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Let G be a finite group and K an arbitrary field. Yamazaki (4],
1) proved that there exists a finite central group extension of G by which all
“linearizable” projective representations of G are linearized (cf. Section 1).
This result motivates consideration of the following problem. Given a finite
group G and an arbitrary field K of characteristic 0, what is the number of
equivalence classes of irreducible linearizable projective representations of G
over K? The aim of this paper is to give the solution of this problem. As
a corollary we obtain the group theoretical characterization of the number of
equivalence classes of irreducible projective representations of G over K, where
K is an algebraically closed field of characteristic 0, or the real number field.

I. Preliminaries.

All groups in this paper are assumed to be finite.

NoTATION. K is any field and K*=K— {0}.

GL(V) is the group of all nonsingular linear transformations of a finite
dimensional vector space V over K.

A K-character is a character of a linear representation of a group G over K.

K*1, is the centre of GL(V) where 1, denotes the identity mapping of
V onto itself.

PGL(V)=GL(V)/K*1, is the group of projective transformations of the
projective space P(V) associated to V.

7 is the natural projection of GL(V) onto PGL(V).

|S] is the order of the set S.

G’ is the derived group of G.

Hom (G, K*) is the multiplicative group of all linear characters (one-
dimensional linear representations) of the group G over K.

An ordered pair (G*, ¢) of a group G* and a surjective homomorphism
¢:G*—>G is called a central group extension of the group G if the kernel
Ker ¢ of ¢ is included in the centre Z(G*) of the group G*.

If T is a permutation group acting on the set S then S/T is the quotient
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set (the orbit set) obtained from S by identification of any two points of S in
the same orbit of 7.

A projective representation of G in V is a homomorphism p : G=PGL(V).
A mapping I',: G—GL(V) is called a section for p if #I',(g)=p(g) for any
g<G.

I', determines a 2-cocycle a of G in K* by

Fp<g1)rp(g2) =a(g, _‘gZ)Fp(gng) ) (&1, £.€6, alg, g&) € K*).

Its cohomology class in H*(G, K*) depends only on p and is denoted by C,.
Let I', be any section of p. The projective representation p is called
irreducible if there are no non-trivial subspaces of V which are sent into
themselves by all the transformations /',(g), g=G.
Two projective representations pP;: G—PGL(V,) (1=1,2) are called equi-
valent (written p;~p,) if there exists a linear isomorphism ¢: V,—V, such
that the following diagram is commutative

c— PV
P2 5
PGL(V,)

where g(xx)=ndxp~? for every xGL(V)).

Let I" be a linear representation of G* in V such that I'(Ker ¢)CK*1,.
Then I’ induces a projective representation ¢ of G in V such that the follow-
ing diagram is commutative

cr—L  eGLvy
¢ T
G e PGL(V)

We shall say that o is linearized by the group extension (G*, ¢). It is clear
that p is irreducible if and only if I" is the irreducible linear representation
of G* over K.

Following Yamazaki we shall call a projective representation p lineariz-
able if p is linearized by some finite central group extension (G*, ¢) of G.
If K is algebraically closed, or the real number field, then by G has a
representation-group G.
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That is, a group G by which all projective representations of G are line-
arized and the order of G is equal to Am, where h is the order of G and m is
the order of 2-cohomology group H*(G, K*).

II. Some results on linear representations of finite groups.

Let G be a finite group of exponent n, K any field with characteristic not
dividing |G| and ¢ a primitive n-th root of unity over K. Let I, be the multi-
plicative group consisting of those integers 7, taken modulo #, for which e—¢”
defines an automorphism of K(¢) over K. It is clear that the group I, is iso-
morphic to the Galois group of K(¢) over K. Two elements a, beG are called
K-conjugate (written axb) if x ‘bx=a" for some xG and some r=l,. K-
conjugacy is an equivalence relation and so G may be partitioned into K-
conjugacy classes.

LeMMA 1. Let HAG, i.e. H is normal subgroup of G, and let T,(K,) be
the K-conjugacy class of the group G(H) with representative heH. Then
T,=\ Kg-lhg-

gEG

PrOOF. Let m be the exponent of H, so that n=mk for some natural
number k and d=¢* is the primitive m-th root of unity over K. Suppose s&T}.
Then s=a 'h*a for some a=G and some p<l,. If p=r (modm), 0=r=m-—1,
then s=(a"'ha)”. The automorphism e—e* of K(¢) over K induces the auto-
morphism §—0#=0" of K(0) over K. Hence r=1I,, and s€K,-1;,. Conversely,
let acK;-1,,. Then a=hi'g 'h*gh,=(gh,)*h*(gh,) for some h,eH and some
pel,. The automorphism 0—d* of K(0) over K can be extended to the auto-
morphism e—¢* of K(¢) over K (see [3], §52). Hence A=pg (mod m), h*=h*
and a=(gh,)"*h*(gh,) for AI,. This proves the lemma.

Let X be an irreducible K-character of G and ¢ an irreducible K-character
of a subgroup H of G. ¢ induces a character ¢¢ of G and X restricts down
to a character X | H of H. Suppose HAG. Then G acts on the irreducible
characters of H by conjugation. That is, for g€G and x€H, ¢*(x)=¢(gxg™).
The subgroup T fixing a given irreducible character ¢ is called the inertia
group of ¢. Clearly, T2H. If t=(G:T) then ¢ has precisely ¢ distinct con-
jugates ¢=¢,, ¢,, ---, §,. Furthermore, if ¢ is an irreducible component of
X | H, then (2], Theorem 49.7)

Xl H=m(¢,+¢,+ --- +¢,) for some natural number m . 1

If HAG then a character B of G/H can be regarded as a character of G with
kernel containing H. Conversely, every character of G with kernel containing
H arises in this manner. We shall use the same symbol to denote the character
whether viewed in G or G/H. The precise situation with be clear from the
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context. If the field K is such that the polynomial x"—1 splits into linear
factors in K, then K contains all n-th roots of unity. We use the notation
“¥1 K” to denote this fact.

DEFINITION. A K-kernel of the group G is the smallest subgroup Gk,
Gx=G’, such that ¥1 €K where n is the exponent of the group G/Gg.

It follows from this definition that if NAG and NSGg then

(G/N)gk=Gg/N. 2

LEMMA 2. Each linear K-character of G is a character of G/Gg and the
number of linear K-characters of G is |G/Gg].

PROOF. An abelian group A has |A| linear K-characters if and only if
¥1 €K where n is the exponent of A, ([2], Theorem 9.10). Hence G/Gg has
exactly |G/Gg| linear characters. On the other hand, let 4 be any linear K-
character of G with kernel N. The mapping g—(gGx)(gN) is a homomorphism
of G into G/GgXG/N with kernel GxN\N. Hence G/GxzNN is isomorphic to
some subgroup of G/GgXG/N. Thus R/1 €K where m is the exponent of
G/GgNN, and so Ggky"\N=Gg and N2Gg. This proves the lemma.

LEMMA 3. Let HAG, K be any field and X be an arbitrary K-character of
G. Then

(X| H)?=pX where p is the regular representation of G/H.

Proor. Let =X | H. Then 08(g *hg)=X(h) for every gG and h=H. On
the one hand,

05(h) = l—li 207 ) = (G HIX(A)

and ,
0%(x) =0 for x€eG—H.
On the other hand,

(0X)(h) = p{WX(R)=(G: H)X(h) and (pX)(x)=p(x)X(x)=0.

This proves the lemma.

Let K bs an arbitrary ficld of characteristic not dividing the order of the
group G and let K be the algebraic closure of K. Denote by X:(f(l, e A
the full set of irreducible K-.characters of G and by Q=<(C,, -+, C,> the con-
jugacy classes of G. Under the action of the group of mappings g—g*, p<l,
the sets X and @ are partitioned into disjoint subsets X=X,\UX,U --- UX;
Q=K,IK,J --- UK, where the K; are K-conjugacy classes of G, Xi:<5c“, .
x},,.> (t=1, -++, q@) and ¢ is the number of irreducible linear representations of
G over K (1], (9.1), Theorem 1.1, Theorem 5.1). Let I, I, -+, ", be the
irreducible linear representations of G over K and X; the character of [,
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(i=1,2,-,q). Then I'y=m;([;;+ - +ﬁm-) where f“- is the irreducible linear
representation of G over K with character 21::' and m; is the Schur index of
any representation f“” with respect to K (i=1, 2, ---,¢q;j=1,2, ---, 7). Let
ey, 5, -+, ¢, be all the minimal central idempotents of the group algebra GK.
Then the following formulae hold (see [1], (20.1), (22.1))

Li=m@y+ - +4m) (=1,2, -, 9) 3)

er=—ter S Ag)g  where ni=1,,(1) @

eG

[t follows from (3) that the irreducible K-character X of G is completely deter-
mined by any of its absolutely irreducible components. Let ¢;= Zl‘{x (i=1, 2,
-, q) and let V be the space spanned by ¢?, -, f,. e

Then by (1], Theorem 1.1 and (20.2)) the vector space V has the follow-
ing two bases

<ely €y 0ty eq> and <t1y tz, tty ZLq> . (5)

LEMMA 4 (Generalised Reciprocity (1], Theorem 2.2).

Let I' and I be irreducible linear representations of the group G and its
subgroup H respectively over the field K of characteristic 0. Furthermore,
suppose there corresponds to the representation I' (I'/) a minimal two-sided
ideal I (I’) in the group algebra GK (HK) which is isomorphic to the full matrix
ring over the skewfield D (D’). If I' | H contains I a times, then the repre-

4
sentation I/¢ contains I” a- 021 times, where d(d’) is the dimension of the

skewfield D (D’) over K.

Note that two linear representations of the group G over a field of charac-
teristic 0 are equivalent if and only if they have the same characters ([2],
(30.14)).

LEMMA 5. Let HAG and let K be any field of characteristic 0. Then the
number of K-characters of the group G induced from the irreducible K-characters
of H is equal to the number of K-conjugacy classes of G which are in H.

PrOOF. Let a and 8 be irreducible K-characters of H. If 6=a®=f¢ and
X is an irreducible component of 6 then by Lemma 4 « and S are irreducible
components of ¥ | H, and from (1) it follows that @ and 8 are G-conjugate.
Conversely, if « and B are G-conjugate then a straightforward calculation
shows that a®=f% Thus

a®=p¢% if and only if f=a® for some ge€G. (6)

Let K, K,, -+, K, be the K.conjugacy classes of H and ;= X x (=1, -, (j).

rTEK;
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Consider the group F:{gﬁg | p,= (g'flhg)’ geG}. Then F is the group of linear

transformations of the vector space HK. Let e, e, -+, e, (X}, Xy, =+, X)) be

the minimal central idempotents of HK (irreducible K-characters of H). Then
by (4)

e =t 5, XA,
and hence
et = e B AN hg) = e B X (k.

Clearly X;*=1X; implies n;=n; and m;=m;. Therefore X,*=X; implies ¢,”¢=e;.
n.

mi LY = m]] X; and hence X, and X; have

the same absolutely irreducible components and so X;¥=X;. Thus,

On the other hand, ¢;%s=e; implies

F is the group of automorphisms of H and so each element of F permutes
the K-conjugacy classes of H or the elements f,, t,, -*+, ¢, in the group algebra
HK,

Let V=_t,t,, -+, tp=KXe, €, -+, ¢, (see (5)). Then F is the group of
linear transformations of the vector space V which permutes the elements of
the sets M=<t, -, t,> and N={e, -, ¢>. Let V,={veV|vPz=v for every
geG}y, M/F={T, T, ---,T,}, N/F={S,,--,S}, and u;= 2 X, W;= 2 y

zET; €S
(I=igk, 155, If v=24e,+ -+ +Ae+ -+ +2;¢;-+ - €V, and ¢, ¢; are 1r11/ tljle
same orbit then ei¢g:e,- for some g=G. Furthermore, v¢€:21e1¢g+ e FAe+
«« =Ae+ - +2e;4 . Hence A4,=4; and so v is a linear combination of
{w,, wy, -, w;}. Since w; eV, (j=1, 2, ---, [) the set {w,, ---, w;} is a basis for
V,. The same argument shows that {u,, ---, u;} is a basis for V, and thus
k=I. The number of orbits in {e,, e,, -, ¢,} is the number of different K-
characters of G induced from irreducible K.characters of H, (see (6) and (7)),
while the number of orbits in {f,, 1, -+, #,} is the number of K-conjugacy

classes of G which are in H (Lemma 1). This completes the proof of the
lemma.

Let X, X,, ---, X, be the irreducible K-characters of the group G where K
is any field of characteristic O.

Then F:{leflz(%'('); AeT=Hom (G, K*)} is the permutation group
acting on the set S={X;, X,, ---, X,}.
LEMMA 6. |S/F| is equal to the number of distinct K-characters of the

group G which are induced from the irreducible K-characters of Gg.
PrROOF. Let A, 4,, -+, 4. be the linear K-characters of G. Then by Lemma
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2, e=(G: Gg) and all linear K-.characters of G are characters of G/Gg. If ¢
is an irreducible K-character of Gx and X is an irreducible component of ¢¢
then (1) implies X | Gx=m(¢,~+ -+ +6¢,) (¢=¢,), and thus we have

X | Grp)é=mtpC .
On the other hand, by

(X ]| Gg)f= XP—_‘ XA+ - +4)
and hence
migpe =X+ - +X2A,.

Thus the set of irreducible components of the character ¢¢ is an element of
S/F. Let 6,¢, 6,¢, ---, 0,6 be the distinct characters of G induced from the
irreducible K-characters of Gg, and let M;=S/F te the set of irreducible com-
ponents of #.¢ (1=1, 2, -+, s).

Suppose M;=M; i.e. §;° and 6,;° have the same irreducible components.
Then 6; and 6; are irreducible components of % |Gy for any XeM;=M;
(Lemma 4). Hence 6, and 6, are G-conjugate (by (1)) and 6,°=6,;5. Finally,
let X be any irreducible K-character of G. Then if ¢ is an irreducible com-
ponent of X | G, X is an irreducible component of ¢¢ (Lemma 4) where for
some 1, 1=i<s, ¢¢=60,°. Hence X< M,;, which proves the lemma.

III. The number of linearizable irreducible projective representations
of G over the field K of characteristic 0.

THEOREM. Let (G, ¢) be the finite central group extension of G by which
all the linearizable projective representations of G over the field K of charac-
teristic 0 are linearized, and let A=Ker ¢. Then the number of equivalence
classes of irreducible linearizable projective representations of G over K is equal
to the number of K-conjugacy classes of the group G/Ax which are in Gg/Ag.

PrOOF. Let S be the set of irreducible K-characters of G such that X | A
=X(1)4y (4z=Hom (A, K*)) for any X&S. It is clear that X€S implies pXeS
for arbitrary peHom (G, K*). If u=21] A where 2eHom (G, K*) then Ker A2
Ker n2 Ax by Hence AxSGy, since from it follows that
Gk is the intersection of kernels of all linear K-characters of G. For X€S,
1l A=X(1)4; implies Ker X2Ker 4,2 A4, i.e. X is the irreducible K-character of
G/Ag. Conversely, let X be any irreducible character of G/Agx. Then X | A
is the character of A/Ag and by (1) X | A is the sum of G-conjugate linear
characters of A. Since ASZ(G), X | A=%(1)4, for some A;=Hom (4, K*).
Hence S is the full set of irreducible K-characters of the factor group G/Ag.
All linear K-characters of G are characters of G/Ax and we can consider the
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action of F on S (see Lemma 6). It follows from that |S/F| is the
number of distinct K-characters of the group G/Ax which are induced from
irreducible K-characters of (G/Ag)x. On the other hand, (G/Ax)x=Gx/Ax,
(see (2)), and by |S/F| is the number of K-conjugacy classes of
G/Ax which are in Gg/Ag. Let 01, P2, ***, 0; be the full set of representatives
of equivalence classes of irreducible linearizable projective representations of
G over K. Then for p;: G=PGL(V,) there exists a linear representation [;
with character %,€S (I';: G—GL(V,)) such that p,[¢(x)]==I";(x) for every
x€G (i=1,2, -, t). Denote by M, the orbit with representative X; under the
action of F (i=1, 2, ---, t). Suppose M;=M, i.e. X;=AX; for some A=Hom (G, K*).
Then the linear representation A/7;: G—GL(V,) is equivalent to I';: G—=GL(V ).
Thus there exists a linear isomorphism ¢ : V,—V; such that I';(x)=¢A(x)]";(x)¢p~*
for every xeG. Therefore

Pj[éb(x)jzﬂrj(x):W¢[z(x)ri(x)]¢_l:5[75'2(35)['1(75)]
=glal(x)]=gp.L(x)]

and we have p;~p;.

Now let XS be an irreducible K.character of the linear representation
I': G—GL(V). Then the projective representation p:G—=PGL(V), pl¢o(x)]1=
zI'(x) (x€G) is equivalent to some p; (1<i<t), and therefore there exists a
linear isomorphism ¢: V—V,; such that pi[gb(x)]:ggp[gb(x)]. Hence

al(x)=¢[x[(x)]=np'(x)¢™*
or
I'i{(x)=a(x)¢pl'(x)¢p™! for some a: G—K*,

It is clear that a(l)=1. On the other hand, [';(xy)=1I";(x)I";(») and I'(xy)=
I'(x)'(y) imply a(xy)=a(x)a(y) and hence a=Hom (G, K*). Thus the linear
representations I'; and al” of the group G are equivalent, X;=aX and XM,
from which follows that t=|S/F|. This completes the proof of the theorem.

COROLLARY 1. Let K be an algebraically closed field of characteristic 0.
Then the number of equivalence classes of irreducible projective representations
of G over K 1is equal to the number of conjugacy classes of representation-group
G of G which are in G'.

ProoOF. This is straightforward since Gx=G’, Ax=1 and each K-.conjugacy
class of G is a conjugacy class of G.

COROLLARY 2. Let K be the real number field, Then the number of equi-
valence classes of irreducible projective representations of G over K is equal to
the number of K-conjugacy classes of the representation-group G of G which
are in Gg. Here Gx=G if 2/ (G:G"), and Gy is a minimal normal subgroup of
G such that the factor-group G/G is an elementary abelian 2-group if 2\(G : G').
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PrOOF. Let G be a representation-group of G over K. The group H%G, K*)
is an elementary abelian 2-group ([4], Remark 3) and from (4], p. 32) it fol-
lows that Hom (A4, K*) is an’ elementary abelian 2-group. Thus A is an ele-
mentary abelian 2-group and Az=1. Now apply the theorem.
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