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\S 0. Introduction.

Let $P^{m}(C)$ denote a complex projective space equipped with the Fubini-
Study metric normalized so that the maximum sectional curvature is 4. We
consider a real hypersurface $M$ of $P^{m}(C)$ . It is well-known that there does
not exist a totally umbilical real hypersurface of $P^{m}(C)$ (See Tashiro-Tachibana
[7].) More generally, there does not exist a real hypersurface of $P^{m}(C)$ with
the parallel second fundamental tensor. This is immediately seen from the
Codazzi equation of the immersion of $M$. From this point of view, in this
paper, we will estimate the norm of the derivative of the second fundamental
tensor, and we get,

THEOREM A. Let $M$ be a complete real hypersurface of $P^{m}(C)$ . Then
$||\nabla H\Vert^{2}\geqq 4(m-1)$ , the equality holds if and only if $M$ is congruent to $M_{p,q}^{c}$ for
some $p,$ $q$ .

The model space $M_{p.q}^{r}$ in the above theorem is discribed in the following.
Let $S^{2m+1}$ be a Euclidean $(2m+1)$ -sphere of curvature 1. We consider the

Hopf fibration $\tilde{\pi}$ ;
$\tilde{\pi}$

$S^{1}\rightarrow S^{2m+1}\rightarrow P^{m}(C)$ ,

which is the Riemannian submersion with totally geodesic fibres.
Let $\overline{M}$ and $M$ be Riemannian manifolds of dimension $2m,$ $2m-1$ respec-

tively and $\pi$ : $\overline{M}\rightarrow M$ be a differentiable map. $(\overline{M}, M, \pi)$ is called a Riemannian
submersion compatible with the Hopf fibration $\tilde{\pi}$ if the following conditions are
satisfied.

(S1) $\overline{M}$ and $M$ are (real) hypersurfaces of $S^{2m+1}$ and $P^{m}(C)$ respectively.
(S2) $\pi$ : $\overline{M}\rightarrow M$ is a Riemannian submersion with totally geodesic fibres

such that the following diagram commutes:

$\overline{M}S^{2m+1}\underline{\overline{i}}$

$\downarrow\pi$

$i$

$\downarrow\tilde{\pi}$

$M\rightarrow P^{m}(C)$

where $\overline{i}$ and $i$ denote the immersions in (S1).
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To consider a model space $M_{p.q}^{c}$ in this situation, we take a family of the
products of spheres $M_{n,n^{\prime}}=S^{n}\times S^{n^{\prime}}$ , where $n+n^{\prime}=2m$ . Choosing $n$ and $n^{\prime}$ to
be odd, namely $n=2p+1,$ $n^{\prime}=2q+1$ , we put $\overline{M}=M_{2p+1,2q+1}$ . Then we get a fibra-
tion $\pi$ :

$S^{1}\rightarrow M_{2p+1,2q+1}\rightarrow^{\pi}M_{p,q}^{c}$ .
$(M_{2p+1,2q+1}, M_{p.q}^{c}, \pi)$ satisfies (S1) and (S2) (cf. [2], [3]).

$M_{p,q}^{c}$ thus obtained has a characteristic property, which can be used to
prove $M$ to be congruent to $M_{p,q}^{r}$ for some $p,$ $q$ . In general, a real hypersurface
$M$ of $P^{m}(C)$ has two structures, namely the contact structure induced from
$P^{m}(C)$ and the submanifold structure represented by the second fundamental
tensor of $M$ on $P^{m}(C)$ . It might be interesting to study the relations between
the two structures. In particular, for the model space $M_{p,q}^{c}$ , the relation is
precisely obtained through the study of the submersion $\pi$ . Okumura [3]

proved the following theorem which is a characterization of $M_{p.q}^{c}$ .
THEOREM $0$ . Let $M$ be a real hypersurface of $P^{m}(C)$ and $\pi:\overline{M}\rightarrow M$ the

submersion which is compatible with the Hopffibration $\tilde{\pi};S^{1}\rightarrow S^{2m+1}\rightarrow P^{m}(C)$ . Then
the second fundamental tensor of $\overline{M}$ is parallel if and only if the contact struc-
ture of $M$ induced from $P^{m}(C)$ commutes with the second fundamental tensor
of $M$.

Subsequently, a further observation on $M_{p.q}^{c}$ will be made. By use of the
compatible submersion $\pi$ , the hypersurface $M$ of $P^{m}(C)$ related to $\overline{M}$ has been
studied in [2], [3] and [6]. Namely, Lawson [2] studied the pinching problem
of the second fundamental tensor when $M$ is a minimal hypersurface of $P^{m}(C)$ ,

and Okumura [3] also studied the pinching problem on the more general con-
dition that the hypersurface $M$ has the constant mean curvatute.

When $\overline{M}$ is 1) an Einstein space or 2) a locally symmetric space, it is well
known that $\overline{M}$ has parallel second fundamental tensor. Projecting the quantities
on $\overline{M}$ onto $M$ in $P^{m}(C)$ , we can consider the hypersurface with the conditions
corresponding to 1) or 2). Using Theorem $0$ , we will study the above hyper-
surfaces in \S 4 and \S 5.

The author thanks Prof. M. Obata for his valuable suggestions and encour-
agement during the preparation of this paper.

\S 1. Preliminaries.

Let $M$ be a real hypersurface of $P^{m}(C)$ and $i:M\rightarrow P^{m}(C)$ denote the iso-
metric immersion. In a neighborhood of each point, we choose a unit normal
vector field $N$ in $P^{m}(C)$ . The Riemannian connections $D$ in $P^{m}(C)$ and $\nabla$ in
$M$ are related by the following formulas for arbitrary vector fields $X$ and $Y$
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on $M$ :

(1.1) $D_{i_{t}X}i_{*}Y=i_{*}(\nabla_{X}Y)+g(HX, Y)N$ ,

(1.2) $D_{i*X}N=-i_{*}(HX)$ ,

where $g$ denotes the Riemannian metric induced from the Fubini-Study metric
$G$ on $P^{m}(C),$ $i$ . $e.,$ $g(X, Y)=G(i_{*}X, i_{*}Y)$ , and $H$ is the second fundamental
tensor of $M$ in $P^{m}(C)$ .

The mean curvature $\mu$ of $M$ in $P^{m}(C)$ is defined by $\mu=traceH$. If $\mu=0$ ,
then $M$ is called a minimal hypersurface.

An eigenvector $X$ of the second fundamental tensor $H$ is called a Principal
curvature vector, or simply a P.C. vector. Also an eigenvalue $r$ of $H$ is called
a Principal curvature. In what follows, we denote $V_{r}$ the eigenspace of $H$ with
eigenvalue $r$ .

It is known that $M$ has an almost contact metric structure induced from
the complex structure $F$ on $P^{m}(C)$ , (cf. [3]), $i$ . $e.$ , we define a tensor $f$ of type
$(1, 1)$ , a vector field $U$ and a l-form $u$ on $M$ by the following:

$g(fX, Y)=G(Fi_{*}X, i_{*}Y)$ , $g(U, X)=u(X)=G(Fi_{*}X, N)$ .
Then we have

(1.3) $f^{2}X=-X+u(X)U$ , $g(U, U)=1$ , $fU=0$ .
From the above remark and (1.1), we have easily

(1.4) $(\nabla_{X}f)Y=u(Y)HX-g(HY, X)U$ ,

(1.5) $\nabla_{Y}U=fHY$ .

Let $\overline{R}$ and $R$ be the curvature tensors of $P^{m}(C)$ and $M$ respectively. Since
the curvature tensor $\overline{R}$ has a nice form, we have the following Gauss and
Codazzi equations.

(1.6) $g(R(X, Y)Z,$ $W$ ) $=g(Y, Z)g(X, W)-g(X, Z)g(Y, W)$

$+g(fY, Z)g(fX, W)-g(fX, Z)g(fY, W)$

$-2g(fX, Y)g(fZ, W)+g(HY, Z)g(HX, W)$

$-g(HX, Z)g(HY, W)$

and

(1.7) $(\nabla {}_{X}H)Y-(\nabla {}_{Y}H)X=u(X)fY-u(Y)fX-2g(fX, Y)U$ .
Using (1.3), (1.6) and (1.7), we get
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(1.8) $g(R_{0}X, Y)=(2m+1)g(X, Y)-3u(X)u(Y)+\mu g(HX, Y)-g(H^{2}X, Y)$ ,

where $\mu=traceH$ and $R_{0}$ denotes the Ricci tensor on $M$.

(1.9) $g((\nabla_{X}H)Y, U)-g((\nabla {}_{Y}H)X,\backslash U)=-2g(fX, Y)$ .

\S 2. The fundamental lemmas on a real hypersurface of $P^{m}(C)$ .
Let $M$ be a real hypersurface of $P^{m}(C)$ and assume that the trajectories

of the induced vector field $U$ are geodesics, $i$ . $e.$ ,

(2.1) $\nabla_{U}U=0$ ,

because $U$ is a unit vector. Using (1.5), (2.1) becomes

(2.2) $fHU=0$ .
APplying $f$ to (2.2) and using (1.3), we get

(2.3) $HU=\alpha U$ ,

where $\alpha=g(HU, U)$ . Thus we have

LEMMA 2.1. In order that the trajectories of $U$ be geodesics, it is necessary
and sufficient that $U$ be a P. C. vector.

Differentiating (2.3) covariantly along $X$ and making use of (1.4), we have

$g((\nabla_{X}H)Y, U)+g(HfHX, Y)=(X\alpha)g(U, Y)+\alpha g(fHX, Y)$ .
Making a similar equation by changing $X$ and $Y$ in the last equation and
using (1.9), we get

(2.4) $2g(HfHX-fX, Y)=(X\alpha)u(Y)-(Y\alpha)u(X)+g((fH+Hf)X, Y)$ .

If we replace $X$ by $U$ in (2.4), we obtain

(2.5) $Y\alpha=(X\alpha)u(Y)$ .
Substituting (2.5) into (2.4), we have

(2.6) $2HfH-2f=\alpha(Hf+fH)$ .
LEMMA 2.2. Assume that the trajectories of $U$ are geodesics. If $X$ belongs

to $V_{r}$ and is orthogonal to $U_{J}$ then $fX$ belongs to $V_{(\alpha r+2)/(2r-\alpha)}$ .
PROOF. From (2.6), we get for a P.C. vector $X$ which is orthogonal to $U$ ,

$(2r-\alpha)HfX=(\alpha r+2)fX$ .
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If $2r-\alpha=0$ , then $\alpha r+2=0$ . Hence we have the Lemma.
From Lemma 2.2, we easily obtain
PROPOSITION 2.3. There exists no open set $O$ of $M$ such that at every point

of $0,$ $fH+Hf=0$ .
LEMMA 2.4. If the trajectories of $U$ are geodesics, then $\alpha$ is locally con-

stant.
PROOF. Since $U$ is a P.C. vector of $M$, from Lemma 2.2 we get by (2.5),

grad $\alpha=\beta U$ , where $\beta=U\alpha$ . Differentiating this equation covariantly along $X$ ,

we have
$\nabla_{X}$ grad $\alpha=(X\beta)U+\beta fHX$ ,

from which, together with the fact that

$g$ ($\nabla_{X}$ grad $\alpha,$
$Y$ ) $=g$ ( $\nabla_{Y}$ grad $\alpha,$

$X$ ) ,

we get

(2.7) $(Y\beta)u(Y)-(X\beta)u(X)=\beta g((fH+Hf)X, Y)$ .

Replacing $X$ by $U$ and making use of (2.5) and (2.6), we have

(2.8) $Y\beta=(U\beta)g(U, Y)$ .

Substituting (2.8) into (2.7), we obtain

$\beta\cdot g((fH+Hf)X, Y)=0$ .
Thus we have the lemma by Proposition 2.3.

At each point, we can take orthonormal vectors $U,$ $X_{a},$ $fX_{a}(a=1, m-1)$

which are P.C. vectors. Then any tangent vector can be expressed in the
following form:

$X=xU+\sum_{a=1}^{m-1}x^{a}X_{a}+\sum_{a=1}^{m-1}y^{a}fX_{a}$ .

Using the above expression of $X$ , we get
PROPOSITION 2.5. Let $M$ be a real hypersurface of $P^{m}(C)$ and assume that

the trajectories of $U$ are geodesics. Assume that $fX$ belongs to $V_{r}$ for any
$X\in V_{r}$ . Then $f$ and $H$ are commutative. Furthermore by Theorem $0$ , for the
submersion $(\overline{M}, M, \pi)$ compatible with $\tilde{\pi},\overline{M}$ has the Parallel second fundamental
tensor.

\S 3. Proof of Theorem A.

For a compatible submersion $(\overline{M}, M, \pi)$ with the Hepf fibration $\tilde{\pi}$ , it is
well known (cf. Ishihara and Konishi [1]) that if $\overline{M}$ has the parallel second
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fundamental form, $M$ satisfies

(3.1) $g((\nabla_{Z}H)X, Y)=-u(X)g(fZ, Y)-u(Y)g(fZ, X)$ .
Now, we consider the converse problem, namely we determine the hypersur-
face $M$ satisfying (3.1).

From (3.1) and the commutativity of the trace and the derivation, we have
LEMMA 3.1. If $M$ satisfies (3.1), then the mean curvature is constant.
Using the Ricci identity, (3.1) and (1.9), we get

(3.2) $g(HY, W)g(LX, Z)+g(HY, Z)g(LX, W)-g(HX, W)g(LY, Z)$

$-g(HX, Z)g(LY, W)-g(fX, W)g(AY, Z)-g(fX, Z)g(AY, W)$

$+g(fY, Z)g(AX, W)+g(fY, W)g(AX, Z)-2g(fX, Y)g(AZ, W)$

$=0$ ,

where $L$ and $A$ are tensor fields of type $(1, 1)$ which are respectively defined
by the following:

$LX=X-u(X)U-H^{2}X$ ,

$AX=(fH-Hf)X$ .
Then $L$ and $A$ are symmetric linear operators. If $A=0$ , then $f$ and $H$ are
commutative.

Contracting (3.2) with $X$ and $W$, we have

(3.3) $\mu g(LY, Z)-(2m+2-traceH^{2})g(HY, Z)+2g(HZ, U)u(Y)$

$+2g(HY, U)u(Z)-4g(fHfY, Z)=0$ .
Replacing $Y$ by $U$ in (3.3) and using (1.3), we have

(3.4) $\mu g(H^{2}X, U)=2\alpha u(X)-$ ($2m-$ trace $H^{2}$)$g(HX, U)$ ,

where $\alpha=g(HU, U)$ .
On the other hand, replacing $X$ and $Z$ by $U$ in (3.2) and exchanging $Y$ and

$W$, we get

(3.5) $g(HY, U)g(H^{2}W, U)=g(HW, U)g(H^{2}Y, U)$ .
Considering (3.5), we get, for some scalar $a$ ,

(3.6) $g(H^{2}X, U)=ag(HX, U)$ ,

because of Schwarz’s inequality.
Substituting (3.6) into (3.4), we have
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(3.7) $bg(HX, U)=2g(HU, U)u(X)$ ,

where $b=a\mu+2m-$ trace $H^{2}$ .
LEMMA 3.2. For any point $p\in M,$ $U$ is a P.C. vector.
PROOF. If $b\neq 0$ , then $U$ is a P.C. vector by (3.7). If $b=0$ , then $g(HU, U)=0$ ,

and we easily obtain $HU=0$ by (3.5).
We can put $HU=\alpha U$ for any point $p\in M$ because of Lemma 3.2. Then by

Lemma 2.4, we see that $\alpha$ is constant.
Differentiating this equation and using (3.2), we get

(3.8) $\alpha g(fHX, Y)=-g(fX, Y)+g(HfHX, Y)$ .
Interchanging $X$ and $Y$ in (3.8), we have $\alpha g(AX, Y)=0$ .

Now we prove
PROPOSITION 3.3. Let $M$ be a real hypersurface of $P^{m}(C)$ satisfying (3.1).

Then $f$ and $H$ are commutative.
PROOF. If $\alpha\neq 0$ , it is clear from (3.8). In case $\alpha=0$ , replacing $W$ by $fW$

in (3.2) and contracting $X$ and $W$, we get

$(2m+2)g(AX, Y)=0$ .
This means $A=0$ . By Theorem $0$ , we have

THEOREM 3.4. For a submersion $(\overline{M}, M, \pi)$ compatible with the Hopf fibra-
tion $\tilde{\pi};S^{1}\rightarrow S^{2m+1}\rightarrow P^{m}(C)$ , the second fundamental tensor of $\overline{M}$ is parallel if
and only if $M$ satisfies (3.1).

From this fact and theorems in Ryan’s paper[4], we have
THEOREM 3.5. $M_{p,q}^{c}$ are only complete hypersurfaces of $P^{m}(C)$ satisfying

(3.1).

Define a tensor $T$ by

$T(X, Y)Z=g((\nabla {}_{z}H)X, Y)+u(X)g(fZ, Y)+u(Y)g(fZ, X)$ .

Calculating the norm of $T$ and using (1.4) and (1.7), we get $\Vert\nabla H\Vert^{2}\geqq 4(m-1)$ .
Theorem A is thereby proved by Theorem 3.5.

\S 4. $C$-Einstein hypersurface of $P^{m}(C)$ .
Let $M$ be a real hypersurface of $P^{m}(C)$ . If the Ricci tensor $R_{0}$ of $M$

satisfies

(4.1) $g(R_{0}X, Y)=ag(X, Y)+bu(x)u(Y)$ ,

where $u$ is the induced l-form defined in \S 1, we call $M$ a C-Einstein hyper-
surface. When $b=0,$ $M$ is an Einstein space. Now we will consider a C-
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Einstein hypersurface.
We dePne a symmetric tensor $K$ of type $(1, 1)$ by

(4.2) $K=H^{2}-\mu H$ ,

where $H$ is the second fundamental tensor of $M$.
LEMMA 4.1. If $M$ satisfies (4.1) and $b\neq-3$ at every Point of $M$, then $U$ is

an eigenvector of $K$ whose eigenvalue is equal to $(2m-2-a-b)$ . Furthermore
the other eigenvalues of $K$ are equal to $(2m+1-a)$ .

PROOF. By the above assumption and (1.8), we get

$KX=(2m+1-a)X-(b+3)u(X)U$ .

This equation implies the lemma.
On the other hand, at each point we can take $X_{1},$ $\cdots$ , $X_{2m-1}$ which are P.C.

vectors with principal curvature $\gamma_{1}\ldots$ , $r_{2m-1}$ respectively and form as ortho-
normal bases. From (4.2), we get

(4.3) $KX_{i}=(r_{i}^{2}-\mu r_{i})X_{i}$ .
LEMMA 4.2. Under the assumptions of Lemma 4.1, $U$ is a P.C. vector whose

multiplicity is equal to 1.
PROOF. (4.3) means that each $X_{i}$ is the eigenvector of $K$. Then there

exists a unique vector $X$ with eigenvalue $(2m-2-a-b)$ . It follows that the
eigenspace of $X$ coincides with the space of $U$ . We get the lemma.

We can take an orthonormal basis $\{U, X_{2}, \cdots , X_{2m-1}\}$ each of which is a
P.C. vector with principal curvature $\alpha,$ $r_{i}(i=2, 2m-1)$ respectively. From
Lemma 4.1 and (4.3), we have

(4.4) $r_{i}^{2}-\mu r_{i}-(2m+1-a)=0$ , $(i=2, \cdots , 2m-1)$ ,

(4.5) $\alpha^{2}-\mu\alpha-(2m-2-a-b)=0$ .
Thus we have proved

LEMMA 4.3. Under the same assumptions as in Lemma 4.1, $M$ has at most
three distinct Principal curvature at each Point of $M$.

On the other hand, by Lemma 2.2 we find that the only possibilities are
the following cases at any point $p$ of $M$.

Case 1) $fX$ belongs to $V_{r}$ for any P.C. vector $X\in V_{r}$ .
Case 2) there exists a P.C. vector $X\in V_{r}$ such that $fX$ dose not belong

to $V_{r}$ .
We assume that there exsists a point $p$ of $M$ in Case 2). Fix the above

point $P$ of $M$. From Lemma 2.2 and (4.4), we get

(4.6) $2(r_{i}^{2}+1)-\mu(2r_{i}-\alpha)=0$ ,
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where $r_{i}$ denotes the principal curvature of $X_{i}$ .
By the equation (4.6), we see easily that only Case 1) occurs when $M$ is

minimal. Using this fact and the Proposition 2.5, we have easily
THEOREM 4.4. Let $M$ be a compleie minimal C-Einstein hypersurface of

$P^{m}(C)$ such that $b\neq-3$ . Then $M$ is congruent to $M_{p.q}^{c}$ for some $p,$ $q$ .
THEOREM 4.5. Let $M$ be a complete C-Einstein hypersurface of $P^{m}(C)$ with

$m\geqq 3$ . If $b\neq-3$ and $a+b\geqq 2(m-1)$ at each pOint of $M$, then $M$ is congruent
to $M_{p,q}^{c}$ for some $p,$ $q$ .

PROOF. Let $r,$
$\gamma^{\prime}$ be the two real roots of (4.4). We only consider the fol-

lowing case by Lemma 4.3 and Lemma 4.4:
For any point $p$ of $M$, the tangent space $T_{p}M$ at $p$ can be written as

$T_{p}M=V_{\alpha}\oplus V_{r}\oplus V_{r^{\prime}}$ (direct sum), where $\dim V_{a}=1$ , $r\neq r^{\prime}$ and $\dim V_{\gamma}=s$

$(0\leqq s\leqq 2m-2)$ .
From (4.5), the mean curvature $\mu$ and $\alpha$ have the same sign. If there

exists a P.C. vector $X\in V_{r}$ such that $fX\not\in V_{r}$ , then by (4.6) we have $\mu r=$

$ 2(r^{2}+1)+\mu\alpha$ . Similarly we get the same equation for $r^{\prime}$ . We see that $\mu,$ $r$ ,
and $r^{\prime}$ are non-zero and have the same sign. By the definition of $\mu$ , we get

$\mu=traceH=\alpha+\mu+(s-1)r+(2m-3-s)r^{\prime}$

because $ r+r^{\prime}=\mu$ .
We have $s=1$ and $2m-3=s$ . This is a contradiction for $m\geqq 3$ . Then $V_{r}$

and $V_{r^{\prime}}$ are invariant under $f$. This completes the proof by Proposition 2.5.
REMARK 1. We can consider the following special case of Case 2).

Case 2’)
$fX\in V_{r}$ for any $X\in V_{r}$ .

Using the compatible submersion $(\overline{M}, M, \pi)$ in Case 2’), the second fundamental
tensor of $\overline{M}$ has four principal curvatures whose multiplicities are 1, 1, $n-1$

and $n-1$ . In this case if all the principal curvatures of $M$ are constant, then
so are the principal curvatures of $\overline{M}$. The hypersurfaces $\overline{M}$ of $S^{m-1}$ with the
above condition have been determined by R. Takagi [5].

REMARK 2. Through an Einstein space is a C-Einstein space with $b=0$ ,
there exists no such hypersurface in the class of $M_{p,q}^{c}$ (cf. Proposition 5.5).

\S 5. The real hypersurfaces satisfying certain conditions.

We consider the compatible submersion $(\overline{M}, M, \pi)$ . Using the Co-Gauss
and the Co-Codazzi equations for this submersion (cf. [1], p. 31), we have
easily the following:

LEMMA 5.1. Let $M$ be a real hypersurface of $P^{m}(C)$ and $(\overline{M}, M, \pi)$ a com-
patible submersion with the Hopf-fibration $\tilde{\pi}$ . If $\overline{M}$ is a locally symmetnc space,
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then $M$ satisfies

(5.1) $fHU=0$ ,

(5.2) $f\cdot R=0$ ,

where means that $f$ operates on $R$ as a derivation, $i$ . $e.$ , for any vector fields
$X,$ $Y,$ $Z$ and $W$ on $M$

$g((f\cdot R)(X, Y)Z,$ $W$ ) $=g(R(fX, Y)Z,$ $W$ ) $+g(R(X, fY)Z,$ $W$ )

$+g(R(X, Y)fZ,$ $W$ ) $+g(R(X, Y)Z,$ $fW$).

In this section we want to discuss the converse problem. Namely the
hypersurface $M$ with the condition (5.1) and (5.2) will be determined.

The equation (5.1) implies that $U$ is a P.C. vector with constant principal
curvature by (2.3) and Lemma 2.1. So we can apply the results in \S 2.

Contracting (5.2) we have

(5.3) $fR_{0}=R_{0}f$ .

By (1.6) we get for any vectors $X,$ $Y,$ $Z$ and $W$ on $M$

(5.4) $(f\cdot R)(X, Y, Z, W)=g(HY, Z)g(HfX, W)-g(HfX, Z)g(HY, W)$

$+g(HfY, Z)g(HX, W)-g(HX, Z)g(HfY, W)$

$+g(HY, fZ)g(HX, W)-g(HX, fZ)g(HY, W)$

$+g(HY, Z)g(HX, fW)-g(HX, Z)g(HY, fW)$ .
So we have by (5.2)

(5.5) $g(HY, Z)g((Hf-fH)X, W)+g(HX, W)g((Hf-fH)Y, Z)$

$-g(HY, W)g((Hf-fH)X, Z)-g(HX, Z)g((Hf-fH)Y, W)=0$ .

Similarly the equation (5.3) is equivalent to

(5.6) $\mu(Hf-fH)X-(H^{2}f-fH^{2})X=0$ .

LEMMA 5.2. Let $M$ be a real hyPersurface of $P^{m}(C)$ with $m\geqq 3$ satisfying
(5.1) and (5.3). If $\alpha=g(HU, U)=0$ at some Point $p$ of $M$, there exists a $P.C$ .
vector $X\in V_{r}$ such that $g(X, U)=0$ and $fX\in V_{r}$ .

PROOF. We remarked that $fX$ is also a P.C.-vector if $X$ is a P.C. vector
(see \S 2). Take the orthonormal basis $\{U, X_{a}, fX_{a}, (a=1, \cdots , m-1)\}$ consisting
of P.C. vectors and denote their principal curvatures by $\alpha,$ $r_{a},$ $1/r_{a}$ respectively,
because of Lemma 2.2. Suppose that $r_{a}\neq 1/r_{a}$ , for all $a=1,$ $\cdots$ , $m-1$ . In (5.6),
replacing $X$ by $X_{i}$ , we get
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(5.7) $(r_{a}-1/r_{a})(r_{a}+1/r_{a}-\mu)=0$ .

It follows $ r_{a}+1/r_{a}=\mu$ . On the other hand, we have

$\mu=g(HU, U)+\sum_{a=1}^{m-1}g(HX_{a}, X_{a})+\sum_{a=1}^{m-1}g(HfX_{a}, fX_{a})$

$=\sum_{a=1}^{m-1}(r_{a}+1/r_{a})=(m-1)\mu$ .

We have $\mu=0$ , which is a contradiction.
LEMMA 5.3. Under the assumptions of Lemma 5.2, the principal curvature

of $fX_{a}$ is equal to that of $X_{a}$ $(a=1, \cdots , m-1)$ .
PROOF. There exists a P.C. vector $X$ with principal curvature $\beta$ such that

$\beta^{2}=1$ because of Lemma 5.2. If we take any P.C. vector $X_{a}$ with principal
curvature $r_{a}$ , then from (5.5), we have

$\beta(1/r_{a}-r_{a})(g(X, W)g(X_{a}, Z)-g(X, Z)g(X_{a}, W))=0$ ,

where $Z$ and $W$ are any vectors on $M$. It follows that $r_{a}=1/r_{a}$ . When $\alpha\neq 0$ ,
replacing $Y$ and $Z$ by $U$ in (5.5), we see that $f$ and $H$ are commutative.

With the above fact and the above lemmas, we have
THEOREM 5.4. Let $M$ be a complete real hypersurface of $P^{m}(C)(m\geqq 3)$ . If

$M$ satisfies (5.1) and (5.2), then $M$ is congruent to $M_{p.q}^{c}$ .
As a final remark, we will show that in $P^{m}(C)$ that there exists no real

hypersurface with parallel Ricci tensor in the class of $M_{p,q}^{c}$ . Assume that there
exists a hypersurface $M_{p.q}^{r}$ with parallel Ricci tensor for some $p,$ $q$ . Since $U$

is a P.C. vector with constant principal curvature, using Theorem $0$ and (3.1),
we have $2fH+(\mu-\alpha)f=0$ , where $\mu=traceH$. Multiplying this equation by $f$

and contracting, we get $\mu=\alpha$ . Consequently, $M_{p,q}^{c}$ has the parallel second
fundamental tensor. It follows from (3.1) again that $f$ vanishes identically.
This is a contradiction.

Using Theorem 4.5 and the above fact, we have
PROPOSITION 5.5. There exists no Einstein hypersurface of $P^{m}(C)(m\geqq 3)$

with scalar curvature $\geqq 2(m-1)(2m-1)$ .
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