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§1. Introduction.

The aim of this note is to construct the fundamental solution of Schrod-
inger’s equation on the unit n-sphere S™ In §2, following works of Birkoff
[4], Maslov and Leray [12], we shall construct a parametrix. Contrary
to the case of heat equation, a local parametrix is not sufficient for us to con-
struct a fundamental solution. Maslov’s theory of canonical operators plays
an essential rdle in constructing a global parametrix. However, Maslov restricted
his discussions to the case where the symplectic manifold is T*R". So we
shall discuss, in Appendix I, a simple definition of Maslov’s index of a curve
in a Lagrangean submanifold of the cotangent bundle T*M of a Riemannian
manifold M. The basic fact is that the horizontal subspace of the Levi-Civita
connection is a Lagrangean subspace. Our discussion makes use of the Rie-
mannian metric on M but it is proved, in Appendix I, that Maslov’s index
thus defined is independent of particular choice of the Riemannian metric
of M.

In § 3, we shall present two methods to construct the fundamental solution.
The first is the iteration method stated in that is commonly used
in the case of heat equations. The second is Feynman’'s method stated in
We shall prove that “the Riemannian finite sum approximation
of Feynmann’s integral” converges in an operator norm to the fundamental
solution. Of these two methods, Feynmann’s method seems advantageous in
two points. The first point is that the evolution property is very easily seen.
The second is that the parametrix is needed only for very short interval of
time.

The techniques employed here are essentially the same as those used in
our previous work [6] but are much more complicated. This is mainly because
two waves emanating from a point with different velocities may meet at this
point or at its antipodal point after a while. The key fact with which we
shall get rid of this difficulty is that two such waves are mutually almost
orthogonal in the space L*(S™). Applying the result of Appendix II, we shall
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show this fact in along the same lines as the discussions in our
work [3]

§2. A parametrix.

The equation to be treated is that of Schrédinger’s equation

) (ivd+—-A)u=0, d=-2,

on the natural unit sphere S™ of dimension n. Here 4 is the Laplace-Beltrami
operator associated with the natural metric ds® and v is a parameter greater
than one. We shall denote by L the Lagrangean function of a free particle
with unit mass on the sphere. Given a curve y=y(s) on S” the action S(y)
along 7 is

@ s(n=] Lds,

where the Lagrangean L is the square of the length of the tangent vector of
v at s. Since the Lagrangean function L is hyper-regular, in the terminology
of Abraham [1], the Hamiltonian function H:T*S"—R is defined from L
through the Legendre transformation

FL.T*S" — TS™.

(See Abraham [1]) Here T*S™ denotes the cotangent bundle of S™ with pro-
jection p. We shall denote by ¢ the canonical 2-form on T*S". The Hamil-
tonian vector field X is defined by 1z,0=—dH. The vector field Xy is com-
plete. Integration of this gives rise to a one-parameter group {X:}.cr of global
canonical transformations of 7*S"”. The graph G(X;) of X, is a 2n dimensional
Lagrangean submanifold of T*S"XT*S™ provided with the canonical form
n¥o—n¥o, where 7, and m, denote the projection of T*S®XT*S™ onto the first
and the second factor. We shall call this first factor the initial space and the
second the image space. Since energy is conjugate to time, we assign the
energy for each point of {G(X,)},cr and obtain a 2n+1 dimensional Lagrangean
submanifold G(X) in T*(RxS™x S™).

Following Maslov and Leray [13], we shall construct an oscillatory
function associated with this Lagrangean submanifold G(X). In order to deter-
mine a point of G(X) we have only to indicate the time ¢ and the point of the

]
initial space T*S®. Thus we have a diffeomorphism G(X) —> RXT*S™ Let
v, be the Riemannian volume element of S®. We shall denote by v the n-form
which is the pull-back of v, by the following map;

g proj [
-G(X) —> RXT*S® —> T*S™ —> S™.
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We can define another n-form w on G(X) that is the pull-back of v, by the
following map;

T
Gy —> THRX TS X T*S™ 5 T*5m 5 gn.

where the first is the embedding map. A point of G(X) is called focal if this
n-form w vanishes there.

Now we shall introduce a coordinate system on S™ in order to describe
Maslov’s oscillatory functions. We shall write Us(g)={x=S"|dist (x, g)<0d} for
any point g&S™ and 0<0=x. We can choose g, ~-, g» such that Us(gy), ---,
Us(gn) cover S™. We may assume that there exists a constant C,>0 such
that min dist (g;, g;)=C,0. Note that U.,(g;), j=1, -, m, is an open hemi-
sphere with pole at g;. We identify U,,(g;) with an open set in R" by co-
ordinate functions x¢,=(x;*, x,, ---, x;,"). The portion o 'U.,(g;) of T*S™ can
be identified with U..(g;) X R® by coordinate functions (x¢;, §9)=(x;' -+ x,",
&7 - &,7). We shall call x;,=(x;', x; --+, x;/) position coordinates and &=
(&7, &7, -+, &) momentum coordinates. When there is no fear of confusion,
we shall omit subscripts and write simply x=(x!, x? .-+, x™) instead of x =
(x', %%, +++, x;®). Similar abbreviations will be used for momentum coordinates.
The Hamiltonian function H is expressed as

©) H(x, = 3 g8,

1

where %}g”(x)g“(x):b‘j, and ds*=3 g, (x)dx’dx* is the metric on S™ The

canonical 2-form on T*S” is
o=dENdx*+dE, NdxP+ - +dELNDX™
and the volume element on S* is

vo=g(x)|dx'A -+ ANdx™],
where g(x)=det (g;,(x)).
If (y, 7, x, §)eG(X,), then we have coordinate expressions:

v=+g@dy' A -+ ANdy*|,
and

w=g(x)|dx'\ -+ ANdx"].

In the correspondence X,: (¥, 7)—(x, &), the partial Jacobian det (—g;—) does

not vanish if (y, 9, x, §)eG(X,) is not focal. Therefore, in this case, we can
adopt functions (¢, x,%) as local coordinates in some neighbourhood of
(H, t,9,71,x &) in GX).
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Let (¥, 7, x, &) be in G(X,). Then there exists a curve 7:7(s)=X,(y, n)=
(x(s), £(s)) in T*S™ joining (¥, 7) to (x, &). This is the integral curve of ¥y
emanating from (y, 7) and ending at (x, &). We shall denote y=p7 and we
have 7(s)=(x(s)). The classical action S(y) along 7y is a function of (¢, y, ).
If (H,t 3,7, x & is not focal, we can consider this as a function of (¢, x, %) in
some neighbourhood in G(X) of this point. We set Sy(¢, x, 7)=S(y). The law
of conservation of energy yields
) Sit, %, 7) = tH(y, ) = =12
where 7;(x, y) is the length of the geodesic y joining x to y. Using this func-
tion, we shall define

G) S(t, x, 1) =Su(t, %, D)+, %, 7)-7,

where y(¢, x, 9)-p= Zni yi(t, x, p)-n; and (¥(t, x, ), p) is the initial point of the
= v
point G(X;) determined by coordinates (x, ). This function S(¢, x, ) is defined
only at non-focal points in the open set of G(X) which is the inverse image of
p 'U(g;) with some j by the map
0 proj o
G(X) —> RXT*S™ —> p‘lU,(gj)c:T*S" .

At these points, the oscillatory function we need is of the form

(6) Eo(t, X, 77) = eo(t, X, n)eil’S(t,x,m
where

1/2 —Z iIn
@ ety 5, 1) = eTE

Here Ind y is the Maslov index of the curve y whose definition will be given
T

length of r+ )

in the appendix. Explicitly Ind r:(n-—l)~[[ ]], where [[x]]

is the greatest integer smaller than x.
REMARK 1. If X,(y, p)=(x(1), £&(t)), we have

®) L(x (D), &) = (x(t+5), E(t+s))

and

T

(9 eo(t+s, x(1+5), ) =eolt, x(t), Dews, x(t+s3), £@)) .

REMARK 2. S(¢, x, 7)) is a generating function of G(X) at (¢, x, n).
We shall introduce a local coordinates system around a focal point in G(X).
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Let 0={,7, {7, 7, --- be the lattice points of T £,5" whose momentum coordi-

nates are multiples of, say, 4f/n' . T%,S™is covered by open cubes C;, of side

length Z—f/n: centered at one of the {’s. We set w;,=U;(g;)XC;,. Since the

portion p *U.(g;)CT*S™ is identified with U,;(gj)xTﬁjS", ®;;, is identified with
an open set in the initial space. We set 2,(H)=GX)N\(w;;XX(®;)) and
.ij:L‘) {(E, t, ;. A point (3, 7, x, §)€R;,(t) is focal if and only if x lies

on the geodesic emanating from » with the direction of +% and dist (x, y)

=-—72r—. Let gi;» be one of the g’s that are_closest to x. Then the following
lemma is obvious.
LEMMA 2.1. If 0 is sufficiently small and if X(w;,) contains a focal point,

then we can find an l(jk) such that
(10) dist (0X,(@;1), OU z/5(gicjr)) > 50 .

This lemma implies that the trivialization of p7'U,(g;») of the image
space is valid in the 5d-neighbourhood of pXt(w)k) and that the momentum
coordinates § in the image space and the momentum coordinates n of the
initial space can be used as local coordinates in this open subset of G(X,). Let
p be the momentum coordinates of X,(g;, {;’). Then we shall define

(11) §(t5 E’ 7]) :S(tr X, 77)— élxj(gj_p]) ’

where the independent variables are £ and 7. We have a momentum expres-
sion of the oscillatory function

12) 8, &, n)ezu@?c,e.m’
where

y s o | gE ) |3 AN e AdYTH L Fin—z1nap
2t & M=Ca v gy | daA — Adgas | '

Here 7 is the curve joining the initial point (0, ¥, ) to the focal image point
(t, x, £). We can express this oscillatory function by position coordinates, at
least formally, as

(14) (Zﬂ)‘”v%j 2,(t, &, v)gil’&t»&ﬂwro(e—m)ds .
RT

(See Maslov [14] for the details.)

We shall construct our global parametrix from this oscillatory function.
Let {p;j(»)} be a partition of unity subordinate to the open covering {Us(g;)}
and ¢;.() be a partition of unity subordinate to the open covering Cj;, of
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T%,S™ We set ¢;,=¢;(y)$;x(n). This is a C* function in £2;, if £;, is para-
metrized by ¢ and the coordinates (y, ») of the initial space. {e;;} ;. is a parti-
tion of unity subordinate to the open covering {£2;:};,, of G(X). We set

(15) ajx(t, x, n) =e;(t, x, pelt, x, 1)
and
(16) Ejk(l‘, X, 7]) — ajk(t, x, ﬂ)eivsu,x,m ,

if 2,,(t) does not contain focal points. If £2;.(f) does contain focal points, e;,
is a function of (&, ) and we set

a7 a;(t, & ) =e;(t, & 1)t &, 1)
and
(18) Ejk(t, x, ) =a;,(t, &, v)eéh?(t,&m .

The expression by position coordinates x of this function is

z

(19) E;u(t, x, 7)=(2n) ™2 fdjk(t, g, n)erSwemrad-mge

Note that we have an asymptotic expansion

1 _®ind, WSGDD t
fe ‘e +0( v )’

(20) Enlt, % 1) ~| 2

as _vt__>0, if (y,7, % &) is not a focal point in £2,,(¢). Here, 7y is a curve

joining ¥ to x along the geodesic.
We define a function on £2,,xXU;(g;) by

(21) Ejkl(ty X, 7, Z)::(Zn')'nEjkOf’ X, 77)90[(2)9_7:”'7;
=(2m) "a;(t, x, ﬂ)g&,(z)ei“(‘g“’x'”)“"m

where z-7= _lefm. We define this only if £2;,(#) does not contain focal points
Jj=

and if Us(g)NUs(g)#9. If Us(g)NUs(g;)#9 but £2,,(?) contains focal points,
we define

(22) Eult, & 7, 2) =) "E (1, & p)pu(2)e

= (27) a4, &, D)u(2)er SeEm-n
We set

(23) E;u(t, x, 9, 2) =(@2r) "¢, x)f Rnﬁjkl(t, g, 7, 2)eTEPdE
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where ¢;,(f, x) is a C* function on RXS™ and ¢;;=1 on p¥,(w,,). Summing
these functions, we define our parametrix

(24) E(ty xr 77; Z) - E 2 Ejkl(t, X, 77! Z)

ik led(D

where J(7)={l | Us(g)NUs(g;)+9}.
PROPOSITION 2.2. 1) If £,,(t) does not contain focal points, we have

(iuat—{——%—d)Ej“(t, X, 7, z) — bjkeiwsu.z,m—v-w

where bjk(t! xy 777 Z) - (zn)_nz_l‘d.t(eo(t, xr ﬂ)ejk(t’ xy 77))
2) If 8,,(t) contains focal points, then

(ivat+—é_d)Ejkl(ty Xy 7, z)
— (4 L I iz (-
= (Waz+ D) A)S/’jk(t, x)ijkz(t, &, m, 2)e s
+ g gr’s(x>azr(/)jk(t7 x)j(és_p.?)Ejkl(t’ E; 7], Z)eipz-(f-p)ds

+¢5(L, x)f(ivat—l— —%—Z(S))Ejkl(t, £, 7, 2)eTE DL

where the operator Z(S) is a pseudo-differential operator acting on functions of §:

A9 = (ME—P@E—PIE ()70
— S ((E— 10 (5502)

— 28 VB ) (0%)

+ 200 ) 2" VE)(5%).

g0 =1(ng™ (x)

with t€Cy(S™ and =1 in some neighbourhood of supp ¢;i(t, x).
PROOF OF PROPOSITION. We have only to prove 1). Let a(x) be a C”
function of x. Then

and

(iv3t+—é—d)(a(x}ei”s“'””"”)
= e"““"’”””{(iuf<8£S+%(grad S)2>

—{—(iu)(@,a-}—grad S-grad a+ %ASo a>+ -%—Aa}
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= o505 0{ (i) Lop+5-4S )a+—5-da}

where, Loy=0,+grad S-grad. It is well known that

Oy(x, ) N3y _ 1 oy(t,
Loy et (PG ) =~ a8( o (50)

Consequently we have Lge;,(t, x, 7)=0. This proves the proposition.

Since the functions gm(x<,.>> are bounded in C{(R"), they are bounded in
the class S9,(R™ in the terminology of Hormander [9] If 2,,(t) contains
focal points, we can choose a point X;=(&;', ---, ;) with lle:(;(f,-")2)”2< 107

B,

n-1 ~

such that > (0¢,S(, & n)—X,5)* has a positive lower bound, because
J1=1 .

210¢,5(t, &, 7)|*=(2n)* at any point of £2;,(t). The functions £"°(x,+X%;) are

J

bounded in S},(R"). Therefore, we can use Hormander’s Theorem 3.3 in
and obtain an asymptotic expansion in the space &(R"™) when y—oo,

—iv (S ——z». sr,s(_1 Bt e
e s ﬂ)(g ’ ( iD alf)Ejkl(ty Sy 77, Z))
— iz =T HE) -n gros( 1 LT v E-2(Hd 5
=e 59(21) "oy (2) BT B+ Fopo) (@S E00a, 1, &, 7))
~(27) " pu(2) (7 @5)d;ut, €, 7)
e 202,87 068) e, At & D)+
If one carefully follows Hormander’s proof, one can easily see that the asymp-

totic expansion is valid also in the topology of 9,.(R™ in our situation.
Therefore, we have an asymptotic expansion in 9;.(R"):

eV SEDAGE ut, & 7, 2)
= @20) "oy ) T E =) (E—D)d " @eS)asn(t, &, 7)
(B G028 OS2 (87 VEIy )OSt €, )
(1) D0, £7*0:8)06,2,,(, &, +OW)].
Since z=1 on the support of @;, the definitions of &,, and S imply that

(ivat—i'%[(f))éju(t, & 1, 2)=b, & 7, 2)e*E=0
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where b(t, &, n, z) is bounded in 9;.(R™ as v—oo. This is uniformly bounded
when &, » and z vary. Taking derivatives with respect to ¢, » and z, we can
easily see that all derivatives of b(t, &, 7, z2) with respect to (¢, &, %, z) are all
uniformly bounded as v—oo. The techniques used here we have adopted from
Hérmander [8]. Thus we have proved the following proposition.

PROPOSITION 2.3. (wat+ A(f))Em(t g7, 2) = bt & 7, 2)erSEm—2m,
where b;u(t, &, 1, 2) is bounded in D,.(RXR*X R*X R") as y—co.

§3. Two methods to construct the fundamental solutions.

We shall start with some technical lemmata.
LEMMA 3.1. Given a time interval [—T, T], T>0, we have the, estimates

1) | grad,(S(, x, )—S(, x, p"))| =C dist (1, )
2) |grad,(S(t, x, n)—S(t, x’, 7))| = C dist (x, x/)
3) 10,%0,°S(t, x, )| < Cag, lalz1, and |B121,

for points in Q;, if X(w;,) does not contain focal points.
PrOOF. We shall make use of the notation (x, £)=X,(», 7). We can easily
see that

@  |dor( a5 St 5 ) |=[aet (5 %) =|dec(-2)|>c >0
Inequalities (1) and (2) then follow from this. Proof of (3) is omitted.

Similarly, we can prove
LEMMA 3.2. If 2,,(t) contains focal points, we have

) |grade(S(t, &, 7)—S@, & 7)1 =Cdist (3, ),
(6) |grad,(5(t, &, 7)—S(t, & )| = Cdist (&, &),
) 19:50,85(t, &, 7)) | £ Cas, lal=1, and |B[=1.

The proof of the following two lemmata is also similar to that of
3.1

LEMMA 3.3. For any multi-indices o and B, there exists a constant Cug such
that

(8) !axaa?ﬁa]’k(t’ X, 7]) | é CaB ’

for any point in Q;,(t) if 2;,(t) contains no focal points.
LEMMA 34. For any multi-indices o and B, there exists a constant Cng>0
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such that
(9) |afaa77laa~jk(t1 E! 7}) I = Cafﬁ ’

for any point in Q;, if 8;,(t) contains a focal point.
Let us define the linear mappings

(10) Ejf(%)= ([ E;u(t, x, 7, 2)f(2)dzdy
j’l:]-!zy"'rm, k:11293;'“-

Our first fundamental lemma is
LEMMA 3.5. There exists a positive constant C such that

(11) 1E; 0@l < Co 28,41
where
(12) fiy=vef e rro(a)f(o)dy,

for feC=(S™).
PROOF. This is an immediate consequence of our previous work [7].

Next we have
LeMMA 3.6. 1° Let f be a function in C(S™). Then

(13 supp E;u()f S pXy(w;1) , 0ir=Us(g;)XCjp.
2° There exists a positive constant C such that
(14) [(Eju®)f, i) | < CUAv 8 =8 D)™,/ 6,0 21 -

PrROOF. 1° is obvious.

2° If supp E;u()fNsupp E;p(D)g+#0, then p(X(@;0) N p(X(w;w))+0. We
shall first treat the case where both ¥,(w;;) and X,(w;») do not contain focal
points. We can write

(15) (Esu(Df, Epi()8) = @x) ([ [a,ut, x, )tz 5, DFNED

X VSt 2, M-8, e”dfdr)dx .

The equality grad,(S(¢, x, n)—S(¢, x, £)) =0 implies that £=7. This does
not occur if |{,’—¢7]=100. In this case, we can define a linear partial dif-
ferential operator

.Zj’

7

L:ZM%M&

where 6;(t, &, x, 7)=0,,(S(¢, x, 7)—S(, x, £)) and @—:Ejﬁ)lﬁ,-(t, g, x, 7)*]"% The
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adjoint L* is L*=—L— 39, (
2
out to be ’

(16) (E;u@®)f, E;pi(D)g)

:(ZW)_zn(iv)_ljjbz(t, g x, n)ei”(s“‘”’”"S("x’f))f\l(ﬂ)m—jdndﬂif

6; . L
8]2 ) Since (L—iy)eStnm -8tz —() turns

for [=0,1, 2, ---. Here we write
(17) bl(ty 57 xr 77) = L*l(ajk(t) x9 77)(1,;'}?.'(ty x? E)) .

We claim that for any multi-indices @, 3, y there exists a positive constant C
such that

(8) sup [ 10:°0.20,7bu(t, &, %, 1) | 4§ S CI L/ L4
In fact, this is true for /=0. Assume that is true for /=k, then
bk+1(t1 Ey x; 77): L*bk(tv Er X, 77) .
Since ©=C|§—7| (Lemma 3.1), we obtain
sup [ [bun(t, & % MIdESCICI—LH I,
Z,n RN
Simple calculation explicitly gives the commutators
0
[a.rjy L:] - % azj(_@l;-)azk
= E(Q_Zaxjﬁk_ 24@'45kﬂlazjﬁl)axk .
k L
[aéjy L]: zjafj(@—zﬁk>axk .
[aﬂj’ L]: ;aﬁj(@_zﬁk)axk .
[az‘k; axj(@-Zoj)]:axkaxj(@._zaj) .
[afky axj(@_zej)] - afkaz]‘<@—20j) .

Eaﬂk, axj(@_zﬁj)] = aﬂkaxj(@_zﬁj) .

By induction we can prove that for any multi-indices «, 8, 7 there exists a
positive constant C such that

10:°0,0,70,| =< CO ,
and that
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10:70,°0,7(07%0,) | = CO™.
Since
aijl+1(t9 Ey x’ 77) = L*aijl(tv Ey x, 7])—*‘[81‘]7 L*]bl(ty E: xy 77) [}

we have
Iaijk+l(t7 Er x’ 77) I é @_l{tg{axkax]‘bl(t Ey x; 77)[2]1/2

FL3102,0:2, & 2, PI*T7

Consequently we obtain
<19) quf j.[ azjbk+1<t! Ey X, 77) l d€ é C(1+V l ij_ij | )_k_l .

Similar discussions prove for [=k+1. Therefore holds for any L
We apply [Theoreml (A-II) of Appendix II to [16). Then the estimate
implies that

|(E;u(Df, EjpiD=CITI =i
for [=0,1, 2, ---.

Next we shall treat the case where one of X,(w;,) and X, (w;;) is focal.
We may assume that pX,(®;)N\pX(@;x)#9. This implies that the focal co-
ordinates are valid in some neighbourhood of 2,,(H)\UR,, ) if 6 is sufficiently
small. Therefore we have

(20) (E;ju®f, Ejp(H)g)= fsbjk(f, 0P ;w(t, x) Vg (x) dx e= ¢

X (@t & at, &, ) FDEG)
% eiv(gﬁ(z,&v)—ngl(t»f',ﬂ’))dgfdy]/dgd??

= [Fru(t, E=ENa(t, & DL, &, P FET)

% V@it 5‘")‘ﬁ“’f'”'))dé’dn'dgdv
where

S\‘ll(t: Sv 77):§(t» 67 77>—§XJPJ:S(Z‘, X, ﬁ)—%}xj{:j

and

Finw(t, 0= [5ult, Dyu(t, ) VEG) e 2dx.

Since ¢;, and ¢;p belong to a bounded set in C3(pX(w;:)\JpX(w,r)), there
exists a positive constant C independent of %, &’ such that

1) | Frat, O CA+w[C])2m
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Let

(22) Eu)f(©) = [a,ut, & DiilperSetndy.

Then the support of Ejkl(t)f is compact and we obtain the estimate (see
(23) 1E;u®f I <Clufil -

If ésupp E,,(H)f and &' €supp E,4.(Dg, then

(24) |G (t, =€) S CL+v|E—¢/)72mD,

This and the expression
(B, Esin®8) = [§10(t, 6~ E; DA B unDa (€)de de
imply that
(B0, Egpa(D)| < CA»| G )72n#D
SN E SN EswiDg |
< CA+v [ =L B0/ ill B 081 -

Therefore, has been proved.
We now define

(25) E@)f()=[[E, x 7, 2(2)dzdy .
The precise meaning of the right hand side of is

(26) EQ/@D=3 3 Eul).

As a consequence of Lemma 3.5 and Lemma 3.6 we can prove
THEOREM 1. For any T>O0, there exists a positive constant C such that we
have the estimate

(@7) IEGS =G| 1l

for any s€[—T,T] and f€C=(S™™?).
PRrROOF.
IEG)TI?= ||j§LEm(S)f |1®

=2 2 IlEju(S)fllz

J.k led(j)

(Eju(s)f, Eypo(9)f) .

JRL (G RV )FE(RD



496 D. Fujyiwara

The first term is estimated in the following manner:

(28) S IEufIP=Co 3 I,/ 2l?
=3 Dk

<G,

because {@;.(7)} is a partition of unity subordinate to the open covering C,’
of T,,S™
The second term is

(29) 2 % ERSS, Ejer(9)]

JRL GUR'UDIECGERD

SC3 3 A= LD Vgl il nfvl

because of Making use of Schur’s inequality, we can prove that
this does not exceed

(30) CS S v SISl (S s Sl
< O (B ganfdD 3 165w fel)”

=Gl

has been proved.

Our next result is
THEOREM 2. For any feL*S™),

(31) slim E(s)f=f.

§—0

PrROOF. By virtue of the Banach-Steinhaus theorem we have only to prove
for feC>=(S™). It is obvious that

(32) S-lsiirol E;u()f = E;,(0)f.

Using Lebesgue’s dominated convergence theorem, we can prove from [(32).
Let us denote

(33) F(t)= (i»@fr%d)E(t) .
This is the sum

(34) F(t) = ]2;; ijl(t)
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where

(35) Fy(®) = (v, 54 Eju(t)
LEMMA 3.7. For any T >0, there exists a positive constant C such that

(36) IF(s)f = Com2ll 1]

for se[—T, T1].
ProoFr. If £,,(f) does not contain focal points, then

Fiu®f(x) = [[b,u(t, x, 7, 2)esom-121(2)dzdy,
where

bjk(t’ .X, 77’ 2) - (271.)—7!2—141(800, X, n)ejk(tv X, 77)) .

We can replace Eju(f) by Fyu(f) in Lemma 35 and Lemma 3.0, Thus there
only remains the case where £2;,(t) contains focal points. In this case, F;(f)
is divided into three parts,

ijz(t) == Fj(lli(t)+F§'2ﬁz(t)+F;32L(t) y

where

(37) Py = (80 5-4)psatt, 2 EsuDf(),

(38) PRI = 8™ (005,54t D[ (u(E—pNEsult, & 7, 2)
LeWTCP (2 dzdEdy

(39) RS0 = G54t [ (19945008 Ejut, &, 7, =P f(2)dzdndt .

The discussions for F§;(t) and F§(f) are similar to those for E;;(f) because
of Proposition 2.2l At the stationary point of the phase function of the inte-

gral [38),

Z:aﬂg, x+ae§-———0

must hold. This means that X,(z, n)=(x, £). The amplitude function vanishes
at this point. Just as we did in the proof of we define

330,820, + 3 0 S+x))2,
B (10,5—2z|2+18:5+x|?)

And we obtain
(@) PROD=0)" S 0d.9(t, 1) M w(E—phasnlt, & 7, 2)

TP f(Z)dzdndE .
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Consequently, we can manage with F@,(t) just as F#,(f) and FR,(1).

In the following we shall construct an iterated parametrices. Let A(s) and
B(s) be continuous functions with values in the space of bounded linear map-
pings in L?*(S™). Then we shall denote

41) A B = :A(t—s)B(s)ds.
We set

(42) F()=F()

and

43) F()=F2F,_@1), [=2.

The iterated parametrices are defined by
(44) Ext)=ED+E4Gy(®), 'Nz1,
where Gy(t) :é (—i)IF(1) .
LEMMA 38. We have
(45) (iv0ot—54) Ex(t) = (—iv) ¥ Fyas(t).

The proof is omitted here.
LEMMA 3.9. For any T>0, there exists a positive constant C, such that

) 1,1 S C - (G5

for te[—T,T] and j=1,2,3, ---.
PrROOF. The estimate for j=1 is obvious. Assume that holds for j=<r.
Then

IFea®1 = IFE=9NIFOldls|

H/\

_%_(_) (Cp—n/Z)‘rf 71

= C—pagy (G2

F(r+1)
The Lemma is thus proved by induction.
We shall denote by U(t) the fundamental solution of (1) in § 2, this is, for
any f€C=(S™), u(t, x)=U()f)(x) satisfies
(ivdt+—5-)u(t, =0
(48)
u(0, x)=f(x) .
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Now we shall majorize the difference
(49) Ry(®)=U)—Ex().
LEMMA 3.9. For any T>0, there exists a positive constant C such, that

N (v—n/Z 1 tl )N+1

IRy(0)] £ 2C1»] 725y

for any te[—T, T].
PROOF. For any feC>(S™), Ry(t) satisfies

(9005 4) R = —(—is) ™ Fy (0

Ry(0)f=0.

(50)

This yields
| Ry(Of I°=2Re (- Ru()/(t), Ruf)

= —2Re ((iv) 2" 4Ry(1)f, Ry(8)f)

—2Re (—) M (Fyu(O)f, Ry@)f).
We obtain from this '

| Ry 1S 207 | Py 1RO ]
Therefore

v O
L Ry()F | = 20— (Co DY

Consequently

IRy(OF) S 207~y 7 )Y

We can now prove
THEOREM 3. As N goes to oo, the iterated parametrix Ex(t) defined by (44)
tends to the fundamental solution U(t). More precisely,

(1) lim [UH)—EyD] =0

uniformly for t in every compact set in R.

PrROOF. Obvious from

Now we shall discuss the second method of constructing the fundamental
solution U(¢#) of the Schrodinger’s equation (1) of §2. The idea for this is
due to Feynman [5] _

Let 4:s=t,<t,< --- <t,=s’ be a division of the time interval [s;, s’]. We
shall denote
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0,=t,—t;.y, Jj=1,2,-,k,
0=maxJ;.

Note that J

(52) kgla,:sf_s.

J
Our final aim is to prove

THEOREM 4. If N=1, then
(63) lg); |En(s’"—tp-D) Ex(te-1—1ta-s) = E(t;—5)—U(s’—5)| =0.

Convergence is uniform for s and s’ in every compact set of R' and for v=1.
PROOF. We may assume that s=0 and s'>0. We define

(54) Ud() = Ex(t—t)Ex(t;—t;_)) - En(ty)

for te[ty, t;4]

This is a strongly continuous function with values in the space of bounded
linear operators in L%S™). This function satisfies

(0ot 5 AU = () N Faas(t—t)URE),  t =Lt 1]

(55)

U #(0) =Identity .
Note that
(56) sup [U#Bl|=M<co.

In fact, we have

|Ex(ty—t3-2) -+ Ex(t)]
= Ut ty-)+R(t—=t5.20) - (UE)+Ru(t)]
S WU+, 3 IR (G=1)] - [R(Lip—ts,)]

TSIy
=1+20Cl 5, — 15, 1) - (Cltsp—tip )
= (1+Cl tl_tzl) (1+C|tk—1_tk|)
< ¢CZéj

< eCI s'—sl

Hence we have with M=¢%—%, We set VAH=U{)—UZ(). Then

V4(0)=0
57
0 (ivd,+5-A) V(D) = —(— i)™ Py (t— UL,
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We can prove, just as in the proof of that

-;T IVADOAN vy E—DIU L)AL

Hence
IVADSI < My~¥-1oY .

Consequently, '1’11%1 | VA®)]=0. This proves the [Theoreml.

Appendix I. A remark on the Maslov index.

Let M be a Riemannian manifold of dimension n. The cotangent bundle
T*M has a natural connection, i.e., at any point a of T*M, the tangent space
T, T*M splits into the sum of the horizontal space 4, and the vertical space
2,. (See [11]) On the other hand 7*M has the natural canonical structure o.

LEMMA A. Both 2, and A, are Lagrangean planes in T,T*M for any
acsT*M.

ProoOF. What we have to prove is that ¢ vanishes on 4,X4, and 4,XA4,.
Let (x*--- x™ be local coordinates around w(«a), where = : T*M—M is the pro-
jection. Any local cotangent vector field can be written as

&'Zé‘i §sdx!

around n(a). We adopt (x!--- x™ &, --- £,) as local coordinates of T*M near a.
The coordinate expression of o is

o= 3 dE; Ndx?.
J=1

Since 4, is the tangent space of the fibre, ¢ vanishes on 4,X4,, this is, 4,
is Lagrangean.

Note that we can form a local cross-section N of T*M which consists of
parallel displacements of a=T*M along the geodesics emanating from w(a).
The horizontal space 4, is the tangent space of N at «. We shall make use
of the geodesic coordinates (x'--- x™) of M centered at z(a). Assume that «a
is expressed as (0, ---, 0, & -, &). Then the parallel displacement S=(x':-- x™,
Du vy Y IS

x7 =sa?+0(s?)

7;=0(s%)

where s=dist (z(a), z). Hence Zh—-—{ f}l a’ (———ai 7 ) s a=(at - a")eR"}. Therefore
Jj=
o=Ydn;ANdx’ vanishes on 4,X 4.
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Since 4, and 4, are transversal, they are dual by the bilinear mapping a.
Hence we can define a linear isomorphism J: 4,—A4, such that

gx,y)=0(x, Jy) Vx,y€2,

where g is the metric on 7.,7*M. We can extend J to the whole of T,T*M
by the rule that J°=—identity. By this complex structure, T,7*M becomes
a hermitian vector space with a hermitian inner product

h(x, y)=g(x, y)+io(x, y)
for Vx, yeT,T*M.
LEMMA B. There exists a symplectic mapping

@,:T,T*M —> C™

which maps A, and 2, onto real and pure imaginary subspaces respectively and
preserves the hermitian inner product.

Proor. Obvious.

Mappings @, are not'defined globally when a runs the whole of T*M.

LEMMA C. Let @, and @), be two mappings stated in Lemma B. Then
0,0,'=0(n, R).

PrOOF. Obvious.

We shall denote by A(T,T*M) the space of all Lagrangean subspaces of
T,T*M. Then we have

THEOREM A-l. We can define a map

Go: AT T*M) —> A(n),

where A(n) is the space of all Lagrangean subspaces of C™. The mapping is
uniquely defined for acT*M and depends continuously on a and the Rieman-
nian structure of M.

Proor. This is an immediate consequence of Lemma C and Arnold 2]

Let X be a Lagrangean submanifold of 7*M. Then by the mapping above,
we can define a mapping p: X3 x—p(x) = A(n). ,

DEFINITION D. Let X be a Lagrangean submanifold of T*M and p be the
above mapping. Let y be a curve in X. Then p(y) is a curve in A(n). We
define as the Maslov index of y=Maslov index of p(y).

If the curve 7 joins two non-focal points 7(0) and y(l), then, using the
terminology of Leray [14],

Ind r= Inert (200, 2hoy ’20)_Inert (Z'Dls Xhly 11)

where 4,=T7;,X and 2,7, 2, (j=0,1) are verticdl and horizontal spaces at
point 7(J).
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REMARK. Maslov’s index of a curve does not depend on the particular
metric that is used to define it as above because the totality of Riemannian
metrics on M forms a convex set and Maslov’s index is a homotopy invariant.
See Leray for the details in this context.

Appendix II.

Our assumptions are

(A-0) Let S;(x, &), =1 and 2, are real C* functions of (x, &) R"X R".
(A-I) There exist positive constants C and ¢ such that we have

1) 0 =|grad.(S;(x, &)—S;(x, P)|=COH|E—7]).
2) ¥ =|grade(S;(x, &)—S;(y, )= Co(|x—y]),
where 6(f) = m—ttr)lT for t=0 .

(A-II) For any multi-index a with |a|=1, there exists a constant C>0 such
that

3 o, *(S;(x, £)—S;(x, 9) | = CO
and
4) |0:%(S;(x, ©)—S;(y, n) | =CYT .

(A-TID) a(§, x, n)eC*(R*X R"X R*) and for any multi-indices «, 3, r, there
exists a positive constant C such that

(5) Jl8e70,a(é, x, pldg < C.
Define a linear operator A by

(6) Af@ =) a(§, x persied-simm ) dydz

which is well defined at least for feCy(R").
THEOREM A-II. Assume that (A-0), (A-I), (A-II) and (A-III) hold. Then
there exists a positive constant C such that we obtain

) [AfI=CIl7l
for any fC7(R™). Here

C= Max sup [(1—40)™9,%0,a(é, x, 7)d§ .

lal+181S2n &7
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PROOF. By Fourier’s integral formula
®) a¢, % m)= @)™ 4y, x pedy,

where 4(y, x, 7)= f a(§, x, p)e *"Vd¢& satisfies estimate
(9) [y“axﬁa”T&(y, -xy 77) | é C .

by virtue of (A-IID).
For any f, g€C§(R"), (Af, g turns out to be

(Af, =0 2@def[ | ale x pers@d=sen ) dydz
(10) _ (271')‘2"5‘6131_{@(_}’, X, v)eif-yeiv(Sx(x,é)—S2(r,7))é—(_E_)—f(7))dvdxds

=@n ™| df TeA,f(dx,

where

() A f)={ 8y, x, e s fidy
and

(12) T,g()={ erseoetig(e)ds.

By virtue of our assumptions, we can apply our previous result and obtain
estimates

(13) 1A, I =G S
and
(14) IT,gl=Clgl

where C is a positive constant independent of y and

C,= Max sup |0,°0,7d(y, x, 1)|.

if?i?ﬁ o
(9) means that
(15) C,=Ca+1y)™.

If we apply the Schwarz inequality to we have

I(Af, &)= (2ﬂ)'2"fRnHTygll 1Ay fldy.

Making use of [13), and [15), we obtain
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A7, @1=Cf Clfllgldy
=CIllglf, A+13D)dy

=Clslgl.

Thus A-II has been proved.
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