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§0. Introduction.

Let P™(C) denote a complex projective space equipped with the Fubini-
Study metric normalized so that the maximum sectional curvature is 4. We
consider a real hypersurface M of P™(C). It is well-known that there does
not exist a totally umbilical real hypersurface of P™(C) (See Tashiro-Tachibana
[7]) More generally, there does not exist a real hypersurface of P™(C) with
the parallel second fundamental tensor. This is immediately seen from the
Codazzi equation of the immersion of M. From this point of view, in this
paper, we will estimate the norm of the derivative of the second fundamental
tensor, and we get,

THEOREM A. Let M be a complete real hypersurface of P™C). Then
IVH|?=4(m—1), the equality holds if and only if M is congruent to MS,, for
some p, q.

The model space M, in the above theorem is discribed in the following.

Let S*™*' be a Euclidean (2m-+1)-sphere of curvature 1. We consider the
Hopf fibration #:

~

St —» Smt —7r—> P™C),
which is the Riemannian submersion with totally geodesic fibres.

Let M and M be Riemannian manifolds of dimension 2m, 2m—1 respec-
tively and = : M—M be a differentiable map. (M, M, 7) is called a Riemannian
submersion compatible with the Hopf fibration % if the following conditions are
satisfied.

(S1) M and M are (real) hypersurfaces of S*™*' and P™(C) respectively.

(S2) 7:M—Mis a Riemannian submersion with totally geodesic fibres
such that the following diagram commutes:

1

M > §2m+1
PN
M > P™(C)

where 1 and i denote the immersions in (S1).
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To consider a model space M, , in this situation, we take a family of the
products of spheres M, , =S"XS™, where n4n’=2m. Choosing n and n’ to
be odd, namely n=2p+1, n’=2q-+1, we put M=M,,,,4,.,. Then we get a fibra-
tion 7 :

T
1
St — 2p+1,2q+1 "> MJCMZ .

(M, pi1,09+1, MS,q, m) satisfies (S1) and (S2) (cf. [2], [3D.

M, , thus obtained has a characteristic property, which can be used to
prove M to be congruent to M; , for some p, ¢. In general, a real hypersurface
M of P™C) has two structures, namely the contact structure induced from
P™(C) and the submanifold structure represented by the second fundamental
tensor of M on P™(C). It might be interesting to study the relations between
the two structures. In particular, for the model space M, the relation is
precisely obtained through the study of the submersion z#. Okumura
proved the following theorem which is a characterization of M$,,.

THEOREM 0. Let M be a real hypersurface of P™C) and = : M—M the
submersion which is compatible with the Hopf fibration & : S'—S*™*'—P™C)., Then
the second fundamental tensor of M is parallel if and only if the contact struc-
ture of M induced from P™C) commutes with the second fundamental tensor
of M. '

Subsequently, a further observation on M$ , will be made. By use of the
compatible submersion 7, the hypersurface M of P™(C) related to M has been
studied in [2], and [6]. Namely, Lawson [2] studied the pinching problem
of the second fundamental tensor when M is a minimal hypersurface of P™(C),
and Okumura also studied the pinching problem on the more general con-
dition that the hypersurface M has the constant mean curvatute.

When M is 1) an Einstein space or 2) a locally symmetric space, it is well
known that M has parallel second fundamental tensor. Projecting the quantities
on M onto M in P™C), we can consider the hypersurface with the conditions
corresponding to 1) or 2). Using Theorem 0, we will study the above hyper-
surfaces in §4 and §5.

The author thanks Prof. M. Obata for his valuable suggestions and encour-
agement during the preparation of this paper.

§1. Preliminaries.

Let M be a real hypersurface of P™(C) and i: M—P™(C) denote the iso-
metric immersion. In a neighborhood of each point, we choose a unit normal
vector field N in P™C). The Riemannian connections D in P™(C) and V in
M are related by the following formulas for arbitrary vector fields X and Y
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on M:
(1.1) DixixY =1x(VgY)+g(HX, V)N,
(1.2) D xN=—ix(HX),

where g denotes the Riemannian metric induced from the Fubini-Study metric
G on P™C(C), i.e, g(X, Y)=G(xX,1+Y), and H is the second fundamental
tensor of M in P™(C).

The mean curvature g of M in P™(C) is defined by y trace H. If p=0,
then M is called a minimal hypersurface.

An eigenvector X of the second fundamental tensor H is called a principal
curvature vector, or simply a P.C. vector. Also an eigenvalue » of H is called
a principal curvature. In what follows, we denote V., the eigenspace of H with
eigenvalue 7.

It is known that M has an almost contact metric structure induced from
the complex structure F on P™(C), (cf.[3]), i.e., we define a tensor f of type
(1, 1), a vector field U and a 1-form u on M by the following:

g(fX, Y)=G(FixX, 1Y), glU, X)=u(X)=G(FixX, N).

Then we have

1.3) [P X=—X+u(X)U, gU,U)=1, fU=0.
From the above remark and [1.1), we have easily

(1.4 (NgHNY=uw(Y)HX—g(HY, X)U,

(15) VyU=fHY.

Let R and R be the curvature tensors of P™(C) and M respectively. Since
the curvature tensor R has a nice form, we have the following Gauss and
Codazzi equations.

(1.6) g(R(X, Y)Z, W)=g(Y, 2)g(X, W)—g(X, Z)g(Y, W)
+g(fY, 2)g(fX, W)—g(fX, Z)¢(fY, W)
—28(fX, Y)g(fZ, W)+g(HY, Z)g(HX, W)

—g(HX, Z)g(HY, W)
and

(1.7) (V)Y =Ny H) X =uw(X)fY —u(Y)fX=2g(fX, Y)U .

Using (1.3), (1.6) and [(1.7), we get
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(1.3) g2(RX, Y)=02m+1)g(X, Y)—=3u(X)u(Y)+pg(HX, Y)—g(H*X, Y),
where p=trace H and R, denotes the Ricci tensor on M.

(1.9) g( VMY, U)—g(VyH)X,U)=—2g(fX,Y).

§2. The fundamental lemmas on a real hypersurface of P™(C).

Let M be a real hypersurface of  P™C) and assume that the trajectories
of the induced vector field U are geodesics, i.e.,

(2.1 VyU=0,

because U is a unit vector. Using [1.5), becomes

(2.2) JHU =0.
Applying f to and using (1.3), we get
(2.3) HU =aU,

where a=g(HU, U). Thus we have

LEMMA 2.1. In order that the trajectories of U be geodesics, it is necessary
and sufficient that U be a P.C. vector.

Differentiating covariantly along X and making use of [1.4), we have
g(VxH)Y, U)+g(HfHX, Y)=(Xa)g(U, Y)+ag(fHX,Y).

Making a similar equation by changing X and Y in the last equation and

using [(1.9), we get
(2.4) 2g(HfHX—fX, V)= (Xeyu(Y)—(Ya)u(X)+g(fH+HNX, Y) .
If we replace X by U in [2.4), we obtain

(2.5) Ya=(Xa)u(Y).
Substituting into (2.4), we have
(2.6) 2HfH—-2f=a(Hf+fH).

LEMMA 2.2. Assume that the trajectories of U are geodesics. If X belongs
to V, and is orthogonal to U, then fX belongs to Viartojcor-a-
PrOOF. From ((2.6), we get for a P.C. vector X which is orthogonal to U,

Qr—a)Hf X=(ar+2)fX.
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If 2r—a=0, then ar+2=0. Hence we have the Lemma. "

From we easily obtain _

PROPOSITION 2.3. There exists no open set O of M such that at every point
of O, fH+Hf=0. .

LEMMA 2.4. If the trajectories of U are geodesics, then a is locally con-
stant.

ProOOF. Since U .is a P.C. vector of M, from we get by [2.5),
grad a=pU, where f=Ua. Differentiating this equation covariantly along X,
we have

Vy grad a=(XBU+BFHX,

from which, together with the fact that

g(Vygrada, V) =gy grad a, X),

we get

@27 YBuWY)—(XBu(X)=pg(fH+H)X, Y).
Replacing X by U and making use of and [2.6), we have
(2.8) Yg=UpsgWU,Y).

Substituting into [(2.7), we obtain
B-g((fH+Hf)X, Y)=0.

Thus we have the lemma by [Proposition 2.3

At each point, we can take orthonormal vectors U, X,, fX, (a=1, -+, m—1)
which are P.C. vectors. Then any tangent vector can be expressed in the
following form: ‘

XZXU+milana+Elyana .
a=1 a=1

Using the above expression of X, we get

PROPOSITION 2.5. Let M be a real hypersurface of P™(C) and assume that
the trajectories of U are geodesics. Assume that fX belongs to V, for any
XeV,. Then f and H are commutative. Furthermore by Theorem 0, for the
submersion (M, M, ) compatible with %, M has the parallel second fundamental
tensor.

§3. Proof of Theorem A.

For a compatible submersion (M, M, ) with the Hopf fibration %, it is
well known (cf. Ishihara and Konishi [1]) that if M has the parallel second
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fundamental form, M satisfies
(3.1 g(VH)X, YV)=—-u(X)g(fZ, Y)-u(Y)g(fZ, X).

Now, we consider the converse problem, namely we determine the hypersur-

face M satisfying [3.1). ~
From and the commutativity of the trace and the derivation, we have
LeMMA 3.1. If M satisfies (3.1), then the mean curvature is constant.

Using the Ricci identity, and [(1.9), we get
(3.2) gHY, W)g(LX, Z2)+g(HY, Z)g(LX, W)—g(HX, W)g(LY, Z)
—g(HX, Z)g(LY, W)—g(fX, W)g(AY, Z)—g(fX, Z)g(AY, W)
+8(fY, Z)g(AX, W)+g(fY, W)g(AX, Z2)—2g(fX, Y)g(AZ, W)
=0,

where L and A are tensor fields of type (1, 1) which are respectively defined
by the following:
LX=X—u(X)U—H?*X,

AX=(fH-Hf)X.

Then L and A are symmetric linear operators. If A=0, then f and H are
commutative.
Contracting with X and W, we have

(3.3) pg(LY, Z)—(2m+2—trace H*)g(HY, Z);i—Zg(HZ, U)u(Y)
+2g(HY, U)u(Z)—4g(fHfY, Z)=0.

Replacing Y by U in [3.3) and using [1.3), we have

(3.4) pg(H*X, U) = 2au(X)—(2m—trace H*)g(HX, U),

Where a=g(HU, U).

On the other hand, replacing X and Z by U in and exchanging Y and
W, we get

(35) ‘ g(HY, U)g(H*W, U)=g(HW, U)g(H*Y, U) .
Considering [3.5), we get, for some scalar q,
(3.6) g(H*X, U)=ag(HX, U),

because of Schwarz’s inequality.

_ Substituting into [(3.4), we have |
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3.7 bg(HX, U)=2g(HU, U)u(X),

where b=ap+2m—trace H®

LEMMA 3.2. For any point peM, U is a P.C. vector.

Proor. If b0, then U is a P.C. vector by [3.7). If =0, then g(HU, U)=0,
and we easily obtain HU=0 by [3.5).

We can put HU=aU for any point p=M because of Then by
we see that @ is constant.

Differentiating this equation and using [(3.2), we get

3.8 ag(fHX, Y)=—g(fX, Y)+gHfHX,Y).

Interchanging X and Y in [3.8), we have ag(A4X, Y)=0.

Now we prove

PROPOSITION 3.3. Let M be a real hypersurface of P™C) satisfying (3.1).
Then f and H are commutative.

PrOOF. If a=:0, it is clear from [3.8). In case a=0, replacing W by /W
in and contracting X and W, we get

(2m4-2)g(AX, Y)=0.

This means A=0. By Theorem 0, we have

THEOREM 3.4. For a submersion (M, M, ) compatible with the Hopf fibra-
tion #:S'—>S*™P™(C), the second fundamental tensor of M is parallel if
and only if M satisfies (3.1).

From this fact and theorems in Ryan’s paper [4], we have

THEOREM 3.5. M3, are only complete hypersurfaces of P™C) satisfying
3.1). ‘

Define a tensor T by ‘-

T(X, Y)Z=g(N-H)X, Y)+u(X)g(fZ, Y)+u(Y)g(fZ, X).

Calculating the norm of 7 and using [1.4) and [1.7), we get |VH|*=4(m—1).
A is thereby proved by

§4. C-Einstein hypersurface of P™(C).

Let M be a real hypersurface of P™C). If the Ricci tensor R, of M
satisfies ’

4.1) _ g(R,X, V)=ag(X, Y)+bu(x)u(Y),

where u is the induced 1-form defined in §1, we call M a C-Einstein hyper-
surface. When b=0, M is an Einstein space. Now we will consider a C-
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Einstein hypersurface.
We define a symmetric tensor K of type (1,1) by

(4.2) K=H*—uH,

where H is the second fundamental tensor of M.

LeEmMA 4.1. If M satisfies and b+ —3 at every point of M, then U is
an eigenvector of K whose eigenvalue is equal to (2m—2—a—b). Furthermore
the other eigenvalues of K are equal to (2m+1—a).

Proor. By the above assumption and (1.8), we get

KX=02m+1—a)X—0b+3)u(X)U .

This equation implies the lemma.

On the other hand, at each point we can take X, ---, X,,-, which are P.C.
vectors with principal curvature 7y, -+, 7, respectively and form as ortho-
normal bases. From [4.2), we get

4.3) KX, =’ —pr)X;.

LEMMA 4.2. Under the assumptions of Lemma 4.1, U is a P.C. vector whose
multiplicity is equal to 1.

PROOF. means that each X, is the eigenvector of K. Then there
exists a unique vector X with eigenvalue (2m—2-—a—b). It follows that the
eigenspace of X coincides with the space of U. We get the lemma.

We can take an orthonormal basis {U, X,, -+, Xon-1} e€ach of which is a
P.C. vector with principal curvature «, r; (1=2, ---, 2m—1) respectively. From
Lemma 4.1 and [4.3), we have
(4.4) ri—pur;—(2m+1—a)=0, @=2, -+,2m—1),

(4.5) a’—pa—(2m—2—a—b)=0.

Thus we have proved

LEMMA 4.3. Under the same assumptions as in Lemma 4.1, M has at most
three distinct principal curvature at each point of M.

On the other hand, by Lemma 2.2 we find that the only possibilities are
the following cases at any point p of M.

Case 1) fX belongs to V, for any P.C. vector XeV,.

Case 2) there exists a P.C. vector X&V, such that fX dose not belong
to V,. ‘

We assume that there exsists a point » of M in Case 2). Fix the above

point p of M. From and [(4.4), we get
(4.6) 2(r2+1)—p@2ri—a)=0,
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where r; denotes the principal curvature of X,.

By the equation [4.6), we see easily that only Case 1) occurs when M is
minimal. Using this fact and the [Proposition 2.5, we have easily

THEOREM 4.4. Let M be a complete minimal C-Einstein hypersurface of
P™C) such that b>x—3. Then M is congruent to M, for some p, q

THEOREM 4.5. Let M be a complete C-Einstein hypersurface of P™(C) with
m=3. If bx—-3 and a+b=2(m—1) at each point of M, then M 1is congruent
to M5, for some p, q

PROOF. Let 7, 7’ be the two real roots of [4.4). We only consider the fol-
lowing case by and Lemma 4.4:

For any point p of M, the tangent space T,M at p can be written as
T M=V, PV,PV,(direct sum), where dimV,=1, =7 and dim V,=s
0=s=2m—-2).

From [45), the mean curvature ¢ and a have the same sign. If there
exists a P.C. vector X&V, such that fX«V,, then by we have pur=
2(r*+1)+pa. Similarly we get the same equation for 7. We see that g, 7,
and 7’ are non-zero and have the same sign. By the definition of y, we get

p=trace H=a+p+(s—1)r+@m—3—s)r',

because r+r'=
We have s=1 and 2m—3=s. This is a contradiction for m=3. Then V,
and V,. are invariant under f. This completes the proof by [Proposition 2.5
REMARK 1. We can consider the following special case of Case 2).
Case 2/)

fXev, for any XeV,.

Using the compatible submersion (M, M, ) in Case 2’), the second fundamental
tensor of M has four principal curvatures whose multiplicities are 1,1, n—1
and n—1. In this case if all the principal curvatures of M are constant, then
so are the principal curvatures of M. The hypersurfaces M of S™* with the
above condition have been determined by R. Takagi

REMARK 2. Through an Einstein space is a C-Einstein space with 6=0,
there exists no such hypersurface in the class of M, (cf. Proposition 5.5).

§5. The real hypersurfaces satisfying certain conditions.

We consider the compatible submersion (M, M, 7). Using the Co-Gauss
and the Co-Codazzi equations for this submersion (cf. [1], p. 31), we have
easily the following:

LEMMA 5.1. Let M be a real hypersurface of P™C) and (M, M, n) a com-
patible submersion with the Hopf-fibration % If M is a locally symmetric space,
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then M satisfies
(5.1) FHU =0,
(5.2) f-R=0,

where - means that f operates on R as a derivation, t.e., for any vector fields
X, Y, Zand W on M

g((f-RXX, Y)Z W)=g(R(fX, Y)Z, W)+g(R(X, fY)Z, W)
+2(R(X, Y)fZ, W)+g(R(X, Y)Z, fW).

In this section we want to discuss the converse problem. Namely the
hypersurface M with the condition and will be determined.

The equation (5.1) implies that U is a P.C. vector with constant principal
curvature by [2.3) and Lemma 2.1. So we can apply the results in § 2.

Contracting we have

(6.3) fRy,=R,f.
By (1.6) we get for any vectors X, Y, Z and W on M
(5.4) (f*RX,Y,Z, W)=g(HY, 2)g(Hf X, W)—g(HfX, Z)g(HY, W)

+g(HfY, Z)g(HX, W)—g(HX, Z)g(HfY, W)
+g(HY, f2)¢(HX, W)—g(HX, fZ2)g(HY, W)

+g(HY, Z)g(HX, fW)—g(HX, Z)g(HY, fW).
So we have by .

(5.5) gHY, Z)g(Hf —fH)X, W)+g(HX, W)g(Hf—fH)Y, Z)
—g(HY, W)g(Hf—fH)X, Z)—g(HX, Z)g(Hf—fH)Y, W)=0.

Similarly the equation is equivalent to

(5.6) pHf —fH)X—(H*f—fH?)X=0.

LEMMA 5.2. Let M be a real hypersurface of P™C) with m=3 satisfying
(5.1) and (6.3). If a=g(HU,U)=0 at some point p of M, there exists a P.C.
vector X&'V, such that g(X, U)=0 and fX&V,. ‘

ProoF. We remarked that fX is also a P.C.-vector if X is a P.C. vector
(see §2). Take the orthonormal basis {U, X,, fX,, (a=1, -+, m—1)} consisting
of P.C. vectors and denote their principal curvatures by a, r,, 1/7, respectively,
because of Suppose that r,#1/7,, for all a=1, ---, m—1. In [5.6
replacing X by X;, we get
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(5.7 (ra—1/1)(ro+1/7a—p) =0.

It follows r,+1/7,=p. On the other hand, we have
m—1 m—1
/ng(HU, U)+a§1g(HXay Xa>+a§1 g(HfXay szz)

::g (ra+1/ra) - (m_l)‘u .

We have p¢=0, which is a contradiction.

LEMMA 5.3. Under the assumptions of Lemma 5.2, the principal curvature
of fX, is equal to that of X, (a=1, ---, m—1).

Proor. There exists a P.C. vector X with principal curvature S such that
B?=1 because of Lemma 5.2. If we take any P.C. vector X, with principal
curvature 7,, then from [5.5), we have

B/re—r)(g(X, W)g(Xe, Z)—g(X, Z)g(X,, W))=0,

where Z and W are any vectors on M. It follows that r,=1/7,. When a=+0,
replacing Y and Z by U in [5.5), we see that f and H are commutative.

With the above fact and the above lemmas, we have

THEOREM 5.4. Let M be a complete real hypersurface of P™(C) (m=3). If
M satisfies (5.1) and (5.2), then M is congruent to MS,.

As a final remark, we will show that in P™C) that there exists no real
hypersurface with parallel Ricci tensor in the class of M5 ,. Assume that there
exists a hypersurface M} , with parallel Ricci tensor for some p, ¢g. Since U
is a P.C. vector with constant principal curvature, using Theorem 0 and [3.1),
we have 2fH+(p—a)f=0, where p=trace H. Multiplying this equation by f
and contracting, we get pg=a. Consequently, M¢, has the parallel second
fundamental tensor. It follows from [3.1) again that f vanishes identically.
This is a contradiction.

Using and the above fact, we have

PROPOSITION 5.5. There exists no Einstein hypersurface of P™C) (m=3)
with scalar curvature =2(m—1)2m—1).
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