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Let $G$ be a finite group and $K$ an arbitrary field. Yamazaki ([4], Theorem
1) proved that there exists a finite central group extension of $G$ by which all
”linearizable” projective representations of $G$ are linearized (cf. Section 1).
This result motivates consideration of the following problem. Given a finite
group $G$ and an arbitrary field $K$ of characteristic $0$ , what is the number of
equivalence classes of irreducible linearizable projective representations Of $G$

over $K$ ? The aim of this paper is to give the solution of this problem. As
a corollary we obtain the group theoretical characterization of the number of
equivalence classes of irreducible projective representations of $G$ over $K$, where
$K$ is an algebraically closed field of characteristic $0$ , or the real number field.

I. Preliminaries.

All groups in this paper are assumed to be finite.
NOTATION. $K$ is any field and $K^{*}=K-\{0\}$ .
$GL(V)$ is the group of all nonsingular linear transformations of a finite

dimensional vector space $V$ over $K$.
A K-character is a character of a linear representation of a group $G$ over $K$.
$K^{*}1_{V}$ is the centre of $GL(V)$ where $1_{V}$ denotes the identity mapping of

$V$ onto itself.
PGL(V) $=GL(V)/K^{*}1_{V}$ is the group of projective transformations of the

projective space $P(V)$ associated to $V$ .
$\pi$ is the natural projection of $GL(V)$ onto PGL(V).
$|S|$ is the order of the set S.

$G^{\prime}$ is the derived group of $G$ .
Hom $(G, K^{*})$ is the multiplicative group of all linear characters (one-

dimensional linear representations) of the group $G$ over $K$.
An ordered pair $(c*, \phi)$ of a group $c*$ and a surjective homomorphism

$\psi:G^{*}\rightarrow G$ is called a central group extension of the group $G$ if the kernel
Ker $\psi$ of $\psi$ is included in the centre $Z(G^{*})$ of the group $G^{*}$ .

If $T$ is a permutation group acting on the set $S$ then $S/T$ is the quotient
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set (the orbit set) obtained from $S$ by identification of any two points of $S$ in
the same orbit of $T$ .

A projective representation of $G$ in $V$ is a homomorphism $\rho:G\rightarrow PGL(V)$ .
A mapping $\Gamma_{\rho}$ ; $G\rightarrow GL(V)$ is called a section for $\rho$ if $\pi\Gamma_{\rho}(g)=\rho(g)$ for any
$g\in G$ .

$\Gamma_{\rho}$ determines a 2-cocycle $\alpha$ of $G$ in $K^{*}$ by

$\Gamma_{\rho}(g_{1})\Gamma_{\rho}(g_{2})=\alpha(g_{1}, g_{2})\Gamma_{\rho}(g_{1}g_{2})$ , $(g_{1}, g_{2}\in G, \alpha(g_{1}, g_{2})\in K^{*})$ .

Its cohomology class in $H^{2}(G, K^{*})$ depends only on $\rho$ and is denoted by $C_{\rho}$ .
Let $\Gamma_{\rho}$ be any section of $\rho$ . The projective representation $\rho$ is called

irreducible if there are no non-trivial subspaces of $V$ which are sent into
themselves by all the transformations $\Gamma_{\rho}(g),$ $g\in G$ .

Two projective representations $\rho_{i}$ ; $G\rightarrow PGL(V_{i})(i=1,2)$ are called equi-
valent (written $\rho_{1}\sim\rho_{2}$) if there exists a linear isomorphism $\phi$ : $V_{1}\rightarrow V_{2}$ such
that the following diagram is commutative

where $\tilde{\phi}(\pi x)=\pi\phi x\phi^{-1}$ for every $x\in GL(V_{1})$ .
Let $\Gamma$ be a linear representation of $c*$ in $V$ such that $\Gamma(Ker\psi)\subset K^{*}1_{V}$ .

Then $\Gamma$ induces a projective representation $\rho$ of $G$ in $V$ such that the follow-
ing diagram is commutative

$\psi||\pi GGL(V)G^{*}PGL(V)\underline{\underline{\Gamma}\rho}$

We shall say that $\rho$ is linearized by the group extension $(c*, \psi)$ . It is clear
that $\rho$ is irreducible if and only if $\Gamma$ is the irreducible linear representation
of $G^{*}$ over $K$.

Following Yamazaki [4] we shall call a projective representation $\rho$ lineariz-
able if $\rho$ is linearized by some finite central group extension $(G^{*}, \psi)$ of $G$ .
If $K$ is algebraically closed, or the real number field, then by [4] $G$ has a
representation-group $\hat{G}$ .
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That is, a group $\hat{G}$ by which all projective representations of $G$ are line-
arized and the order of $\hat{G}$ is equal to $hm$ , where $h$ is the order of $G$ and $m$ is
the order of 2-cohomology group $H^{2}(G, K^{*})$ .

II. Some results on linear representations of finite groups.

Let $G$ be a finite group of exponent $n,$ $K$ any field with characteristic not
dividing $|G|$ and 6 a primitive n-th root of unity over $K$. Let $I_{n}$ be the multi-
plicative group consisting of those integers $r$ , taken modulo $n$ , for which $\epsilon\rightarrow\epsilon^{r}$

defines an automorphism of $K(\epsilon)$ over $K$. It is clear that the group $I_{n}$ is iso-
morphic to the Galois group of $K(\epsilon)$ over $K$. Two elements $a,$ $b\in G$ are called
K-conjugate (written $a_{\tilde{K}}b$) if $x^{-1}bx=a^{r}$ for some $x\in G$ and some $r\in I_{n}$ . K-
conjugacy is an equivalence relation and so $G$ may be partitioned into K-
conjugacy classes.

LEMMA 1. Let $H\Delta G,$ $i$ . $e$ . $H$ is normal subgroup of $G$ , and let $T_{h}(K_{h})$ be
the K-conjugacy class of the group $G(H)$ with representative $h\in H$. Then
$T_{h}=\bigcup_{g\in G}K_{ghg}- 1$ .

PROOF. Let $m$ be the exponent of $H$, so that $n=mk$ for some natural
number $k$ and $\delta=\epsilon^{k}$ is the primitive m-th root of unity over $K$. Suppose $s\in T_{h}$ .
Then $s=a^{-1}h^{\mu}a$ for some $a\in G$ and some $\mu\in I_{n}$ . If $\mu\equiv r(mod m),$ $0\leqq r\leqq m-1$ ,

then $s=(a^{-1}ha)^{r}$ . The automorphism $\epsilon\rightarrow\epsilon^{\mu}$ of $K(\epsilon)$ over $K$ induces the auto-
morphism $\delta\rightarrow\delta^{\mu}=\delta^{r}$ of $K(\delta)$ over $K$. Hence $r\in I_{m}$ and $s\in K_{a^{-1}ha}$ . Conversely,
let $a\in K_{g}-1_{hg}$ . Then $a=h_{1}^{-1}g^{-1}h^{\mu}gh_{1}=(gh_{1})^{-1}h^{\mu}(gh_{1})$ for some $h_{1}\in H$ and some
$\mu\in I_{m}$ . The automorphism $\delta\rightarrow\delta^{\mu}$ of $K(\delta)$ over $K$ can be extended to the auto-
morphism $\epsilon\rightarrow\epsilon^{\lambda}$ of $K(\epsilon)$ over $K$ (see [3], \S 52). Hence $\lambda\equiv\mu(mod m),$ $h^{\mu}=h^{\lambda}$

and $a=(gh_{1})^{-1}h^{\lambda}(gh_{1})$ for $\lambda\in I_{n}$ . This proves the lemma.
Let $\chi$ be an irreducible K-character of $G$ and $\phi$ an irreducible K-character

of a subgroup $H$ of G. $\phi$ induces a character $\phi^{G}$ of $G$ and $\chi$ restricts down
to a character $\chi\downarrow H$ of $H$. Suppose $H\triangle G$ . Then $G$ acts on the irreducible
characters of $H$ by conjugation. That is, for $g\in G$ and $x\in H,$ $\phi^{g}(x)=\phi(gxg^{-1})$ .
The subgroup $T$ fixing a given irreducible character $\phi$ is called the inertia
group of $\phi$ . Clearly, $T\supseteqq H$. If $t=(G:T)$ then $\phi$ has precisely $t$ distinct con-
jugates $\phi=\phi_{1},$ $\phi_{2},$ $\cdots$ , $\phi_{t}$ . Furthermore, if $\phi$ is an irreducible component of
$\chi\downarrow H$, then ([2], Theorem 49.7)

$\chi\downarrow H=m(\phi_{1}+\phi_{2}+\cdots+\phi_{t})$ for some natural number $m$ . (1)

If $H\Delta G$ then a character $\beta$ of $G/H$ can be regarded as a character of $G$ with
kernel containing $H$. Conversely, every character of $G$ with kernel containing
$H$ arises in this manner. We shall use the same symbol to denote the character
whether viewed in $G$ or $G/H$. The precise situation with be clear from the
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context. If the field $K$ is such that the polynomial $x^{n}-1$ splits into linear
factors in $K$, then $K$ contains all n-th roots of unity. We use the notation
” $\sqrt[n]{1}\in K$ ’ to denote this fact.

DEFINITION. A K-kernel of the group $G$ is the smallest subgroup $G_{K}$ ,
$G_{K}\geqq G^{\prime}$ , such that $\sqrt[n]{1}\in K$ where $n$ is the exponent of the group $G/G_{K}$ .

It follows from this dePnition that if $N\Delta G$ and $N\subseteqq G_{K}$ then

$(G/N)_{K}=G_{K}/N$ . (2)

LEMMA 2. Each linear K-character of $G$ is a character of $G/G_{K}$ and the
number of linear K-characters of $G$ is $|G/G_{K}|$ .

PROOF. An abelian group $A$ has $|A|$ linear K-characters if and only if
$\sqrt[n]{1}\in K$ where $n$ is the exponent of $A$ , ([2], Theorem 9.10). Hence $G/G_{K}$ has

exactly $|G/G_{K}|$ linear characters. On the other hand, let $\lambda$ be any linear K-
character of $G$ with kernel $N$. The mapping $g\rightarrow(gG_{K})(gN)$ is a homomorphism
of $G$ into $G/G_{K}\times G/N$ with kernel $G_{K}\cap N$. Hence $G/G_{K}\cap N$ is isomorphic to
some subgroup of $G/G_{K}\times G/N$. Thus $m\backslash /\overline{1}\in K$ where $m$ is the exponent of
$G/G_{K}\cap N$, and so $G_{K}\cap N=G_{K}$ and $N\supseteqq G_{K}$ . This proves the lemma.

LEMMA 3. Let $H\Delta G,$ $K$ be any field and $\chi$ be an arbitrary K-character of
G. Then

$(\chi\downarrow H)^{G}=\rho x$ where $\rho$ is the regular representation of $G/H$ .

PROOF. Let $\theta=x\downarrow H$. Then $\theta(g^{-1}hg)=x(h)$ for $everyg\in G$ and $h\in H$. On
the one hand,

$\theta^{G}(h)=\frac{1}{|H|}\sum_{x\in G}\theta(x^{-1}hx)=(G;H)\chi(h)$

and
$\theta^{G}(x)=0$ for $x\in G-H$ .

On the other hand,

$(\rho x)(h)=\rho(h)\chi(h)=(G:H)\chi(h)$ and $(\rho\chi)(x)=\rho(x)\chi(x)=0$ .
This proves the lemma.

Let $K$ be an arbitrary field of characteristic not dividing the order of the
group $G$ and let rt $b^{a}$. the algebraic closure of $K$. Denote by $ X=\langle\hat{\chi}_{1}\ldots , \hat{x}_{s}\rangle$

the full set of irreducible $K$-characters of $G$ and by $ Q=\langle C_{1}, \cdots , C_{s}\rangle$ the con-
jugacy classes of $G$ . Under the action of the group of mappings $g\rightarrow g^{\mu},$ $\mu\in I_{n}$

the sets $X$ and $Q$ are partitioned into disjoint subsets $ X=X_{1}\cup X_{2}\cup$ $\cup X_{q}$ ;
$Q=K_{1}UK_{2}U\cdots\cup K_{q}$ where the $K_{i}$ are K-conjugacy classes of $G,$ $ X_{i}=\langle\hat{\chi}_{i1}\ldots$ ,
$ x_{ir_{i}}\rangle\wedge$ ($i=1,$ $\cdots$ , q) and $q$ is the number of irreducible linear representations of
$G$ over $K$ ([1], (9.1), Theorem 1.1, Theorem 5.1). Let $\Gamma_{1},$ $\Gamma_{2},$ $\cdots$ , $\Gamma_{q}$ be the
irreducible linear representations of $G$ over $K$ and $\chi_{i}$ the character of $\Gamma_{i}$
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$(i=1,2, \cdots , q)$ . Then $\Gamma_{i}=m_{i}(\hat{\Gamma}_{i1}+\cdots+\hat{\Gamma}_{ir}i)$ where $\hat{\Gamma}_{ij}$ is the irreducible linear
representation of $G$ over $K$ with character $\hat{\chi}_{ij}$ and $m_{t}$ is the Schur index of
any representation $\hat{\Gamma}_{ij}$ with respect to $K$ $(i=1,2, \cdots , q;j=1,2, \cdots , r_{i})$ . Let
$e_{1},$ $e_{2},$ $\cdots$ , $e_{q}$ be all the minimal central idempotents of the group algebra $GK$.
Then the following formulae hold (see [1], (20.1), (22.1))

$\chi_{i}=m_{i}(\hat{\chi}_{i1}+\cdots+\hat{\chi}_{ir_{i}})$ ($i=1,$ 2, q) (3)

$e_{i}=\frac{n_{i}}{m_{\ell}|G|}\sum_{g\in G}\chi_{i}(g^{-1})g$ where $n_{i}=\hat{\chi}_{ij}(1)$ (4)

$(i=1, ’ q;j=1, r_{i})$ .

It follows from (3) that the irreducible K-character $\chi$ of $G$ is completely deter-
mined by any of its absolutely irreducible components. Let $t_{i}=\sum_{x\in K_{i}}x(i=1,2$ ,

, q) and let $V$ be the space spanned by $t_{1},$ $\cdots$ , $t_{q}$ .
Then by ([1], Theorem 1.1 and (20.2)) the vector space $V$ has the follow-

ing two bases
$\langle e_{1}, e_{2}, \cdots , e_{q}\rangle$ and $\langle t_{1}, t_{2}, \cdots , t_{q}\rangle$ . (5)

LEMMA 4 (Generalised Reciprocity Theorem) ([1], Theorem 2.2).
Let $\Gamma$ and $\Gamma^{\prime}$ be irreducible linear representations of the group $G$ and its

subgroup $H$ respectively over the field $K$ of characteristic $0$ . Furthermore,
suppose there corresponds to the representation $\Gamma(\Gamma^{\prime})$ a minimal two-sided
ideal $I(I^{\prime})$ in the group algebra $GK(HK)$ which is isomorphic to the full matrix
ring over the skewfield $D(D^{\prime})$ . If $\Gamma\downarrow H$ contains $\Gamma^{\prime}\alpha$ times, then the repre-

$d^{\prime}$

sentation $\Gamma^{\prime G}$ contains $\Gamma\alpha\cdot\overline{d}$ times, where $d(d^{\prime})$ is the dimension of the
skewfield $D(D^{\prime})$ over $K$.

Note that two linear representations of the group $G$ over a field of charac-
teristic $0$ are equivalent if and only if they have the same characters ([2],
(30.14)).

LEMMA 5. Let $H\Delta G$ and let $K$ be any field of characteristic $0$ . Then the
number of K-characters of the group $G$ induced from the irreducible K-characters
of $H$ is equal to the number of K-conjugacy classes of $G$ which are in $H$.

PROOF. Let $\alpha$ and $\beta$ be irreducible K-characters of $H$. If $\theta=\alpha^{G}=\beta^{G}$ and
$\chi$ is an irreducible component of $\theta$ then by Lemma 4 $\alpha$ and $\beta$ are irreducible
components of $\chi\downarrow H$, and from (1) it follows that $\alpha$ and $\beta$ are G-conjugate.
Conversely, if $\alpha$ and $\beta$ are G-conjugate then a straightforward calculation
shows that $\alpha^{G}=\beta^{G}$ . Thus

$\alpha^{G}=\beta^{G}$ if and only if $\beta=\alpha^{g}$ for some $g\in G$ . (6)

Let $K_{1},$ $K_{2},$ $\cdots$ , $K_{q}$ be the K-conjugacy classes of $H$ and $t_{i}=\sum_{x\in K_{i}}x(i=1, q)$ .
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Consider the group $F=\{\phi_{g}|\phi_{g}=\left(\begin{array}{l}h\\g^{-1}hg\end{array}\right),$ $g\in G\}$ . Then $F$ is the group of linear

transformations of the vector space $HK$. Let $e_{1},$ $e_{2},$
$\cdots$ , $e_{q}(\chi_{1}\chi_{2}\ldots \chi_{q})$ be

the minimal central idempotents of $HK$ (irreducible K-characters of $H$). Then
by (4)

$e_{i}=\frac{n_{i}}{m_{i}|H|}\sum_{h\in H}\chi_{i}(h^{-1})h$ ,

and hence

$e_{i}^{\phi_{g}}=\frac{n_{i}}{m_{i}|H|}\sum_{h\in H}\chi_{i}(h^{-1})(g^{-1}hg)=\frac{n_{i}}{m_{i}|H|}\sum_{n\in H}\chi_{i^{g}}(h^{-1})h$ .

Clearly $\chi_{i^{g}}=\chi_{j}$ implies $n_{i}=n_{j}$ and $m_{i}=m_{j}$ . Therefore $\chi_{i^{g}}=\chi_{j}$ implies $e_{i}^{\phi_{g}}=e_{j}$ .
On the other hand, $e_{i}^{\phi_{g}}=e_{j}$ implies $\frac{n_{i}}{m_{i}}\chi_{i^{g}}=\frac{n_{j}}{m_{j}}\chi_{j}$ and hence $\chi_{i^{g}}$ and $\chi_{j}$ have

the same absolutely irreducible components and so $x_{i^{g}}=x_{j}$ . Thus,

$e_{i}^{\phi_{g}}=e_{f}$ if and only if $\chi_{\iota^{g}}=\chi_{f}$ . (7)

$F$ is the group of automorphisms of $H$ and so each element of $F$ permutes
the K-conjugacy classes of $H$ or the elements $t_{1},$ $t_{2},$ $\cdots$ , $t_{q}$ in the group algebra
$HK$.

Let $ V=\langle t_{1}, t_{2}, \cdots , t_{q}\rangle=\langle e_{1}, e_{2}, \cdots, e_{q}\rangle$ (see (5)). Then $F$ is the group of
linear transformations of the vector space $V$ which permutes the elements of
the sets $ M=\langle t_{1}, \cdots , t_{q}\rangle$ and $ N=\langle e_{1}, \cdots , e_{q}\rangle$ . Let $V_{0}=\{v\in V|v^{\phi_{g}}=v$ for every
$g\in G\}$ , $M/F=\{T_{1}, T_{2}, T_{k}\}$ , $N/F=\{S_{1}, \cdots , S_{l}\}$ , and $u_{i}=\sum_{x\in T_{i}}X,$ $w_{j}=\sum_{y\in S_{j}}y$

$(1\leqq i\leqq k, 1\leqq j\leqq l)$ . If $v=\lambda_{1}e_{1}+\cdots+\lambda_{i}e_{i}+\cdots+\lambda_{j}e_{j}+\cdots\in V_{0}$ and $e_{i},$ $e_{j}$ are in the
same orbit then $e_{i}^{\phi_{g}}=e_{j}$ for some $g\in G$ . Furthermore, $v^{\phi_{g}}=\lambda_{1}e_{1}^{\phi_{g}}+$ – $+\lambda_{i}e_{j}+$

$=\lambda_{1}e_{1}+\cdots+\lambda_{j}e_{j}+\cdots$ Hence $\lambda_{i}=\lambda_{j}$ and so $v$ is a linear combination of
$\{w_{1}, w_{2}, \cdots , w_{l}\}$ . Since $w_{j}\in V_{0}$ ($j=1,2,$ $\cdots$ , l) the set $\{w_{1}, \cdots , w_{l}\}$ is a basis for
$V_{0}$ . The same argument shows that $\{u_{1}, \cdots , u_{k}\}$ is a basis for $V_{0}$ and thus
$k=l$ . The number of orbits in $\{e_{1}, e_{2}, \cdots , e_{q}\}$ is the number of different K-
characters of $G$ induced from irreducible K-characters of $H$, (see (6) and (7)),

while the number of orbits in $\{t_{1}, t_{2}, \cdots , t_{q}\}$ is the number of K-conjugacy
classes of $G$ which are in $H$ (Lemma 1). This completes the proof of the
lemma.

Let $\chi_{1}\chi_{2}\ldots$ , $\chi_{r}$ be the irreducible K-characters of the group $G$ where $K$

is any field of characteristic $0$ .
Then $F=\{f_{\lambda}|f_{\lambda}=(\lambda\chi_{i\chi_{i}});\lambda\in T=Hom(G, K^{*})\}$ is the permutation group

acting on the set $S=\{\chi_{1}\chi_{2}\ldots , \chi_{r}\}$ .
LEMMA 6. $|S/F|$ is equal to the number of distinct K-characters of the

group $G$ which are induced from the irreducible K-characters of $G_{K}$ .
PROOF. Let $\lambda_{1},$ $\lambda_{2},$ $\cdots$ , $\lambda_{e}$ be the linear K-characters of $G$ . Then by Lemma
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2, $e=(G:G_{K})$ and all linear K-characters of $G$ are characters of $G/G_{K}$ . If $\phi$

is an irreducible K-character of $G_{K}$ and $\chi$ is an irreducible component of $\phi^{G}$

then (1) implies $\chi\downarrow G_{K}=m(\phi_{1}+\cdots+\phi_{t})(\phi=\phi_{t})$ , and thus we have

$(\chi\downarrow G_{K})^{G}=mt\phi^{G}$ .
On the other hand, by Lemma 3,

$(\chi\downarrow G_{K})^{G}=\chi_{\rho=}\chi(\lambda_{1}+\cdots+\lambda_{e})$

and hence
$mt\phi^{G}=x\lambda_{1}+\cdots+\chi\lambda_{e}$ .

Thus the set of irreducible components of the character $\phi^{G}$ is an element of
$S/F$. Let $\theta_{1}^{G},$ $\theta_{2}^{G},$ $\cdots$ , $\theta_{s^{G}}$ be the distinct characters of $G$ induced from the
irreducible K-characters of $G_{K}$ , and let $M_{i}\in S/F$ be the set of irreducible com-
ponents of $\theta_{i^{G}}$ $(i=1,2, \cdots , s)$ .

Suppose $M_{i}=M_{j}i$ . $e$ . $\theta_{i^{G}}$ and $\theta_{j^{G}}$ have the same irreducible components.
Then $\theta_{i}$ and $\theta_{j}$ are irreducible components of $\chi\downarrow G_{K}$ for any $\chi\in M_{i}=M_{j}$

(Lemma 4). Hence $\theta_{i}$ and $\theta_{j}$ are G-conjugate (by (1)) and $\theta_{i^{G}}=\theta_{J^{G}}$ . Finally,
let $\chi$ be any irreducible K-character of $G$ . Then if $\phi$ is an irreducible com-
ponent of $\chi\downarrow G_{K},$ $\chi$ is an irreducible component of $\phi^{G}$ (Lemma 4) where for
some $i,$ $1\leqq i\leqq s,$ $\phi^{G}=\theta_{i^{G}}$ . Hence $\chi\in M_{t}$ , which proves the lemma.

III. The number of linearizable irreducible projective representations
of $G$ over the field $K$ of characteristic $0$ .

THEOREM. Let $(C, \psi)$ be the finite central group extension of $G$ by which
all the linearizable projective representati0ns of $G$ over the field $K$ of charac-
teristic $0$ are linearized, and let $ A=Ker\psi$ . Then the number of equivalence
classes of irreducible linearizable projective representati0ns of $G$ over $K$ is equal
to the number of K-conjugacy classes of the group $6/A_{K}$ which are in $G_{K}/A_{K}$ .

PROOF. Let $S$ be the set of irreducible K-characters of $G$ such that $\chi\downarrow A$

$=x(1)\lambda_{\chi}(\lambda_{\chi}\in Hom(A, K^{*}))$ for any $\chi\in S$ . It is clear that $\chi\in S$ implies $\mu x\in S$

for arbitrary $\mu\in Hom(\hat{G}, K^{*})$ . If $\mu=\lambda\downarrow A$ where $\lambda\in Hom(\hat{G}, K^{*})$ then Ker $\lambda\supseteqq$

Ker $\mu\supseteqq A_{K}$ by Lemma 2. Hence $A_{K}\subseteqq\hat{G}_{K}$ , since from Lemma 2 it follows that
$\hat{G}_{K}$ is the intersection of kernels of all linear K-characters of $\hat{G}$ . For $\chi\in S$ ,
$\chi\downarrow A=x(1)\lambda_{\chi}$ implies Ker $\chi\supseteqq Ker\lambda_{\chi}\supseteqq A_{k}i$ . $e$ . $\chi$ is the irreducible K-character of
$\hat{G}/A_{K}$ . Conversely, let $\chi$ be any irreducible character of $\hat{G}/A_{K}$ . Then $\chi\downarrow A$

is the character of $A/A_{K}$ and by (1) $\chi\downarrow A$ is the sum of $\hat{G}$ -conjugate linear
characters of $A$ . Since $A\subseteqq Z(\hat{G}),$ $\chi\downarrow A=x(1)\lambda_{\chi}$ for some $\lambda_{\chi}\in Hom(A, K^{*})$ .
Hence $S$ is the full set of irreducible K-characters of the factor group $\hat{G}/A_{K}$ .
All linear $K$-characters of $\hat{G}$ are characters of $\hat{G}/A_{K}$ and we can consider the
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action of $F$ on $S$ (see Lemma 6). It follows from Lemma 6 that $|S/F|$ is the
number of distinct K-characters of the group $\hat{G}/A_{K}$ which are induced from
irreducible K-characters of $(\hat{G}/A_{K})_{K}$ . On the other hand, $(\hat{G}/A_{K})_{K}=\hat{G}_{K}/A_{K}$ ,
(see (2)), and by Lemma 5 $|S/F|$ is the number of K-conjugacy classes of
$\hat{G}/A_{K}$ which are in $\hat{G}_{K}/A_{K}$ . Let $\rho_{1},$ $\rho_{2},$

$\cdots$ , $\rho_{t}$ be the full set of representatives
of equivalence classes of irreducible linearizable projective representations of
$G$ over $K$. Then for $\rho_{i}$ : $G\rightarrow PGL(V_{i})$ there exists a linear representation $\Gamma_{i}$

with character $\chi_{i}\in S(\Gamma_{i} ; \hat{G}\rightarrow GL(V_{i}))$ such that $\rho_{i}[\psi(x)]=\pi\Gamma_{i}(x)$ for every
$x\in\hat{G}$ $(i=1,2, \cdots , t)$ . Denote by $M_{i}$ the orbit with representative $\chi_{i}$ under the
action of $F(i=1, 2, t)$ . Suppose $M_{i}=M_{j}i$ . $e$ . $x_{j}=\lambda\chi_{i}$ for some $\lambda\in Hom(\hat{G}, K^{*})$ .
Then the linear representation $\lambda\Gamma_{i}$ ; $\hat{G}\rightarrow GL(V_{i})$ is equivalent to $\Gamma_{j}$ ; $\hat{G}\rightarrow GL(V_{j})$ .
Thus there exists a linear isomorphism $\phi$ : $V_{i}\rightarrow V_{j}$ such that $\Gamma_{j}(x)=\phi\lambda(x)\Gamma_{i}(x)\phi^{-1}$

for every $x\in\hat{G}$ . Therefore

$\rho_{j}[\psi(x)]=\pi\Gamma_{j}(x)=\pi\phi[\lambda(x)\Gamma_{i}(x)]\phi^{-1}=\emptyset[\pi\lambda(x)\Gamma_{i}(x)]$

$=\phi[\pi\Gamma_{i}(x)]=\phi_{\rho_{i}}[\psi(x)]$

and we have $\rho_{i}\sim\rho_{j}$ .
Now let $\chi\in S$ be an irreducible K-character of the linear representation

$\Gamma:\hat{G}\rightarrow GL(V)$ . Then the projective representation $\rho$ : $G\rightarrow PGL(V),$ $\rho[\psi(x)]=$

$\pi\Gamma(x)(x\in\hat{G})$ is equivalent to some $\rho_{i}(1\leqq i\leqq t)$ , and therefore there exists a
linear isomorphism $\phi$ : $V\rightarrow V_{i}$ such that $\rho_{i}[\psi(x)]=\tilde{\phi}\rho[\psi(x)]$ . Hence

$\pi\Gamma_{i}(x)=\emptyset[\pi\Gamma(x)]=\pi\phi\Gamma(x)\phi^{-1}$

or
$\Gamma_{i}(x)=\alpha(x)\phi\Gamma(x)\phi^{-1}$ for some $\alpha$ : $G\rightarrow K^{*}$ .

It is clear that $\alpha(1)=1$ . On the other hand, $\Gamma_{i}(xy)=\Gamma_{i}(x)\Gamma_{i}(y)$ and $\Gamma(xy)=$

$\Gamma(x)\Gamma(y)$ imply $\alpha(xy)=\alpha(x)\alpha(y)$ and hence $\alpha\in Hom(\hat{G}, K^{*})$ . Thus the linear
representations $\Gamma_{i}$ and $\alpha\Gamma$ of the group $\hat{G}$ are equivalent, $\chi_{i}=\alpha\chi$ and $\chi\in M_{i}$

from which follows that $t=|S/F|$ . This completes the proof of the theorem.
COROLLARY 1. Let $K$ be an algebraically closed field of characteristic $0$ .

Then the number of equivalence classes of irreducible projective representatjOns

of $G$ over $K$ is equal to the number of conjugacy classes of representation-grouP
$G$ of $G$ which are in $\delta^{\prime}$ .

PROOF. This is straightforward since $\hat{G}_{K}=\hat{G}^{\prime},$ $A_{K}=1$ and each K-conjugacy
class of $\hat{G}$ is a conjugacy class of $\hat{G}$ .

COROLLARY 2. Let $K$ be the real number field. Then the number of equi-
valence classes of irreducible projective representations of $G$ over $K$ is equal to
the number of K-conjugacy classes of the representation-group $G$ of $G$ which
are in $6_{K}$ . Here $ G_{K}=\delta$ if $ 2\nmid$ $(C : G^{\prime})$ , and $G_{K}$ is a minimal normal subgroup of
6 such that the factor-group $C/6_{K}$ is an elementary abelian $2$-group if $2\backslash (G;6^{\prime})$ .
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PROOF. $Let\hat{G}$ bearepresentation-group ofGover K. The group $H^{2}(G, K^{*})$

is an elementary abelian 2-group ([4], Remark 3) and from ([4], p. 32) it fol-
lows that Hom $(A, K^{*})$ is an elementary abelian 2-group. Thus $A$ is an ele-
mentary abelian 2-group and $A_{K}=1$ . Now apply the theorem.
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