic curve.
PROOF. Letting $\mathfrak{m}$ be the maximal ideal sheaf of the point $a_{j}\in V$ , we have

the exact sequence of sheaves over $X$ such that

$0\rightarrow \mathfrak{m}O_{X}\rightarrow O_{X}\rightarrow O_{X}/\mathfrak{m}0_{X}\rightarrow 0$ .
Then, for any open set $U\ni a_{j}$ in $V$ , there is the exact sequence

$...\rightarrow H^{1}(f^{-1}(U), O_{X})\rightarrow H^{1}(f^{-1}(U), O_{X}/\mathfrak{m}0_{X})\rightarrow H^{2}(f^{-1}(U), \mathfrak{m}O_{X})\rightarrow\cdots$

and hence the exact sequence

$...\rightarrow R^{1}f_{*}O_{X,a_{j}}\rightarrow H^{1}(F_{j}, O_{F_{j}})\rightarrow R^{2}f_{*}\mathfrak{m}0_{X,a_{j}}\rightarrow\ldots$ ,

since $H^{1}(f^{-1}(U), O_{X}/\mathfrak{m}O_{X})=H^{1}(F_{j}, O_{F_{j}})$ , where, by definition, $O_{F_{j}}=O_{X}/\mathfrak{m}O_{X}|_{F_{j}}$ .
Since dim $F_{j}=1,$ $R^{2}f_{*}\mathfrak{m}O_{X}=0$ . Thus we obtain the exact sequence

$R^{1}f_{*}O_{X,a_{j}}\rightarrow H^{1}(F_{j}, 0_{F_{j}})\rightarrow 0$ .

Since $R^{1}f_{*}O_{X,a_{j}}\cong O_{V,a_{j}}$ by Lemma 2, we have dim $H^{1}(F_{j}, O_{F_{j}})\leqq 1$ . Indicating
by $\mathfrak{N}$ the nilradical of $O_{F_{j}}$ , we have the exact sequence

$0\rightarrow \mathfrak{N}\rightarrow \mathcal{O}_{F_{j}}\rightarrow 0_{F_{j},red}\rightarrow 0$ .
It follows that

$H^{1}(F_{j}, \mathcal{O}_{F_{j}})\rightarrow H^{1}(F_{j}, O_{F_{j},red})\rightarrow H^{2}(F_{j}, \mathfrak{N})=0$

is exact. Hence dim $H^{1}(F_{j}, \mathcal{O}_{F_{j},red})\leqq 1$ . If dim $H^{1}(F_{j}, O_{F_{j},red})=0$ , then $F_{j}$ is
isomorphic to a non-singular rational curve. But this contradicts the equality
$b_{1}(F_{j})=2$ in Lemma 3. Thus we have dim $H^{1}(F_{j}, O_{F_{j},red})=1$ and $F_{j}$ has at
most one singular point. If $F_{j}$ has a singular point, then $F_{j}$ is a rational
curve with either a cusp or an ordinary double point. If $F_{j}$ has a cusp, then
$b_{1}(F_{j})=0$ . If $F_{j}$ has an ordinary double point, then $b_{1}(F_{j})=1$ . Thus we con-
clude that $F_{j}$ is an elliptic curve, $q$ . $e$ . $d$ .

\S 2. Preliminaries II.

In what follows except in \S 4, we consider $(X, V, f)_{a}$ . In this section we
shall show that $(X, V, f)_{a}$ satisfies the five conditions $(b)-(f)$ in \S 1.

LEMMA 5. For any subvariety $Y$ of $X$ with dim $Y=r\geqq 1$ , we have dim $f(Y)$

$=\dim Y-1$ .
PROOF. Since $b_{2}(X)=b_{4}(X)=0$ , the cycle determined by $Y$ is homologous

to zero (modulo torsion), while, if dim $f(Y)=\dim Y,$ $f(Y)$ determines a real 2r-
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dimensional cycle which is not homologous to zero, since $V$ is a projective
algebraic surface. This is a contradiction. Hence we get dim $f(Y)<\dim Y$.
Since every fibre of $f$ is of dimension 1, we have dim $f(Y)=\dim Y-1,$ $q$ . $e$ . $d$ .

LEMMA 6. Condition (b) holds.
PROOF. We use the notation defined in \S 1. Denote by $S_{i}$ the set of all

singular points of $\Sigma_{i}$ . Since dim $f(\Sigma_{i}\cap\Sigma_{j})=0$ for $i\neq j$ and dim $f(S_{i})=0$ for
any $i$ by Lemma 5, the set of all singular points of $\Sigma$ is contained in the
union of finitely many fibres of $f$. Thus the fibre $F_{c}=f^{-1}(c)$ over a general

point $c$ of $\bigcup_{i=1}^{r}C_{i}$ is a non-singular curve by a theorem of Bertini. Let $\Delta$ be a
general hyperplane section of $V$ . Then $S=f^{-1}(\Delta)$ is a non-singular elliptic
surface over $\Delta$ . We can assume that $ c\in\Delta$ . Then $F_{c}$ is a non-singular curve
which appears as a Pbre in a non-singular elliptic surface. By the classsifica-
tion of singular fibres of elliptic surfaces [5], we conclude that $F_{c}$ is an elliptic
curve. Hence we infer that all but a Pnite number of the fibres are elliptic
curves, $q$ . $e$ . $d$ .

LEMMA 7. Condition (c) holds. In particular, $q(V)=0$ .
PROOF. Since all the fibres are connected,

$\pi_{1}(X)\rightarrow\pi_{1}(V)\rightarrow\{1\}$

is exact. This implies that the sequence

$H_{1}(X, Z)\rightarrow H_{1}(V, Z)\rightarrow 0$

is exact. $H_{\vee}^{3}n_{\vee}^{\wedge 3}.b_{1}(V)\leqq 1$ by (a). $S\ln^{\backslash },eb_{1}(V)$ is $e_{t^{73}}.n,$ $w^{2}$. have $b_{1}(V)=0$ and
therefore $q(V)=0$ .

Now it is sufficient to sho $v$ that $q(X)\geqq 1$ . We have the exact sequence
of sheaves

$i$ $d$

$0\rightarrow C\rightarrow O_{X}\rightarrow dO_{X}\rightarrow 0$ ,

and the corresponding exact sequence

$ 0\rightarrow H^{0}(X, dO_{X})\rightarrow H^{1}(X, C)\rightarrow H^{1}(X, O_{X})\rightarrow\cdots$ .

Hence it is sufficient to show $H^{0}(X, dO_{X})=0$ . Our method of proof is the same
as that of $Th^{a}.orem2$ in [6]. We assuma dim $H^{0}(X, dO_{X})>0$ and derive a
contradiction. Let $\varphi b^{a}$. a non-zero element of $H^{0}(X, dO_{X})$ . Since $\varphi$ is d-closed,
$\varphi$ corresponds to an $elem_{\vee}^{\circ}nt$ of $H^{1}(X, C)$ by the de Rham theorem. Now we
shall show that $\varphi$ and its complex conjugate $\overline{\varphi}$ are cohomologically independent
over $C$. Assume that there exist complex numbers $a,$

$b$ such that

$ a\varphi+b\overline{\varphi}=d\mu$
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for some continuously differentiable function $\mu$ on $X$. Locally $\varphi$ can be ex-
pressed as $\varphi=d\lambda$ , where $\lambda$ is a holomorphic function on a certain open set in
X. Hence we have

$\mu=a\lambda+b\overline{\lambda}+constant$ .

This shows that $\mu$ satisfies the mean value theorem. Hence $\mu$ is reduced to
a constant and therefore

$a\varphi+b\overline{\varphi}=0$ .

Consequently $a=b=0$ . Hence $\varphi$ and $\overline{\varphi}$ are cohomologically independent. This
implies dim $H^{1}(X, C)\geqq 2$ . This contradicts (a). Hence $H^{0}(X, dO_{X})=0,$ $q$ . $e$ . $d$ .

LEMMA 8. Condition (d) holds.
PROOF. This is clear by (a).

LEMMA 9. Condition (f) holds.
PROOF. This follows from the following;

$\chi(X)=2-2b_{1}(X)+2b_{2}(X)-b_{3}(X)=-b_{3}(X)\leqq 0$ (by $(a)$).

LEMMA 10. Condition (e) holds.
PROOF. It is shown in Lemma 7 that $q(V)=0$ . By Lemmas 6, 7 and

Lemma 1, we have $p_{g}(X)=p_{g}(V)$ . By the Serre duality, we have $ H^{3}(X, O_{X})\cong$

$H^{0}(X, \Omega^{3})$ , where $\Omega^{3}$ denotes the sheaf of germs of holomorphic 3-forms on $X$.
Hence it is sufficient to show that $H^{0}(X, \Omega^{3})=0$ . Let $\varphi$ be an element of
$H^{0}(X, \Omega^{3})$ . The d-closed form $\varphi$ corresponds to an element of $H^{3}(X, C)$ by

the de Rham theorem. By Lemmas 6, 9 and Lemma 3 (i), we get $\chi(X)=0$ .
Hence $b_{3}(X)=-\chi(X)=0$ by (a). Hence there exists a differentiable 2-form $\psi$

on $X$ such that $ d\psi=\varphi$ . We have

$0\leqq\int_{X}\varphi\wedge\overline{\varphi}=\int_{X}d\psi\wedge d\phi=\int_{X}d(\psi\wedge d\phi)=0$ .

This implies $\varphi=0$ . Therefore $H^{0}(X, \Omega^{3})=0,$ $q$ . $e$ . $d$ .
An element of $H^{1}(X, \mathcal{O}_{X}^{*})$ is called a flat line bundle if it is in the image

of $H^{1}(X, C^{*})$ under the natural injection $j:C^{*}\rightarrow O_{X}^{*}$ .
LEMMA 11. Any line bundle on $X$ is flat.
PROOF. We already know that $(b)-(e)$ hold. Hence $p(X)=0$ and $q(X)=1$

by Lemmas 1 and 2. In the proof of Lemma 7, we see that $i_{*}:$ $ H^{1}(X, C)\rightarrow$

$H^{1}(X, O_{X})$ is an injection. Hence by (a) and $q(X)=1,$ $i_{*}$ is an isomorphism.
Now the lemma follows from the following commutative diagram;

$H^{1}(X, Z)\rightarrow H^{1}(X, O_{X})\rightarrow H^{1}(X, O_{X}^{*})\rightarrow H^{2}(X, Z)\rightarrow 0$

$\Vert$ $\uparrow i_{*}$ $\uparrow j_{*}$ $\Vert$

$H^{1}(X, Z)\rightarrow H^{1}(X, C)\rightarrow H^{1}(X, C^{*})\rightarrow H^{2}(X, Z)\rightarrow 0$ .
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PROPOSITION 2. Each fibre of $f$ is a non-singular elliptic curve.
PROOF. Since we have proved that $(b)-(f)$ hold, the proposition follows

from Lemma 4.

\S 3. Construction of $\Phi:X\rightarrow C^{N}-\{0\}/\langle\alpha\rangle$ .
Let $H$ be a very ample line bundle on $V$ . We represent $H$ as a cocycle

$\{h_{ij}\}\in Z^{1}(\mathcal{U}, O_{V}^{*})$ , where $\mathcal{U}=\bigcup_{t}U_{i}$ is a finite open covering of $V$ such that $H$

is trivial on each $U_{i}$ . Let $\varphi^{(1)},$ $\cdots$ , $\varphi^{(N)}$ be a basis of $H^{0}(V, O_{V}(H))$ , where
$N\geqq 3$ . By Lemma 11, the line bundle $f^{*}H$ over $X$ has a flat representation
corresponding to a group representation $\tilde{\rho}$ of $\pi_{1}(X)$ into $C^{*}$ . Clearly $\tilde{\rho}$ factors
into the canonical surjection $\pi_{1}(X)\rightarrow H_{1}(X, Z)$ and a representation $\rho$ of
$H_{1}(X, Z)$ into $C^{*}$ . Let $\gamma$ be a Betti base of $H_{1}(X, Z)$ and put $\alpha=\rho(\gamma)\in C^{*}$ .
Replacing $H$ by its suitable tensor product $H^{\otimes k}$ if necessary, we may assume
that $\rho(\tau)=1$ for each torsion element $\tau$ of $H_{1}(X, Z)$ . Choosing a suitable finite
open covering $\mathcal{V}=\{U_{i\lambda}\}$ of $X$ such that $f(U_{i\lambda})=U_{i}$ for all $i$ and $\lambda$ , we write
$f^{*}H$ in the form

$f^{*}h_{ij}=\xi_{\iota\lambda}^{-1}\cdot\alpha^{m_{i\lambda,j\mu}}\cdot\xi_{j\mu}$ on $U_{i\lambda}\cap U_{j\mu}$ ,

where $\{\xi_{i\lambda}\}\in C^{0}(\mathcal{V}, O_{X}^{*})$ and $\{m_{i\lambda,j\mu}\}\in Z^{1}(\mathcal{V}, Z)$ .
LEMMA 12. $|\alpha|\neq 1$ .
PROOF. Let $\psi=\{\psi_{i\lambda}\}$ be an element of $H^{0}(X, O_{X}(f^{*}H))$ . If $|\alpha|=1$ , we

have
$|\xi_{i\lambda}\psi_{i\lambda}|=|\xi_{j\mu}\psi_{j\mu}|=\ldots$ on $X$ .

Hence $\{\xi_{i\lambda}\psi_{i\lambda}\}$ is reduced to a constant on $X$. This implies dim $H^{0}(X, O_{X}(f^{*}H))$

$\leqq 1$ . This contradicts that dim $H^{0}(X, O_{X}(f^{*}H))=\dim H^{0}(V, O_{V}(H))\geqq 3,$ $q$ . $e$ . $d$ .
Denote by the same letter $\alpha$ the linear transformation of $C^{N}$ defined by

$(z_{1}, z_{N})\leftrightarrow(\alpha z_{1}, \alpha z_{N})$ .
Let $\langle\alpha\rangle$ be the infinite cyclic group generated by $\alpha$ . Then the quotient space
$ C^{N}-\{0\}/\langle\alpha\rangle$ is a compact complex manifold.

Now we construct a holomorphic mapping $\Phi$ : $ X\rightarrow C^{N}-\{0\}/\langle\alpha\rangle$ . We repre-
sent the sections $\varphi^{(l)}$ as follows:

$\varphi_{i}^{(t)}(v)=h_{ij}(v)\varphi_{j}^{(l)}(v)$ for $v\in U_{i}\cap U_{j}(l=1,2, \cdots , N)$ .
Define $\Phi$ to be the holomorphic mapping

$\Phi$ ; $x\leftrightarrow(\xi_{i\lambda}(x)\varphi_{i}^{(1)}(f(x)), ’ \xi_{i\lambda}(x)\varphi_{i}^{(N)}(f(x)))$

for $x\in U_{i\lambda}$ . Note that $\xi_{i\lambda}(x)$ never vanishes and that $\varphi_{i}^{(1)}(f(x)),$ $\cdots$ , $\varphi_{i}^{(N)}(f(x))$
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never vanish simultaneously. If $x\in U_{i\lambda}\cap U_{j\mu}$ , then, by the equation

$\varphi_{i}^{(l)}(f(x))=\xi_{i\lambda}^{-1}(x)\cdot\alpha^{m_{i\lambda,j\mu}}\cdot\xi_{j\mu}(x)\cdot\varphi_{j}^{(l)}(f(x))$ ,

$(\xi_{i\lambda}(x)\varphi_{i}^{(1)}(f(x)), \cdots, \xi_{iA}(x)\varphi_{t}^{(N)}(f(x)))$ and $(\xi_{j\mu}(x)\varphi_{j}^{(1)}(f(x)), \cdots, \xi_{j\mu}(x)\varphi_{j}^{(N)}(f(x)))$ define
the same point on $ C^{N}-\{0\}/\langle\alpha\rangle$ . Thus $\Phi$ is a well-defined holomorphic map-
ping. Let $\tilde{p};C^{N}-\{0\}\rightarrow C^{N}-\{0\}/\langle\alpha\rangle$ be the canonical projection and $p;C^{N}-\{0\}$

$\rightarrow P^{N-1}$ the Hopf fibering. Then $P$ induces $P_{0}$ : $C^{N}-\{0\}/\langle\alpha\rangle\rightarrow P^{N-1}$ such that
$p_{0}\circ\tilde{p}=p$ . By the definition of $\Phi$ we have the following commutative diagram;

$f\downarrow\downarrow p_{0}X\Rightarrow C^{N}-\{0\}/\langle\alpha\rangle V\rightarrow P^{N-1}\underline{\underline{\Phi}\varphi}$

where $\varphi$ is the embedding of $V$ into $P^{N-1}$ defined by the complete linear sys-
tem of $H$. Put $X^{\prime}=p_{0}^{-1}(\varphi(V))$ . Then $X^{\prime}$ is an elliptic fibre bundle over $\varphi(V)$ .
It is clear that the algebraic dimension $a(X^{\prime})$ of $X^{\prime}$ is equal to 2. We infer
that $\Phi(X)=X^{\prime}$ . In fact, if dim $\Phi(X)=2$ , then $\Phi(X)$ would be a branched cover-
ing of $\varphi(V)$ and this would imply $a(X^{\prime})=3$ . This is a contradiction. Hence
dim $\Phi(X)=3$ and consequently $\Phi(X)=X^{\prime}$ . Since any fibres of $f$ and $p_{0}$ are
both non-singular elliptic curves, $\Phi$ is an unramified covering on each Pbre.
Hence we obtain the following

PROPOSITION 3. The holomorphic mapping $\Phi$ : $ X\rightarrow C^{N}-\{0\}/\langle\alpha\rangle$ is a branched
coverig on its image $\Phi(X)$ and its singular locus coincides with the set of points
where the Jacobian matrix of $f$ does not have the maximal rank. Moreover $\Phi$

satisfies the following commutative diagram;

$X\Rightarrow C^{N}-\{0\}/\langle\alpha\rangle V\rightarrow P^{N- 1}\downarrow f\downarrow p_{0}\underline{\underline{\Phi}\varphi}$

\S 4. A Theorem.

Let $X$ be any (reduced Hausdorff) complex space. Assume that $X$ admits
a holomorphic automorphism $g$ with a unique fixed point $O\in X$. The automor-
phism $g$ is called a contraction to $0$ if $g$ has the following two properties;

(i) $\lim_{\nu\rightarrow+\infty}g^{\nu}(x)=0$ for any point $x\in X$,

(ii) for any small neighborhood $U$ of $0$ there exists a Positive integer $\nu_{0}$

such that $g^{v}(U)\subset U$ for all $\nu\geqq\nu_{0}$ .
In this section we shall prove the following
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THEOREM 1 If a complex space $X$ admits a contracting holomorphic auto-
morphism $g$ such that $g(O)=0$ , then $X$ is holomorphically isomorphic to an affine
algebraic set. If, moreover, $X$ is non-singular at $0$ then $X\cong C^{m}(m=the$ dimen-
sion of $X$ at $0$).

To prove the theorem, we need several lemmas. Denote by $\mathfrak{m}_{0}$ the maximal
ideal of $O_{X,0}$ , which indicates the stalk of $O_{X}$ at $0$ . Put $n=\dim \mathfrak{m}_{0}/\mathfrak{m}_{0}^{2}$ .

LEMMA 13. $X$ can be embedded in $C^{n}$ as an analytic subset which is in-
variant under a contracting holomorphic automorphism $\tilde{g}$ of $C^{n}$ having the form
(1) below.

PROOF. Let $\alpha_{i}$ ($i=1,2,$ $\cdots$ , n) be the eigenvalues of the linear transforma-
tion $g^{*};$ $\mathfrak{m}_{0}/\mathfrak{m}_{0}^{2}\rightarrow \mathfrak{m}_{0}/\mathfrak{m}_{0}^{2}$ induced by $g$. We shall show that $0<|\alpha_{i}|<1$ for all $i$ .
Choose a small neighborhood $U$ of $0$ in $X$ such that $g^{\nu}(U)\subset U$ for $\nu\geqq\nu_{0}$ , where
$\nu_{0}$ is a fixed positive integer. We can assume without loss of generality that
there exists a holomorphic embedding $j$ of $U$ into the unit ball $B$ in $C^{n}$ such
that the image $N=j(U)$ is an analytic subset of $B$ and $j(O)=0$ . Put $f_{\nu}=j\circ g^{\nu}\circ j^{-1}$

for $\nu\geqq\nu_{0}$ . Then each $f_{\nu}$ is a holomorphic mapping of $N$ into itself. Since the
sequence $\{f_{\nu}\}$ is uniformly bounded, there exists a uniformly bounded sequence
$\{\tilde{f}_{\nu}\}$ of holomorphic functions on a certain polydisk $\Delta\ni 0$ in $B$ such that $\tilde{f}_{\nu_{1N\cap\Delta}}$

$=f_{\nu}$ ([2] pp. 290-292). We can choose a subsequence $\{\tilde{f}_{\nu_{j}}\}$ of $\{\tilde{f}_{\nu}\}$ which con-
verges uniformly to a holomorphic function $f$ on a certain polydisk $\Delta_{0}$ of $0$ .
The sequence of Jacobian matrices $\{d\tilde{f}_{v_{j}}(0)\}$ also converges to $d\tilde{f}(0)$ . Since the
eigenvalues of $d\tilde{f}_{\nu_{j}}(0)$ are equal to $\alpha_{1}^{\nu_{j}},$ $\cdots$ , $\alpha_{n}^{\nu_{j}}$ , it follows that $0<|\alpha_{i}|\leqq 1$ for
all $i$ . Assume that $|\alpha_{i}|=1$ for some $i$ . Then rank $d\tilde{f}(0)>0$ . Since $g$ is a
contraction to $O\in X$ and $j(O)=0,\tilde{f_{1N\cap\Delta_{0}}}=0$ . This implies that the point $O\in X$ is
embedded in a non-singular manifold of dimension $n$ –rank $df(O)$ which is less
than $n$ . This is a contradiction and we obtain $0<|\alpha_{i}|<1$ for all $i$ . Put $g_{0}=$

$j\circ g\circ j^{-1}$ . Then $g_{0}$ is defined in a neighborhood of $0\in C^{n}$ . Then, by L. Reich
$[11, 12]$ , there exists a local coordinate transformation $T$ at $0$ such that $T(O)=0$

and $\tilde{g}=T^{-1}\circ g_{0}\circ T$ has the following form:

$z_{1}^{\prime}=\alpha_{1}z_{1}$

$z_{2}^{\prime}=z_{1}+\alpha_{2}z_{2}$

$z_{r_{1}}^{\prime}=z_{r_{1}- 1}+\alpha_{r_{1}}z_{r_{1}}$

(1) $z_{r_{1}+1}^{\prime}=\alpha_{r_{1}+1}z_{r_{1}+1}+P_{r_{1}+1}(z_{1}, z_{r_{1}})$

3) This result was announced in [4], where the condition (ii) was forgotten.
We can replace (ii) by the weaker condition (ii)’ to get the same result: (ii)’
there exists a neighborhood $U$ of $0$ such that $U$ is isomorphic to an analytic subset of an
oPen set of $C^{k}$ for some $k$ and such that $g^{\nu}(U)\subset U$ for some $\nu>0$ . But in our case (ii)
is sufficient.
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2 $\acute{\gamma}_{1^{+r_{2}}}=z_{r_{1}+r_{2}-1}+\alpha_{r_{1}+r_{2}}z_{r_{1}+r_{2}}+P_{r_{1}+r_{2}}(z_{1}$ , $\cdot$ .. $z_{r_{1}})$

$z_{r_{1}+r_{2}+1}^{\prime}=\alpha_{r_{1}+r_{2}+1}z_{r_{1}+r_{2}+1}+P_{r_{1}+r_{2}+1}(z_{1}$ , $\cdot$ .. $z_{r_{1}+r_{2}})$

$z_{n}^{\prime}=z_{n- 1}+\alpha_{n}z_{n}+P_{n}(z_{1}, z_{r_{1}+\cdots+r_{\kappa-1}})$ ,

where $1>|\alpha_{1}|\geqq|\alpha_{2}|\geqq\ldots\geqq|\alpha_{n}|>0,$ $\kappa$ is the number of the Jordan block of the
linear part of $g_{0}$ , and $P_{r}(r(\sigma)<r\leqq r(\sigma+1), r(\sigma)=r_{1}+\cdots+r_{\sigma})$ is a finite sum of
monomials $z_{1}^{m_{1}}\cdots z_{\gamma(d)}^{m_{r^{(}\sigma)}}$ which satisfy $\alpha_{r}=\alpha_{1}^{n\iota_{1}}\cdots\alpha_{r(\sigma)}^{m_{r(\sigma)}},$ $m_{1}+\cdots+m_{\gamma(\sigma)}\geqq 2$ and all
$m_{j}>0$ .

Note that $\tilde{g}$ is a contracting holomorphic automorphism of $C^{n}$ such that
$\tilde{g}(0)=0$ . Let $U_{1}$ be a neighborhood of $O\in X$ on which $j_{0}=T^{-1}\circ j$ is defined.
Let $U_{0}(\subset U_{1})$ be a neighborhood of $O\in X$ such that $g^{v}(U_{0})\subset U_{1}$ for all $\nu\geqq 0$ .
Then $\tilde{g}^{\nu}\circ j_{0}=j_{0}\circ g^{\nu}$ on $U_{0}$ for all $\nu\geqq 0$ . Now we define a holomorphic mapping
$J$ of $X$ into $C^{n}$ by

$J(x)=\tilde{g}^{-v}\circ j_{0}\circ g^{\nu}(x)$ $(x\in X)$ ,

where $g^{\nu}(x)\in U_{0}$ . If $g^{\mu}(x)\in U_{0}(\nu\geqq\mu)$ , then $\tilde{g}^{-\nu}\circ j_{0}\circ g^{v}(x)=\tilde{g}^{-\nu}\circ j_{0}\circ g^{v-\mu}\circ g^{\mu}(x)=$

$\tilde{g}^{-\nu_{\circ}}\tilde{g}^{\nu-\mu}\circ j_{0}\circ g^{\mu}(x)=\tilde{g}^{-\mu_{\circ}}j_{0}\circ g^{\mu}(x)$ . Hence $J$ is well-defined. It is easy to check
that $J$ is a holomorphic embedding of $X$ and that $J(X)$ is a $\tilde{g}$-invariant analytic
subset of $C^{n},$ $q$ . $e$ . $d$ .

It $X$ is non-singular at $0$ , then $n=m$ . Hence $J(X)=C^{m}$ . This proves the
latter statement of the theorem.

From now on we identify $X$ with $J(X)$ . Since the number of the irreduci-
ble branches of $X$ at $0$ is finite, $X$ has a finite number of irreducible com-
ponents $X_{j}(j=1, 2, )$ . Hence there exists a positive integer 1 such that $\tilde{g}^{t}$

acts on each $X_{j}$ as a contracting automorphism which has the similar form to
(1). Therefore we may assume that $X$ is irreducible. For an analytic subset
$Z$ in $C^{n}$ , we define dim $Z$ to be the maximum of the dimensions of irreducible
components of $Z$.

LEMMA 14. Let $Z$ be a $\tilde{g}$-invariant analytic subset in $C^{n}$ such that $Z\supset X$

and dim $ Z>\dim$ X. Then there exists a non-constant holomorphic function $f$ on
$Z$ such that $\tilde{g}^{*}f=\alpha f(0<|\alpha|<1)$ and $f_{1X}=0$ .

PROOF. It is clear that both $Z$ and $X$ contains the origin $0\in C^{n}$ . In view
of (1) we can choose a small relatively compact neighborhood $D$ of $0$ in $Z$

such that $\tilde{g}(\overline{D})\subset D$ , where $\overline{D}$ denotes the closure of $D$ in $Z$. Let $\mathcal{B}$ be a vec-
tor space of holomorphic functions defined by

$\mathcal{B}=\{f:fisaboundedho1omorphiconDsuchthatf_{1X\cap D}=0function\}$ .

We define the norm $\Vert\Vert_{D}$ for $f\in \mathcal{B}$ by
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$\Vert f\Vert_{D}=\sup_{z\in D}|f(z)|$ .

Then $(\mathcal{B}, \Vert\Vert_{D})$ is clearly a Banach space. The linear mapping $\tilde{g}^{*}:$ $\mathcal{B}\rightarrow \mathcal{B}$ de-
fined by $(\tilde{g}^{*}f)(z)=f(\tilde{g}(z))$ is a compact operator by Vitali’s theorem. It is
easy to see that $\Vert\tilde{g}^{*}\Vert_{D}\leqq 1$ and $\Vert\tilde{g}^{*}f\Vert_{D}=\Vert f\Vert_{D}$ implies $f=0$ . Now we shall show
that there exists a non-zero element $f_{0}\in \mathcal{B}$ such that

$\tilde{g}^{*}f_{0}=\alpha f_{0}$ $(0<|\alpha|<1)$ .
Put

(2) $R(\lambda)=(I-\lambda\tilde{g}^{*})^{-1}$

where $I$ denotes the identity operator. Since $\tilde{g}^{*}$ is a compact operator, any
spectrum except $0$ is an eigenvalue ([16]). Hence if there is no such $f_{0}$ , then
$R(\lambda)$ is an entire function of $\lambda$ on $C$. This implies that the radius of the
circle of convergence of the Taylor expansion of (2) is infinite, $i$ . $e.,\lim_{\nu\rightarrow+\infty}\sqrt[\nu]{\Vert\tilde{g}^{*\nu}\Vert_{D}}$

$=0$ . This is equivalent to saying that for any $\epsilon>0$ , there exists an integer $\nu_{1}$

such that

(3) $\Vert\tilde{g}^{*\nu}\Vert_{D}<\epsilon^{\nu}$

for $\nu>\nu_{1}$ . Let $\mathfrak{m}_{Z,0}$ denote the maximal ideal of $O_{Z,0},$ $\rho$ a positive integer such
that there exists an element $h\in \mathcal{B}$ which is not contained in $\mathfrak{m}_{Z,0}^{\rho+1}$ . Fix a posi-
tive number $\delta$ such that $\delta<|\alpha_{i}|^{\rho+1}$ for all $i$ $(i=1,2, \cdots , n)$ . Then

$\Vert\delta^{-v}\tilde{g}^{*\nu}h\Vert_{D}>\Vert h\Vert_{D}$

for sufficiently large $\nu$ . But this contradicts (3). Hence there exists a non-
zero element $f_{0}\in \mathcal{B}$ such that $\tilde{g}^{*}f_{0}=\alpha f_{0}(0<|\alpha|<1)$ . For every positive integer
$\nu$ , we have

(4) $f_{0}(z)=\alpha^{-\nu}f_{0}(\tilde{g}^{\nu}(z))$ $(z\in D)$ .
Since $\alpha^{-\nu}\tilde{g}^{*\nu}f_{0}$ is dePned on $\tilde{g}^{-\nu}(D)$ and $U\tilde{g}^{-\nu}(D)=Z\nu$ it follows from (4) that
$f_{0}$ can be continued analytically to a holomorphic function $f$ on $Z$ such that
$\tilde{g}^{*}f=\alpha f$. It is clear that $f_{1X}=0,$ $q$ . $e$ . $d$ .

Denote by $\Vert z\Vert$ the norm of the point $z=(z_{1}, \cdots , z_{n})\in C^{n}$ defined by $\Vert z\Vert=$

$|z_{1}|+\cdots+|z_{n}|$ .
LEMMA 15. Let $Z$ be a $\tilde{g}$-invariant analytic subset of $C^{n}$ and $f$ a holomor-

phic function on $Z$ which satisfies the equality

(5) $\tilde{g}^{*}f=\alpha f$ $(0<|\alpha|<1)$ .
Then $f$ satisfies the following inequality:

(6) $|f(z)|\leqq M(1+\Vert z\Vert)^{N}$
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where $M$ and $N$ are positive constants which are independent of $z\in Z$.
PROOF. Let $K$ be a closed small neighborhood of $0\in C^{n}$ defined by $\Vert z\Vert\leqq\epsilon$ .

First for a point $z\in Z-K$ we estimate by $\Vert z\Vert$ the minimum non-negative integer
$\nu$ such that $\tilde{g}^{\nu}(z)\in K$. By (1), the r-th coordinate $(r(\sigma)<r\leqq r(\sigma+1))$ of the point
$\tilde{g}^{\nu}(z)$ is given by

$(\tilde{g}^{J}(z))_{r}=\alpha_{r}(z_{r}+Q_{r}(\nu, z_{1}, z_{r(\sigma)}))$ ,

where $Q_{r}$ is a polynomial of $\nu,$ $z_{1},$
$\cdots$ , $z_{r(\sigma)}$ . Hence we get

$\Vert\tilde{g}^{\nu}(z)\Vert\leqq\sum_{r}|\alpha_{\gamma}|^{\nu}(|z_{\gamma}|+|Q_{r}(\nu,$ $z_{1},$ ,

Then it is easy to see that, for some positive constants $A,$ $B$ and $\beta(|\alpha_{i}|<\beta<1$

for all $i$), the following inequality holds:

$\Vert\tilde{g}^{\nu}(z)\Vert\leqq A\beta^{\nu}(1+\Vert z\Vert)^{B}$ .
Let $\nu$ be the least integer such that $\nu>-(\log\beta)^{-1}\log(A(1+\Vert z\Vert)^{B}/\epsilon)$ , which is
positive since we have chosen $\epsilon$ to be small enough. Then $\Vert\tilde{g}^{u}(z)\Vert\leqq\epsilon$ , there-
fore $\tilde{g}^{\nu}(z)\in K$. Then, by (5),

$|f(z)|=|\alpha^{-\nu}f(\tilde{g}^{v}(z))|$

$\leqq|\alpha|^{-\nu}\Vert f\Vert_{K}$
$(\Vert f\Vert_{K}=\sup_{z\in K}|f(z)|)$

$\leqq|\alpha|^{(\log\beta)\log(A(1+Uz||)/\epsilon)-1}- 1.B$ $\Vert f\Vert_{K}$

$=(A(1+\Vert z\Vert)^{B}/\epsilon)^{(\log|\alpha|)/\log\beta}\cdot|\alpha^{-1}|\cdot\Vert f\Vert_{K}$ .

Putting $ N=B(\log|\alpha|)/\log\beta$ and $M=(A/\epsilon)^{N/B}\cdot|\alpha^{-1}|\cdot\Vert f\Vert_{K}$ , we get

$|f(z)|\leqq M(1+\Vert z\Vert)^{N}$ $q$ . $e$ . $d$ .

W. Rudin [13] proved the following
THEOREM 2. An analytic subset $V$ of pure dimension $k$ in $C^{n}$ is algebraic

if and only if $V$ lies in some algebraic region of type $(k, n)$ .
By [13], a set $\Omega$ in $C^{n}$ will be called an algebraic region of type $(k, n)$ if

there are vector subspaces $E,$ $F$ in $C^{n}$ and a positive real numbers $A,$ $B$ such
that the following conditions hold: dim $E=k$ , dim $F=n-k,$ $C^{n}=E\oplus F$ (direct

sum) and $\Omega$ consists precisely of the points $z\in C^{n}$ satisfying the inequality

$\Vert z^{\prime\prime}\Vert\leqq A(1+\Vert z^{\prime}\Vert)^{B}$ ,

where $z=z^{\prime}+z^{\prime},$ $z^{\prime}\in E$ and $z^{\prime}\in F$.
LEMMA 16. Let $Z$ be a $\tilde{g}$-invariant pure k-dimensional affine algebraic sub-

set of $C^{n},$ $f$ a holomorphic function on $Z$ such that $\tilde{g}^{*}f=\alpha f(0<|\alpha|<1)$ . Then
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the zero locus $Y=\{z\in Z:f(z)=0\}$ is a g-invariant affine algebraic subset of $C^{n}$ .
PROOF. It is sufficient to show that the graph

$\Gamma_{f}=\{(z, w)\in Z\times C:w=f(z)\}$

is an affine algebraic subset of $C^{n}\times C=C^{n+1}$ . By Theorem 2, there exists an
algebraic region of type $(k, n)$ such that

(7) $Z\subset\{(z^{\prime}, z^{\prime\prime})\in C^{k}\times C^{n-k} : \Vert z^{\prime\prime}\Vert\leqq A(1+\Vert z^{\prime}\Vert)^{B}\}$ ,

where we can choose the subspace $C^{k}$ so that there exists an algebraic branched
covering $Z\rightarrow C^{k}$ . By (6), we have

$\Gamma_{f}\subset\{(z, w)\in Z\times C:|w|\leqq M(1+\Vert z\Vert)^{N}\}\subset C^{n+1}$

Hence, by (7), for points $(z, w)\in\Gamma_{f}$ ,

$|w|\leqq M(1+\Vert z^{\prime}\Vert+\Vert z^{\prime\prime}\Vert)^{N}\leqq M(1+\Vert z^{\prime}\Vert+A(1+\Vert z^{\prime}\Vert)^{B})^{N}$

(8)
$\leqq M_{1}(1+\Vert z^{\prime}\Vert)^{N_{1}}$ ,

where $M_{1}$ and $N_{1}$ are some positive constants. Thus combining (8) with (7),
we get

$\Vert(z^{\prime\prime}, w)\Vert\leqq A(1+\Vert z^{\prime}\Vert)^{B}+M_{1}(1+\Vert z^{\prime}\Vert)^{N_{1}}$

$\leqq M_{2}(1+\Vert z^{\prime}\Vert)^{N_{2}}$ (for some $M_{2}$ and $N_{2}$).

Hence the graph $\Gamma_{f}$ is contained in an algebraic region of type $(k, n+1)(k=$

dim $Z$ ). Hence, by Theorem 2, $\Gamma_{f}$ is an affine algebraic subset, since $\Gamma_{f}$ is
pure dimensional, $q$ . $e$ . $d$ .

LEMMA 17. Let $Z$ be a $\tilde{g}$-invariant pure dimensional affine algebraic subset
of $C^{n}$ such that $Z\supset X$ and dim $ Z>\dim$ X. Then there exists a $\tilde{g}$-invariant pure
dimensional affine algebraic subset $Y$ of $C^{n}$ such that $Z\supset Y\supset X$ and dim $Z=$

dim $Y+1$ . If dim Z$=\dim X+1$ , then $X$ is an affine algebraic subset of $C^{n}$ .
PROOF. Let $Z_{0}$ be an irreducible component of $Z$ such that $Z_{0}\supset X$. Put

$V=\nu\in ZU\tilde{g}^{v}(Z_{0})$ . Then $V$ is a $\tilde{g}$-invariant pure dimensional affine algebraic subset

of $C^{n}$ which consists of the irreducible components of $Z$. Applying Lemmas
14 and 16 to $V$ , we get a $\tilde{g}$-invariant affine algebraic subset $Y$ defined by a
non-constant holomorphic function $f$ on $V$ . Now $Y$ contains no irreducible
components of $V$ . In fact, if $Y$ contains an irreducible component of $V$ , then
$f$ vanishes identically on $V$ . Hence $Y$ is pure dimensional and dim $Z=\dim Y+1$ .
The latter statement is clear, since $X$ is an irreducible component of the affine
algebraic subset $Y$, $q$ . $e$ . $d$ .

PROOF OF THEOREM 1. Note that $C^{n}$ itself is a g-invariant pure dimen-
sional affine algebraic ”subset” of $C^{n}$ . Hence, by Lemma 17, the theorem is
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easily proved by the induction on the codimension of $X$ in $C^{n}$ . Q. E. D.

\S 5. Complex structure of $(X, V, f)_{a}$ .
Now consider $(X, V, f)_{a}$ . By Proposition 3, the holomorphic mapping

$\Phi$ : $ X\rightarrow C^{N}-\{0\}/\langle\alpha\rangle$ induces a non-trivial homomorphism

$\Phi_{*};$ $\pi_{1}(X)\rightarrow\pi_{1}(C^{N}-\{0\}/\langle\alpha\rangle)\cong Z$ .
Then $\Phi_{*}(\pi_{1}(X))=\langle\alpha^{m}\rangle$ for a certain non-zero integer $m$ . We can assume that
$|\alpha^{m}|<1$ . Let $W$ be the unramified covering manifold of $X$ such that $\pi_{1}(W)$

is equal to the kernel of $\Phi_{*}$ . Then $W$ is the infinite cyclic covering manifold
of $X$. Lifting up $\Phi$ to $W$, we have a finite branched covering

$\Psi:W\rightarrow\Psi(W)\subset C^{N}-\{0\}$ .

Let $g$ be a generator of $\pi_{1}(X)/\pi_{1}(W)\cong Zsuch$ that $\Phi_{*}(g)=\alpha^{m}$. Then $g$ can be
regarded as a holomorphic automorphism of $W$ such that $W/\langle g\rangle=X$. Put
$Y=p^{-1}(\varphi(V))$ and $\hat{Y}=Y\cup\{0\}$ , where $\hat{Y}$ is an affine variety of dimension 3
which is non-singular at everywhere except $0$ .

THEOREM 3. $\hat{W}=W\cup$ { $one$ point} has a complex structure of an affine
variety which admits an algebraic $C^{*}$ -action.

PROOF. Let $\lambda:\hat{Y}^{*}\rightarrow\hat{Y}$ be the normalization of $\hat{Y}$. Since $\hat{Y}$ has one irre-
ducible branch at $0,$ $\lambda$ is an isomorphism of $\hat{Y}^{*}-\{0^{*}\}$ onto $\hat{Y}-\{0\}=Y$, where
$0^{*}=\lambda^{-1}(0)$ is a point. By $\lambda$ we identify $\hat{Y}^{*}-\{0^{*}\}$ with Y. It is clear by the
definition of $\Psi$ that the image of the branch loci in $Y$ can be extended to
subvarieties of $\hat{Y}^{*}$ . By a theorem of Grauert-Remmert [2] Satz 8 (see also
Raynaud [10] Th\’eor\‘e$m5.4$), there uniquely exist a normal complex space $\hat{W}$

and a finite branched covering $\hat{\Psi}$ : $\hat{W}\rightarrow\hat{Y}^{*}$ such that $\hat{\Psi}_{\mathfrak{l}W}=\Psi$ , where $\hat{W}$ is ob-
tained by attaching analytic sets to $W$. Simple topological argument shows
that $\hat{\Psi}^{-1}(0^{*})$ consists of one point, which we denote by $0$ . By the same theo-
rem of Grauert-Remmert, the automorphism $g$ of $W$ extends uniquely to a
holomorphic automorphism of $\hat{W}$ which Pxes $0$ . We denote this automorphism
by the same letter $g$. It is easy to see that $g$ is a contraction to $0$ . Hence,
by Theorem 1, $\hat{W}=W\cup\{0\}$ is isomorphic to an affine variety. Let $\theta$ be the
vector field on $\Phi(X)$ which induces the natural complex torus action on $\Phi(X)$ .
By the construction of $\Phi$ and the equation (0) in \S 1, we have the vector field
$\tilde{\theta}$ on $X-S$ such that $\Phi_{*}\tilde{\theta}=\theta$ , where $S$ is the Pnite union of the fibres of $f$.
Integrating this vector field, we obtain a complex torus action on $X-S$ . Since
$S$ is of codimension 2, this action uniquely extends to the whole $X$. Hence $W$

has a $C^{*}$ -action $\sigma$ which induces the natural algebraic $c*$-action on $Y$. We
embed $\hat{W}$ to $C^{n}$ for some $n$ so that $0$ coincides with the origin of $C^{n}$ . Let $\Gamma$
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be the graph of $\sigma;c*\times W\rightarrow W$. Take apoint $(t, w)\in C^{*}\times W$. Then $z=\sigma(t, w)$

is a vector-valued holomorphic function defined on $C^{*}\times W$ which is bounded
on $D^{*}=\{(t, w)\in C\times U:0<|t|<\epsilon, w\neq 0\}$ , where $U$ is an arbitrary relatively
compact neighborhood of $0$ in $\hat{W}$ and $\epsilon$ is a small positive number. Hence $\sigma$

extends to a holomorphic function on $D=\{(t, w)\in C\times U:|t|<\epsilon\}$ such that $\sigma(t, 0)$

$=0$ and $\sigma(0, w)=0$ . Hence we infer that the closure $F$ of $\Gamma$ in $C\times\hat{W}\times\hat{W}$ is
an analytic subset sucb that $F=\Gamma\cup(C\times\{0\}\times\{0\})\cup(\{0\}\times\hat{W}\times\{0\})$ . We define
a holomorphic automorphism $h$ of $c\times\hat{W}\times\hat{W}$ as follows;

$h:c\times\hat{W}\times\hat{W}$ $C\times\hat{W}\times\hat{W}$

$(\rfloor)$ $(\cup$

$(t, w, z)\leftrightarrow((1/2)t, \sigma(1/2, w), \sigma(1/4, z))$ .

Then $h$ is a contraction of $c\times\hat{W}\times\hat{W}$ to $(0,0,0)$ . Moreover $h$ leaves $\overline{\Gamma}$ invari-
ant. Hence $F$ is an algebraic subvariety of $C\times\hat{W}\times\hat{W}$ as the proof of Theorem
1 shows. Therefore the $C^{*}$ -action $\sigma$ on $W$ extends to an algebraic $C^{*}$ -action
on $\hat{W}$. Q. E. D.

Let $ C’-\{0\}/\langle\beta\rangle$ be a compact complex manifold defined by factoring
$C’-\{0\}$ by the linear transformation $\beta$ of $C^{M}$ ;

$\beta:(z_{1}, z_{M})\rightarrow(\beta^{q_{1}}z_{1}, \beta^{q_{M}}z_{M})$ ,

where $0<|\beta|<1$ and all $q_{i}’ s$ are positive integers.
PROPOSITION 4. There exists a finite cyclic unramified covering manifold

of $X$ which is holomorphically isomorphic to a submanifold of $ C^{M}-\{0\}/\langle\beta\rangle$ for
some $M$ and $\beta$ .

PROOF. Since the $C^{*}$ -action on $\hat{W}$ is algebraic, by Proposition (1, 1, 3) in
Orlik-Wagreich [9], there is an embedding $j:\hat{W}\rightarrow C^{M}$ for some $M$ and an alge-
braic $C^{*}$ -action $\overline{\sigma}$ on $C^{M}$ such that $j(\hat{W})$ is $\tilde{\sigma}$-invariant and $ j^{*}\tilde{\sigma}=\sigma$ , and moreover,
by a suitable choice of coordinates on $C^{M}$ , we can write $\tilde{\sigma}$ as $\tilde{\sigma}(t, (z_{1}, \cdots , z_{M}))$

$=$ $(t^{q_{1}}z_{1}, \cdots , t^{q_{M}}z_{M})$ , where the $q_{i}’ s$ are positive integers. For a suitable positive
integer $\nu_{0},$

$g^{\nu_{0}}$ fixes every component of the Pbres of $f\circ\omega;W\rightarrow V$ , where $\omega$ is
the canonical covering map $ W\rightarrow X=W/\langle g\rangle$ . Then it is easy to see that the
action of the group $\langle g^{\nu_{0}}\rangle$ is compatible with that of $C^{*},$ $i$ . $e.$ , there exists some
$\beta$ such that $\beta=g^{\nu_{0}}$ . This implies that $ W/\langle g^{v_{0}}\rangle$ is a submanifold of $ C^{M}-\{0\}/\langle\beta\rangle$ .
Hence $ W/\langle g^{\nu_{0}}\rangle$ is the desired manifold. Q. E. D.

PROPOSITION 5. $V$ is holomorphically isomorphic to either a projective plane
or a surface of general type with $b_{2}(V)=1$ .

POOOF. Let $L$ be a line bundle on $V$ . We denote by $\rho_{L}$ the representation
of $H_{1}(X, Z)$ into $C^{*}$ corresponding to the flat line bundle $f^{*}L$ on $X$ . Put $\alpha_{L}=$

$\rho_{L}(\gamma)$ , where $\gamma$ is a fixed Betti base of $H_{1}(X, Z)$ .
Let $H$ be an ample line bundle on $V$ . Then, for any line bundle $L$ on $V$ ,
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both $H_{1}=H^{\otimes m}$ and $H_{2}=H^{\otimes m}\otimes L$ are very ample if we choose $m$ to be sufficiently
large. By Proposition 3, we have, for some positive integer $n$ , the following
holomorphic mappings $\Phi_{1}$ and $\Phi_{2}$ corresponding to $H_{1}^{\otimes n}$ and $H_{2}^{gn}$ , respectively;

Since the fibre $F_{v}$ on $v\in V$ is an unramified covering of both $ C^{*}/\langle\alpha_{H}\bigotimes_{1}\eta\rangle$ and
$ C^{*}/\langle\alpha_{H}\bigotimes_{2}n\rangle$ , there exist integers $7n_{1},$ $m_{2}$ such that $\alpha_{H_{1}}^{nm_{1}}=\alpha_{H_{2}}^{nm_{2}}$ . This implies that
$f^{*}(H_{1}^{\otimes nm_{1}})=f^{*}(H_{2}^{\otimes nm_{2}})$ and, consequently, $L^{\otimes nm_{2}}=H^{\otimes nm(m_{1}-m_{2})}$ , since $f^{*}:$ $H^{1}(V, O_{V}^{*})$

$\rightarrow H^{1}(X, O_{X}^{*})$ is an injection. This shows that $b_{2}(V)=1$ , since we know that
$H^{1}(V, O_{V}^{*})\cong H^{2}(V, Z)$ by $q(V)=p_{g}(V)=0$ . Therefore we conclude that $V$ is a
projective plane or a surface of general type by the classification theory of
surfaces [7].

\S 6. Small deformations.

Denote by $D_{\epsilon}$ a polydisk $\{t=(t_{1}, \cdots , t_{n}):|t_{i}|<\epsilon, i=1,2, \cdots , n\}$ in $C^{n}(n\geqq 1)$ .
Let $\pi^{\prime}$ : $\mathfrak{X}\rightarrow D_{\epsilon}(\pi^{\prime-1}(t)=X_{t})$ be a complex analytic family of small deformations
of $X_{0}=X$. Then we have another complex analytic family $\pi$ : $\mathcal{W}\rightarrow D_{\epsilon}(\pi^{-1}(t)$

$=W_{t})$ of small deformations of $W_{0}=W$ with the following commutative dia-
gram;

where $\tilde{\omega};\mathcal{W}\rightarrow \mathfrak{X}$ is the unramiPed infinite cyclic covering such that $\tilde{\omega}_{1W_{0}}=\omega$ is
the canonical projection $W\rightarrow X$.

THEOREM 4. There exists a complex fibre space $\hslash$ : $\hat{\mathcal{W}}\rightarrow D_{\epsilon}$ with the projec-
tion it which has the following properties:

(1) $\hat{\mathcal{W}}=\mathcal{W}\cup S$ , where $S$ is an analytic subvariety of $\hat{\mathcal{W}}$ ;
(2) $f_{1\mathcal{W}}=\pi$ ;
(3) $fi^{-1}(t)\cap S=$ { $one$ point} for any $t\in D_{\epsilon}$ ;
(4) $i\tau^{-1}(t)$ is holomorphically isomorphic to an affine variety for any $t\in D_{\epsilon}$ .
PROOF. Let $F^{\prime}$ : $\mathfrak{X}\rightarrow X\times D_{\epsilon}$ be a differentiable trivialization of $\mathfrak{X}$ and $F$ :
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$\mathcal{W}\rightarrow W\times D_{\epsilon}$ the corresponding trivialization. Then there is the commutative
diagram;

where $q$ and $q^{\prime}$ are the projections to the 2nd components. Let $\mathcal{G}$ be the auto-
morphism of $\mathcal{W}$ such that $\mathcal{W}/\langle \mathcal{G}\rangle=\mathfrak{X}$ and $\mathcal{G}_{|W}=g$. Put $g_{t}=\mathcal{G}_{|W_{t}}$ for $t\in D_{\overline{c}}$ .

Now we embed $W$ into $C^{M}$ by the holomorphic mapping $J$ which was con-
structed in \S 4. Let $(z_{1}, \cdots , z_{M})$ be a standard system of coordinates on $C^{M}$ .
By the dePnition of $J$, there exists a contracting holomorphic automorphism $\tilde{g}$

of $C^{M}$ such that $\tilde{g}(0)=0$ and $\tilde{g}_{1J(W)}=J\circ g\circ J^{-1}$ . Let $q_{W}$ : $W\times D_{\epsilon}\rightarrow W$ be the pro-
jection. We define a $C^{\infty}$-function on $\mathcal{W}$ by

$\theta(w)=-1+\sum_{i=1}^{M}|z_{i}(q_{W^{O}}F(w))|^{2}+c\sum_{j=1}^{n}|t_{j}(\pi(w))|^{2}$ $(w\in \mathcal{W})$ ,

wherec isapositive number which will be defined later. Note that $-1<\theta<+\infty$

on $\mathcal{W}$ . Put
$\mathcal{B}=\{w\in \mathcal{W};\theta(w)=0\}$ ,

$\mathcal{W}^{+}=\{w\in \mathcal{W};\theta(w)>0\}$ ,

$\mathcal{W}^{-}=\{w\in \mathcal{W}:\theta(w)<0\}$ ,

$B=\mathcal{B}\cap W$ ,

$W^{+}=\mathcal{W}^{+}\cap W$ ,

and
$W^{-}=\mathcal{W}^{-}\cap W$ .

Choose a positive integer $\nu_{0}$ such that $g^{\nu_{0}}(\overline{W}^{-})\subset W^{-}$ , where we indicate by $\overline{A}$

the topological closure of the set $A$ in $\mathcal{W}$ . Put $\mathcal{H}=\mathcal{G}$
“ $ $ and $h=g^{\nu_{0}}$ . Let $a$ be

a negative number such that $-1<a<r=\min\{\theta(w):w\in h^{2}(B)\}$ and $b$ a positive
number. Put

$JC=\{w\in \mathcal{W};a<\theta(w)<b\}$ ,

and
$K=JC\cap W$ .

Clearly $K$ is defined independently to $c$ . Fix $c$ so that $\theta$ dePnes a positive

definite Levi form on an open neighborhood $\mathcal{U}$ of $\overline{K}$ in $\mathcal{W}$ . Since we consider
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only small deformations of $X$, replacing $\mathfrak{X}$ , if necessary, by $\pi^{\prime- 1}(D_{\epsilon^{\prime}})$ for some
$\epsilon^{\prime}(0<\epsilon^{\prime}<\epsilon)$ , we can assume the following;

$JC\subset \mathcal{U}$ ,

$\mathcal{H}^{\nu}(\overline{\mathcal{W}}^{-})\subset \mathcal{H}^{\nu-1}(\mathcal{W}^{-})$ $(\nu=1,2)$ ,

$\{w\in \mathcal{W};\theta(w)\geqq b\}\subset \mathcal{W}^{+}$

and
$\{w\in \mathcal{W};\theta(w)\leqq a\}\subset \mathcal{H}^{2}(\mathcal{W}^{-})$ .

Put $D=D_{\epsilon}$ . Then $\pi;_{c}f\zeta\rightarrow D$ is a $(1, 1)$ convex-concave holomorphic mapping
with exhaustion function $\theta$ (for the definition of the terminologies, see Ling
[8]). Since $JC$ is non-singular and of dimension $n+3$ , by Theorem $(I)_{n}[8]$ ,

we have a unique $(n+1)$ -normal Stein space $JC\wedge$ with the following properties;
(i) there exist a projection $\hat{\pi}$ : $J^{\wedge}C\rightarrow D$ and a holomorphjc homeomorphism $i$

of $fC$ onto an open subset of $\hat{JC}$ which makes the diagram

$JC\frac{i}{\lambda_{D}\pi\nearrow\hat{\pi}}JC$

commutative,
(ii) the projection $ii$ restricted to

$JC-\{w\in i(JC):\theta(i^{-1}(w))>d\}\wedge$

is proper for any $d(a<d<b)$ .
Put

$\hat{\mathcal{L}}_{1}=\hat{X}-i(\overline{\mathcal{W}}^{+}\cap J)$ ,

$\hat{\mathcal{L}}_{2}=J^{\wedge}C-i(\mathcal{H}(\overline{\mathcal{W}}^{+})\cap JC)$ ,

$\partial\hat{X}_{1}=the$ boundary of $\hat{\mathcal{L}}_{1}$ in $\hat{J}C=\mathcal{B}$ ,
and

$\partial\hat{\mathcal{L}}_{2}=the$ boundary of $\hat{\mathcal{L}}_{2}$ in $c\hat{\chi}=\mathcal{H}(\mathcal{B})$ .

We claim that $\hat{\mathcal{L}}_{1}$ and $\hat{\mathcal{L}}_{2}$ are Stein spaces. In fact, we can find a $C^{\infty 4)}$ real
valued function $\hat{\theta}_{1}$ on $\hat{\mathcal{L}}_{1}$ which agrees with $-1/(\theta oi^{-1})$ on the neighborhood

of $\partial\hat{\mathcal{L}}_{1}$ . Then $\hat{\pi}_{1\hat{\mathcal{L}}_{1}}$ ; $\hat{\mathcal{L}}_{1}\rightarrow D$ is a l-convex holomorphic mapping with exhaus-
tion function $\hat{\theta}_{1}$ . Hence, by Proposition 3.6 and the proof of Main Theorem
(p. 213) in [15], $\hat{\mathcal{L}}_{1}$ is holomorphically convex. Since $\hat{\mathcal{L}}_{1}$ contains no positive

4) See [8] for the definition.
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dimensional compact subvarieties, $\hat{\mathcal{L}}_{1}$ is a Stein space. Similarly, we have a
l-convex holomorphic mapping $\hat{\pi}_{1\mathcal{L}_{2}}’$ ; $\hat{\mathcal{L}}_{2}\rightarrow D$ with exhaustion function $\hat{\theta}_{2}$ which
agrees with $-1/(\theta\circ \mathcal{H}^{-1}\circ i^{-1})$ on the neighborhood of $\partial\hat{\mathcal{L}}_{2}$ . Hence we infer as
above that $\hat{\mathcal{L}}_{2}$ is a Stein space. Let $\mathcal{E}=\mathcal{H}(\mathcal{W}^{-})-\mathcal{H}^{2}(\mathcal{W}^{-})$ and $\mathcal{E}_{0}=\mathcal{H}(\mathcal{W}^{-})$

$-\mathcal{H}^{2}(\ovalbox{\tt\small REJECT}^{-})$ . Then $\mathcal{E}$ is a fundamental domain of $\mathcal{H}$ in $\mathcal{W}$ and $\mathcal{E}_{0}$ is the interior
of $\mathcal{E}$ . Put $\mathcal{H}_{0}=i\circ \mathcal{H}\circ i^{-1}$ . Then $\mathcal{H}_{Q}$ is defined on a neighborhood of $i(\mathcal{H}^{-1}(\overline{\mathcal{E}}))$ .
Put $\mathfrak{N}_{1}=i(\mathcal{H}^{-1}(\mathcal{E}_{0}))$ and $\mathfrak{N}_{2}=i(\mathcal{E}_{0})$ . Denote by $\tilde{\mathcal{L}}$ the fibre product $\hat{\mathcal{L}}_{1}\times_{D}\hat{\mathcal{L}}_{2}$

$(\subset\hat{\mathcal{L}}_{1}\times\hat{\mathcal{L}}_{2})$ over $D$ and $\tilde{\pi};\tilde{\mathcal{L}}\rightarrow D$ the canonical projection induced by $f$ . Put
$\mathfrak{N}=(\mathfrak{N}_{1}\times_{D}\hat{\mathcal{L}}_{2})\cup(\hat{\mathcal{L}}_{1}\times_{D}\mathfrak{N}_{2})$ . Let , ; $\mathfrak{N}\rightarrow\tilde{\mathcal{L}}$ be the natural inclusion and $\rho_{i}$ ; $\hat{\mathcal{L}}_{1}\times\hat{\mathcal{L}}_{2}$

$\rightarrow\hat{X}_{i}$ $(i=1,2)$ the canonical projection to the i-th component. Put $\tilde{\theta}=$

$\iota^{*}((\rho_{1}^{*}\hat{\theta}_{1}+\rho_{2}^{*}\hat{\theta}_{2})_{1\mathcal{L}}\sim)$ . Then $\tilde{\pi};\tilde{\mathcal{L}}\rightarrow D$ is a Stein completion of the fibre space $\tilde{\pi}_{1\mathfrak{N}}$ ;

$\mathfrak{N}\rightarrow D$ with exhaustion function $\tilde{\theta}$. Take the $(n+1)$-normalization $\nu$ : $\tilde{\mathcal{L}}^{*}\rightarrow\tilde{\mathcal{L}}$

of $\tilde{\mathcal{L}}$ . Since $\tilde{\mathcal{L}}$ is non-singular in $\mathfrak{N},$
$\mathfrak{N}$ can be seen as an open subset of $\tilde{\mathcal{L}}^{*}$ .

Let $\Gamma$ be the graph of $\mathcal{H}_{01\mathfrak{N}_{1}}$ in $\mathfrak{N}$ . By Theorem (4.4.5) [8], the ideal sheaf $\mathcal{I}$

of $\Gamma$ on $\mathfrak{N}$ extends uniquely to a coherent analytic sheaf $\tilde{\mathcal{I}}$ on $\tilde{\mathcal{L}}^{*}$ of which
the $(n+1)$ -th absolute gap sheaf agrees with $\tilde{\mathcal{I}.}$ By Proposition (4.4.3) [8], we
have

$r_{1}$
$j$

$r_{2}$

$(^{**})$ $\Gamma(\tilde{\mathcal{L}}^{*},\tilde{\mathcal{I}})\rightarrow\sim\Gamma(\mathfrak{N}, \mathcal{I})\rightarrow\Gamma(\mathfrak{N}, \mathcal{O}_{\mathfrak{N}})-\sim\Gamma(\tilde{\mathcal{L}}^{*}, \mathcal{O}_{1^{*}}^{\sim})$

where $r_{i}(i=1,2)$ are the restrictions and $j$ is the natural inclusion. Put $I=$

$r_{2}^{-1}\circ j(\Gamma(\mathfrak{N}, \mathcal{I}))$ and
$\tilde{\Gamma}^{*}=$ { $x\in\tilde{\mathcal{L}}$ : $f(x)=0$ for all $f\in I$ }.

Since $\tilde{\mathcal{L}}^{*}$ is a Stein space, in view of $(^{**})$ , every stalk $\mathcal{I}_{x}(x\in \mathfrak{N})$ of $\mathcal{I}$ is
generated over $0_{\mathcal{L}^{*},x}^{\sim}$ by finitely many holomorphic functions on $\mathcal{L}^{\tilde{*}}$ which
vanish at least on $\Gamma$ . Hence the analytic subset $\tilde{\Gamma}^{*}$ of $\tilde{\mathcal{L}}^{*}$ coincides with $\Gamma$

in $\mathfrak{N}$ . Take the irreducible component $\tilde{\Gamma}_{0}^{*}$ of $\tilde{\Gamma}^{*}$ such that $\tilde{\Gamma}_{0}^{*}\supset\Gamma$ . Put $\nu(\tilde{\Gamma}_{0}^{*})$

$=\tilde{\Gamma}$ . Then $\tilde{\Gamma}$ is a subvariety of $\tilde{\mathcal{L}}$ which extends $\Gamma^{5)}$ Let $\rho_{i}^{\prime}=\rho_{i1\mathcal{L}}^{\sim}$ . Then
$\rho_{i}^{\prime}$ : $\tilde{\Gamma}\rightarrow\hat{\mathcal{L}}_{i}$ is the branched covering and $\rho_{i}^{\prime}$ maps $\tilde{\Gamma}\cap \mathfrak{N}$ homeomorphically
onto $\mathfrak{N}_{i}$ . Let $A_{i}$ be the singular locus of $\rho_{i}^{\prime}$ in $\tilde{\Gamma}$ . Since $\tilde{\Gamma}$ contains no posi-

tive dimensional compact subvarieties, $A_{i}$ intersects each fibre of $\tilde{\pi};\tilde{\mathcal{L}}\rightarrow D$ at
most finitely many points. Hence we infer that $\mathcal{H}_{01\mathfrak{N}_{1}}$ ; $\mathfrak{N}_{1}\rightarrow \mathfrak{N}_{2}$ extends to a
biholomorphic mapping $\hat{\mathcal{H}}$ : $\hat{\mathcal{L}}_{1}-B_{1}\rightarrow\hat{\mathcal{L}}_{2}-B_{2}$ , where $B_{i}=\rho_{i}^{\prime}(A_{1})\cup\rho_{i}^{f}(A_{2})(i=1,2)$ .
Since dim $B_{i}\leqq n$ and $\hat{\mathcal{L}}_{i}$ is $(n+1)$ -normal, $\hat{\mathcal{H}}$ extends uniquely to a holomorphic
mapping $\hat{\mathcal{L}}_{1}\rightarrow\hat{\mathcal{L}}_{2}$ , which we denote by the same letter $\hat{\mathcal{H}}$ . By the uniqueness

of the $(n+1)$ -normalization, $\hat{\mathcal{H}}$ is an isomorphism of $\hat{\mathcal{L}}_{1}$ onto $\hat{\mathcal{L}}_{2}$ . It is clear that

5) By a similar method as in the proof of Theorem $I_{n}$ in Siu [14], we can prove
directly that $\tilde{\mathcal{I}}$ is an ideal sheaf whose zero locus extends $\Gamma$ .
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$\hat{\pi}_{1\mathcal{L}_{2}}\wedge\circ\hat{\mathcal{H}}=\hat{\pi}_{1\hat{\mathcal{L}}1}$ .
Identify the point $w\in JC$ with $\iota(w)\in\hat{x}$ . Then we obtain a complex space

$\hat{\mathcal{W}}=\mathcal{W}^{+}\cup J\zeta\wedge$ . Denote by the same symbol $\hat{\pi}$ the projection $\hat{\mathcal{W}}\rightarrow D$ which can
be defined naturally by using $\pi:\mathcal{W}\rightarrow D$ and $\hat{\pi}$ : $J\rightarrow D$ . We shall show that
$\hat{\mathcal{W}}$ is the desired fibre space.

Note that

$(^{***})$
$i=\hat{\mathcal{H}}\circ i\circ \mathcal{H}^{-1}$

on an open neighborhood of $\mathcal{H}^{2}(\ovalbox{\tt\small REJECT}^{+})\cap \mathcal{H}(\overline{\mathcal{W}}^{-})(=\overline{\mathcal{E}})$ . For any point $w\in \mathcal{H}(\mathcal{W}^{-})$

there exists a unique integer $\mu\geqq 0$ such that $\mathcal{H}^{-\mu}(w)\in \mathcal{E}$ . Now define a holo-
morphic mapping $\wedge i;\mathcal{W}=\mathcal{H}^{2}(\mathcal{W}^{+})\cup \mathcal{H}(\mathcal{W}^{-})\rightarrow\hat{\mathcal{W}}$ as follows:

$\wedge i(w)=\left\{\begin{array}{ll}w & if w\in \mathcal{H}^{2}(\mathcal{W}^{+}),\\\hat{\mathcal{H}}^{\mu}\circ i\circ \mathcal{H}^{-\mu}(w) (\mathcal{H}^{-\mu}(w)\in \mathcal{E}, \mu\geqq 0) & if w\in \mathcal{H}(\mathcal{W}^{-}).\end{array}\right.$

By $(^{***}),$
$\wedge i$ is a well-defined holomorphic mapping. Moreover $\hat{i}$ is a local homeo-

morphism. We claim that $\wedge i:\mathcal{W}\rightarrow\hat{\mathcal{W}}$ is injective. Put $\mathcal{E}_{\nu}=\mathcal{H}^{\nu}(\mathcal{E})$ and $\mathcal{D}_{v}=\hat{\mathcal{H}}^{\nu}(i(\mathcal{E}))$

$(\nu\geqq 0)$ . Since $\mathcal{E}_{v}\cap \mathcal{E}_{\mu}=\emptyset,$ $\mathcal{D}_{\nu}\cap \mathcal{D}_{\mu}=\emptyset(\nu\neq\mu)$ and $i^{\wedge}$ maps injectively $\mathcal{E}_{\nu}$ onto $\mathcal{D}_{\nu}$ ,
$\wedge i$ is injective on $\mathcal{H}(\mathcal{W}^{-})$ . By the definition of $\hat{\mathcal{W}},$

$ i\wedge$ is injective on $\mathcal{H}(\overline{\mathcal{W}}^{+})$ .
Since $\wedge\wedge i(\mathcal{H}(\ovalbox{\tt\small REJECT}^{+}))\cap i(\mathcal{H}(\mathcal{W}^{-}))=\emptyset$ , it follows that $ i:\mathcal{W}\rightarrow\hat{\mathcal{W}}\wedge$ is injective. Identify
$\mathcal{W}$ with the open subset $i^{\wedge}(\mathcal{W})\subset\hat{\mathcal{W}}$ . Thus we have the complex fibre space $\hat{\mathcal{W}}$

over $D$ with projection $\hat{\pi}$ such that $\hat{\pi}_{1\mathcal{W}}=\pi$ . Hence (2) is proved.
PROOF OF (3). Put $S=\hat{\mathcal{W}}-\mathcal{W}$ . Take any $t\in D$ . Put $\hat{X}_{1}\cap\hat{\pi}^{-1}(t)=L,$ $S\cap\hat{\pi}^{-1}(t)$

$=S$ and $\hat{\mathcal{H}}_{1L}=u$ . Since $L$ is non-singular outside of $S$ and $S$ is compact, $L$

has at most finitely many singular points. Hence we can consider $L$ as an
analytic subvariety of an affine space. Therefore $u^{\nu}$ : $L\rightarrow L(\nu>0)$ can be
regarded as (vector-valued) holomorphic functions on $L$ . Since $u^{v}(L)$ is rela-
tively compact in $L$ , the sequence $\{u^{v}\}_{v>0}$ is uniformly bounded on $L$ . Put
$u(L)=L^{\prime}$ . Then there exists a subsequence of $\{u^{\nu}\}_{\nu>0}$ which converges uni-
formly on $L^{\prime}$ . Let $u_{0}$ be the limit function which is holomorphic on $L^{\prime}$ . Note
that $u_{0}(L^{\prime}-S)=\partial S$ . This implies that each component of the vector-valued
holomorphic function $u_{0}$ attains its maximum on an open set $L^{\prime}-S$ . Hence $u_{0}$

is constant. Since $L^{\prime}-S$ is connected, $S$ consists of one point. This implies
that $S\cap\hat{\pi}^{-1}(t)=$ { $one$ point} and thus (3) is proved.

PROOF OF (1). Define the subvariety $\mathcal{T}$ of $\hat{\mathcal{L}}_{1}$ by

$\mathcal{F}=$ { $w\in\hat{\mathcal{L}}_{1}$ ; $\hat{\mathcal{H}}^{*}f(w)=f(w)$ for all $f\in\Gamma(\hat{\mathcal{L}}_{1},$
$O_{\hat{x}_{1}})$ }.

Clearly $S\subset \mathcal{T}$ . Conversely, take any point $weS$ . Then $\hat{\mathcal{H}}(w)\neq w$ . Hence there
exists $f\in\Gamma(\hat{\mathcal{L}}_{1}, O_{\hat{1}1})$ such that $f(w)\neq f(\hat{\mathcal{H}}(w))=\hat{\mathcal{H}}^{*}f(w)$ , since $\hat{\mathcal{L}}_{1}$ is a Stein
space. This shows $\mathcal{T}\subset S$ . Consequently $\mathcal{T}=S$ .
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PROOF OF (4). The holomorphic automorphism $\mathcal{H}$ of $\mathcal{W}$ extends to a holo-
morphic automorphism of $\hat{\mathcal{W}}$ . Denote this extended automorphism by the same
symbol $\mathcal{H}$ . Then $\mathcal{H}$ acts on each fibre $\hat{\pi}^{-1}(t)$ as a contracting holomorphic
automorphism which fixes $0_{t}$ . Hence $\hat{\pi}^{-1}(t)$ is holomorphically isomorphic to
an affine variety by Theorem 1. Q. E. D.

As a corollary we obtain
THEOREM 5. $X_{t}$ is holomorphically isomorphic to a submaniold of

$ C^{n_{t}}-\{0\}/\langle\tilde{g}_{t}\rangle$ , where $\tilde{g}_{t}$ is a contracting holomorphic automorphism of $C^{n_{t}}$ with
$\tilde{g}_{t}(0)=0$ and $n_{t}$ is the dimension of the Zariski tangent space at the point $0_{t}$

attached to $W_{t}$ .

\S 7. Applications.

(A) Let $X$ be a 3-dimensional compact complex manifold which is topo-
logically homeomorphic to $S^{1}\times S^{5}$ , where $S^{m}$ denotes the real m-dimensional
topological sphere. Then $b_{1}(X)=1$ and $b_{2}(X)=0$ . Assume that $X$ admits the
fibre space structure $(X, V, f)_{a}$ .

Let $\tilde{X}$ be the universal covering manifold of $X$ . Since $\pi_{1}(X)\cong Z$, we obtain
COROLLARY TO THEOREM 3. $ W=\tilde{X}\cup$ { $one$ point} admits a complex struc-

ture such that $W$ is holomorphically isomorphic to an affine variety which has
an algebraic $C^{*}$ -action.

Let $X_{t}$ be any small deformation of $X$ and $\tilde{X}_{t}$ the universal covering
manifold of $X_{t}$ .

COROLLARY TO THEOREM 4. Attaching one point $0_{t}$ to $\tilde{X}_{t}$ , we obtain a
complex analytic family of complex spaces $\bigcup_{t}(\tilde{X}_{t}\cup\{0_{t}\})$ such that, for each $t$ ,
$\tilde{X}_{t}\cup\{0_{t}\}$ is holomorphically isomorphic to an affine variety.

COROLLARY TO THEOREM 5. $X_{t}$ is holomorphically isomorphic to a sub-
manifold of $ C^{n_{t}}-\{0\}/\langle\tilde{g}_{t}\rangle$ , where $\tilde{g}_{t}$ is a contracting holomorphic automorphism
of $C^{n_{t}}$ with $\tilde{g}_{t}(0)=0$ .

An example of the complex structure $(X, V, f)_{a}$ on $S^{1}\times S^{5}$ was constructed
by Brieskorn-Van de Ven [1].

(B) Consider a compact complex surface $S$ satisfying the three conditions;
(i) $b_{1}(S)=odd$ ,

(ii) $S$ is an elliptic surface,
(iii) $S$ is relatively minimal.
Note that, by a theorem of Kodaira [7], if $b_{1}(S)=odd$ and not equal to 1,

then the condition (ii) if redundant. Let $f$ be a holomorphic mapping from $S$

onto a curve $C$ of which the general fibres are connected non-singular elliptic
curves. By (i) and (iii), every fibre of $f$ is a non-singular elliptic curve, $i$ . $e.$ ,
all singular fibres are multiple of elliptic curves ([6]).
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Now we can prove statements corresponding to Theorems 3, 5 by a similar
method as in \S 5. Namely we have

THEOREM 6. There exists an infinite cyclic unramified covering manifold $W$

of $S$ such that $\Psi=W\cup$ { $one$ point} is holomorphically isomorphic to an affine
variety of dimension 2 which admits an algebraic $c*$ -action.

Since $\hat{W}$ admits a contracting holomorphic automorphism, we get
THEOREM 7. The surface $S$ is holomorphically isomorphic to a submanifold

of $ C^{n}-\{O\}/\langle\tilde{g}\rangle$ for some $n$ , where $\tilde{g}$ is a contracting holomorphic automorphism
of $C^{n}$ such that $\tilde{g}(0)=0$ .

To prove Theorem 6, we need several lemmas.
$f^{*}$

LEMMA 18. $H^{2}(C, C)\rightarrow H^{2}(S, C)$ is a zero mapping.
PROOF. We prove this with the aid of the spectral sequence $E_{2}^{r.s}=$

$H^{r}(C, R^{s}f_{*}C)\Rightarrow E^{r+s}=H^{r+s}(S, C)$ . We have

$H^{2}(S, C)=E_{3}^{2,0}+E_{3}^{1,1}+E_{4}^{0,2},$ $E_{3}^{1.1}=E_{2}^{1,1}$ ,

$E_{3}^{2}$ $=\frac{E_{2}^{2.0}}{{\rm Im}(E_{2}^{0.1}\rightarrow E_{2}^{2,0})}$ , dim $E_{2}^{0.1}=2$ , dim $E_{2}^{2.0}=1$ ,

dim $E_{2}^{1,1}=2b_{1}(C)$ .
We remark that $R^{1}f_{*}C=C^{2}$ . On the other hand,

$H^{1}(S, C)=E_{2}^{1,0}+E_{3}^{0.1}=H^{1}(C, C)+E_{3}^{0.1}$ .
Since $b_{1}(S)=odd,$ $b_{1}(C)=even$ and dim $E_{3}^{0,1}\leqq 2$ , we have dim $E_{3}^{0.1}=1$ . Hence it
follows that $ 1=\dim E_{3}^{0,1}=\dim$ ker $(E_{2}^{0,1}\rightarrow E_{2}^{2,0}),$ $i$ . $e.$ , dim ${\rm Im}(E_{2}^{0,1}\rightarrow E_{2}^{2.0})=1$ . Thus
we obtain $E_{3}^{2.0}=0$ . This proves the lemma.

We have $H^{2}(S, C)=E_{2}^{1.1}+ker(E_{2}^{02}\rightarrow E^{1}\frac{Q}{2}\cdot)$ and hence $b_{2}(S)=2b_{1}(C)+$

dim ker $(E_{2}^{0,2}\rightarrow E_{2}^{2.1})$ . The dimension of $E_{2}^{0,2}$ is at most 1. By $\chi(S)=0,$ $b_{2}(S)=$

even. Hence we have dim ker $(E_{2}^{0,2}\rightarrow E_{2}^{2.1})=0$ and $b_{2}(S)=2b_{1}(C)$ . Thus we get
the following lemma.

LEMMA 19. $b_{2}(S)=2b_{1}(C),$ $b_{1}(S)=b_{1}(C)+1$ .
LEMMA 20. dim $H^{1}(S, O_{S})=\dim H^{1}(C, O_{C})+1$ .
PROOF. We use the spectral sequence $E_{2}^{r,s}=H^{r}(C, R^{s}f_{*}\mathcal{O}_{S})\Rightarrow H^{r+s}(S, \mathcal{O}_{S})$ .

The lemma follows from the following equalities;

$H^{1}(S, O_{S})=E_{2}J,0+E_{3}^{0}$ $=H^{1}(C, O_{C})+E_{3}^{0,1}$

$E_{3}^{0,1}=ker(E_{2}^{0.1}\rightarrow E_{2}^{2.0})=E_{2}^{0,1}=C$ .

LEMMA 21. $0\rightarrow H^{0}(S, d\mathcal{O}_{S})\rightarrow H^{1}(S, C)\rightarrow^{i}H^{1}(S, \mathcal{O}_{S})\rightarrow 0$

(exact).

PROOF. It is sufficient to show that $i$ is surjective. By Kodaira [6] (pp.
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754-755), we have $\dim H^{0}(S, dO_{S})=\dim H^{1}(S, O_{S})-1$ . Hence, by Lemma 20,
dim $H^{0}(S, dO_{S})=\dim H^{1}(C, O_{C})=(1/2)b_{1}(C)$ . On the other hand, dim $H^{1}(S, C)=$

$b_{1}(C)+1$ by Lemma 19. Hence we have dim Im i$=b_{1}(C)+1-(1/2)b_{1}(C)=$
$(1/2)b_{1}(C)+1$ . This is equal to the dimension of $H^{1}(S, O_{S})$ by Lemma 20, $q$ . $e$ . $d$ .

LEMMA 22. Let $\eta$ be any line bundle on C. Then $ f^{*}\eta$ is a flat line bundle
on $S$ .

PROOF. By Lemma 21, we have the following commutative diagram;

By Lemma 18, $c(f^{*}\eta)\equiv 0$ (modulo torsion). Hence we can choose a positive
integer $m$ such that $c(f^{*}\eta^{\otimes m})=0$ . Then there exists $\omega\in H^{1}(S, C)$ such that
$j\circ e(\omega)=f^{*}\eta^{\otimes m}$ . Thus the line bundle $f^{*}\eta^{\otimes m}$ has a flat representation $e(\omega)$ .
Hence $ f^{*}\eta$ is also flat, $q$ . $e$ . $d$ .

Now let $\eta$ be an ample line bundle on $C$ . Then $f^{*}\eta^{\otimes m}$ is raised from a
group representation $\rho:H_{1}(S, Z)\rightarrow C^{*}$ . Choosing suitable $m$ , we can assume
that $\rho(TorH_{1}(S, Z))=1$ . Let $\{\gamma_{0}, \gamma_{1}, \cdots , \gamma_{s}\}(s=b_{1}(S)-1)$ be a Betti basis of
$H_{1}(S, Z)$ such that $\gamma_{0}$ vanishes under the mapping $f_{*}:$ $H_{1}(S, Z)\rightarrow H_{1}(C, Z)$ .
Note that $f_{*}\gamma_{i}\neq 0$ for $i\neq 0$ . Let $\rho_{1}$ be the representation of $H_{1}(S, Z)$ defined by

$\{$

$\rho_{1}(\gamma_{0})=1$

$\rho_{1}(\gamma_{i})=\rho(\gamma_{i})$ $(i>0)$ .
Let $F_{m}$ be a flat line bundle on $S$ raised from $\rho_{1}$ . Then there exists a flat
line bundle $\xi_{m}$ on $C$ such that $f^{*}\xi_{m}=F_{m}$ . Put $H_{m}=(f^{*}\eta)^{gm}\otimes F_{m}^{-1}$ . Then the
line bundle $H_{m}$ is raised from the representation $\rho_{0}$ defined by

$\{$

$\rho_{0}(\gamma_{0})=\rho(\gamma_{0})=\alpha$ ,

$\rho_{0}(\gamma_{i})=1$ $(i>0)$ .
Choosing $m$ to be sufficiently large, we can assume that $\eta^{gr\gamma}’@\xi_{m}^{-1}$ is very
ample. Let $\{\varphi_{1}, \cdots , \varphi_{N}\}$ be a basis of $H^{0}(C, \mathcal{O}_{C}(\eta^{\epsilon m}\otimes\xi_{m}^{-1}))$ . Ncw, as in \S 3, we
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can construct a holomorphic mapping which makes the following diagram
commutative;

Then the theorem follows by the same method of proof as in \S 5.
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