Determination of homotopy spheres that admit free actions of finite cyclic groups

By Yasuhiko KITADA

(Received May 6, 1975)

Introduction.

In this paper, we shall determine the homotopy spheres that admit free actions of the finite cyclic group Z_m where m is an integer. In the case of free involutions, namely when m=2, Lopez de Medrano gave an answer in [6] using the results of Browder [2] on Kervaire invariants. Also, Orlik [9] showed that every homotopy sphere that bounds a parallelizable manifold admits a free Z_{pr} -action where p is an odd prime by constructing explicit examples on Brieskorn spheres.

If one tries to follow the line of Lopez de Medrano when m is an arbitrary integer, one faces with the difficulty when $m \equiv 0 \pmod{4}$. So we shall adopt the philosophy of Brumfiel [3]. In this process, we must construct a surgery theory on manifolds with singularity which are called \tilde{Z}_m -manifolds in this paper (§§ 4, 5). We shall give a brief view of our program:

§1: We state our main result (Theorem 6.1) together with notations which will be frequently used in this paper.

§2: We construct a free Z_m -action on a Brieskorn sphere of dimension =4k+1. This example plays an important rôle in later sections.

§3: We discuss the surgery theory on odd-dimensional manifolds with $\pi_1 = \mathbb{Z}_m$ improving the result of Wall [13] 14E.4.

§4: The definition and elementary properties of Z_m -manifolds are stated.

§5: The results of §3 and §4 are combined to yield the surgery theory for "simply connected" \tilde{Z}_m -manifolds.

§6: The results of §3 and §5 are applied to give a proof of our main theorem.

I would like to thank Professors A. Hattori and Y. Matsumoto for valuable criticism and advices.

§1. Statement of the main theorem.

We have a linear Z_m -action on $S^{2n+1} \subset C^{n+1}$ where the action is given by $(z_0, z_1, \dots, z_n) \mapsto (\alpha z_0, \alpha^{p_1} z_1, \dots, \alpha^{p_n} z_n)$ with $\alpha = \exp(2\pi i/m)$ and $(p_j, m) = 1$. The

quotient space of S^{2n+1} under this action is the lens space denoted by $L^{2n+1}(m; p_1, \dots, p_n)$. It is well known that two lens spaces $L^{2n+1}(m; p_1, \dots, p_n)$ and $L^{2n+1}(m; q_1, \dots, q_n)$ are homotopy equivalent preserving the natural orientations if $p_1 \cdots p_n \equiv q_1 \cdots q_n \pmod{m}$. Also it is known that for any free \mathbb{Z}_m -action on a homotopy sphere Σ^{2n+1} , the quotient space is homotopy equivalent to $L^{2n+1}(m; p_1, \dots, p_n)$ for some appropriate choice of p_1, \dots, p_n . Hence $\Sigma^{2n+1}/\mathbb{Z}_m$ is homotopy equivalent to $L_q^{2n+1} \equiv L^{2n+1}(m; q, 1, \dots, 1)$ for some q. In this case, we shall call this action a free \mathbb{Z}_m -action of type q. Our main result is

MAIN THEOREM. A homotopy sphere Σ^{2n+1} admits a free \mathbb{Z}_m -action of type q if and only if its normal invariant $\eta(\Sigma)$ belongs to the subgroup $\pi_q^*([L_q^{2n+1}, G/O])$ of $\pi_{2n+1}(G/O)$ where π_q^* is the natural map induced by the projection $\pi_q: S^{2n+1} \to L_q^{2n+1}$ and $n \ge 3$.

We shall fix some notations which will be frequently used in this paper. We have a standard *CW*-decomposition of the lens space $L^{2n+1}(m; p_1, \dots, p_n)$ with cells e^0 , e^1 , \dots , e^{2n+1} where

and

$$e^{2r} = \{ [z_0, \dots, z_r, 0, \dots, 0] | z_r \neq 0 \text{ and } \arg(z_r) = 0 \}$$

$$e^{2r+1} = \{ [z_0, \cdots, z_r, 0, \cdots, 0] | z_r \neq 0 \text{ and } 0 < \arg(z_r) < 2\pi/m \}$$
.

Let $\hat{L}^{2n}(m; p_1, \dots, p_{n-1})$ be the mapping cone of the natural projection $S^{2n-1} \rightarrow L^{2n-1}(m; p_1, \dots, p_{n-1})$. Then $\hat{L}^{2n}(m; p_1, \dots, p_{n-1})$ is homeomorphic to the 2n-skeleton of $L^{2n+1}(m; p_1, \dots, p_{n-1}, p_n)$ under the standard *CW*-decomposition above. The following notations are used when there is no fear of confusion:

$$\begin{split} L_q^{2n+1} &= L^{2n+1}(m \; ; \; q, \; 1, \; \cdots, \; 1) \; , \\ \hat{L}_q^{2n} &= \hat{L}^{2n}(m \; ; \; q, \; 1, \; \cdots, \; 1) \; , \\ L^{2n+1} &= L^{2n+1}(m \; ; \; p_1, \; \cdots, \; p_n) \\ \hat{L}^{2n} &= \hat{L}^{2n}(m \; ; \; p_1, \; \cdots, \; p_{n-1}) \; . \end{split}$$

and

§ 2. Free Z_m -actions on Brieskorn spheres.

Let $f(z_0, z_1, \dots, z_{2k+1}) = z_0^s + z_1^2 + \dots + z_{2k+1}^2$ be a complex valued function on C^{2k+2} with $s \equiv \pm 3 \pmod{8}$ and (s, m) = 1. The existence of such an integer s is assured by the existence of infinitely many primes which are of the form $8j \pm 3$. Then it is well known that the manifold $\Sigma_s^{4k+1} = f^{-1}(0) \cap S^{4k+3}$ is a homotopy sphere bounding a parallelizable manifold and that Σ_s^{4k+1} is not diffeomorphic to the standard sphere in dimensions where "Kervaire invariant conjecture" holds. We define a \mathbb{Z}_m -action on C^{2k+2} by

$$(z_0, z_1, \cdots, z_{2k+1}) \longmapsto (\alpha^{2t} z_0, \alpha z_1, \cdots, \alpha z_{2k+1})$$

where $\alpha = \exp(2\pi i/m)$ and $st \equiv 1 \pmod{m}$. Clearly, this \mathbb{Z}_m -action keeps S^{4k+3} invariant. It also keeps $f^{-1}(0)$ invariant since $f(\alpha^{2t}z_0, \alpha z_1, \dots, \alpha z_{2k+1}) = \alpha^2 f(z_0, z_1, \dots, z_{2k+1})$ holds. Hence this action induces a \mathbb{Z}_m -action T_s on Σ_s^{4k+1} . We can easily verify that the \mathbb{Z}_m -action (Σ_s^{4k+1}, T_s) is free.

Now let $\varphi_1: \Sigma_s^{4k+1}/T_s \rightarrow L_1^{4k+1}$ and $\varphi_2: L_1^{4k+1} \rightarrow L_t^{4k+1}$ be defined by

$$\varphi_1([z_0, z_1, \cdots, z_{2k+1}]) = [z_1/c_1, \cdots, z_{2k+1}/c_1]$$

$$\varphi_2([u_0, u_1, \cdots, u_{2k}]) = [u_0/c_2, u_1/c_2, u_2/c_2, \cdots, u_{2k}/c_2]$$

where $c_1 = (\sum_{j=1}^{2k+1} |z_j|^2)^{1/2}$ and $c_2 = (|u_0|^2 + |u_1|^{2t} + \sum_{j=2}^{2k} |u_j|^2)^{1/2}$. Then φ_1 (resp. φ_2) is an s-fold (resp. t-fold) ramified covering map and we have deg $(\varphi_2\varphi_1) \equiv 1 \pmod{m}$. Therefore by the theorem of Olum [8] the quotient manifold \sum_{s}^{4k+1}/T_s is homotopy equivalent to L_t^{4k+1} since both φ_1 and φ_2 induce isomorphisms of fundamental groups. Thus we obtain the following

PROPOSITION 2.1. The quotient space of the free \mathbb{Z}_m -action (Σ_s^{4k+1}, T_s) is homotopopy equivalent to $L^{4k+1}(m; p_1, \dots, p_{2k})$ with $sp_1 \dots p_{2k} \equiv 1 \pmod{m}$.

PROPOSITION 2.2. Every homotopy (4k+1)-sphere that bounds a parallelizable manifold admits a free \mathbb{Z}_m -action for any integer m.

Proposition 2.2 is an affirmative answer to the conjecture of Orlik [9] in dimensions 4k+1.

When *m* is even, by restricting this action to the subgroup $Z_2 \subset Z_m$, one obtains the so-called Brieskorn-Hirzebruch involution $(\Sigma_s^{4k+1}, T_s | Z_2)$ (see [6] V.4).

LEMMA 2.3. When m is even, (Σ_s^{4k+1}, T_s) does not admit codimension 2 characteristic spheres.

PROOF. In dimension=4k+1, the obstruction to the existence of codim=2 Z_2 -characteristic spheres, Browder-Livesay invariant and abstract codim=1 and 2 surgery obstructions are all equal ([6]). These obstructions do not vanish for $(\Sigma_s^{4k+1}, T_s | Z_2)$ ([2], [5]).

§3. Surgery on odd-dimensional manifolds with $\pi_1 = Z_m$.

In this section we shall discuss the surgery obstructions for odd dimensional manifolds with $\pi_1 = \mathbb{Z}_m$. Surgery theories for $\pi_1 = \{1\}$, \mathbb{Z}_2 and \mathbb{Z} are assumed to be known. The main reference here is Wall's book [13]. First we quote two lemmas due to Wall [13].

LEMMA 3.1 (Wall). The transfer homomorphism $\tau: L_0^{\epsilon}(\mathbf{Z}_m) \rightarrow L_0(1)$ ($\epsilon = h, s$) is surjective.

LEMMA 3.2 (Wall). For $\varepsilon = h$, s,

i) $L_{2n-1}(\mathbf{Z}) \xrightarrow{\alpha} L_{2n-1}^{\varepsilon}(\mathbf{Z}_m) \xrightarrow{p} L_{2n+1}^{\varepsilon}(\mathbf{Z} \rightarrow \mathbf{Z}_m)$ is zero.

ii) $L_{2n-1}(\mathbf{Z}) \xrightarrow{\mathbf{a}} L_{2n-1}^{\boldsymbol{\varepsilon}}(\mathbf{Z}_m)$ is zero unless n, m are even.

In the above, α is induced by the natural epimorphism $Z \to Z_m$. The map p is characterized as follows: Let $f: M^{2n-1} \to X^{2n-1}$ be a normal map with $\pi_1(X) \cong Z_m$ and surgery obstruction $x = \theta(f) \in L^{\epsilon}_{2n-1}(Z_m)$. Denote by $\widetilde{X} \to X$ the universal covering of X. It induces an *m*-fold covering $\widetilde{M} \to M$ and a map $\widetilde{f}: \widetilde{M} \to \widetilde{X}$ covering f. Then we have a well-defined normal map

$$\overline{f} = \widetilde{f} \times_{\boldsymbol{z}_m} id : \widetilde{M} \times_{\boldsymbol{z}_m} D^2 \longrightarrow \widetilde{X} \times_{\boldsymbol{z}_m} D^2.$$

We have $p(x) = \theta(\overline{f})$ in $L_{2n+1}^{\epsilon}(Z \rightarrow Z_m)$.

The surgery obstructions define a homomorphism

$$\theta: \Omega_n(K(\mathbf{Z}_m, 1) \times G/O) \longrightarrow L_n^{\varepsilon}(\mathbf{Z}_m)$$

as stated in [13] 13B3.

LEMMA 3.3. The composition of maps

$$p\theta: \ \mathcal{Q}_{3}(K(\mathbf{Z}_{m}, 1) \times G/O) \xrightarrow{\theta} L_{3}^{\varepsilon}(\mathbf{Z}_{m}) \xrightarrow{p} L_{5}^{\varepsilon}(\mathbf{Z} \to \mathbf{Z}_{m})$$

is zero.

PROOF. The Conner-Floyd bordism spectral sequence [4] shows that the Hurewicz map

$$\mu: \Omega_{\mathfrak{g}}(K(\mathbf{Z}_m, 1) \times G/O) \longrightarrow H_{\mathfrak{g}}(K(\mathbf{Z}_m, 1) \times G/O; \mathbf{Z})$$

is an isomorphism.

Case I. m is odd:

 $\Omega_{\mathfrak{s}}(K(\boldsymbol{Z}_m,1){ imes}G/O)$ is isomorphic to \boldsymbol{Z}_m generated by

$$\varphi: L_1^3 \xrightarrow{(\varphi_1, \varphi_2)} K(\mathbf{Z}_m, 1) \times G/O$$

where $\varphi_1: L_1^3 \to K(\mathbf{Z}_m, 1)$ is the classifying map of the universal covering $S^3 \to L_1^3$ and $\varphi_2: L_1^3 \to G/O$ is the trivial map. Then we have $\theta(\varphi)=0$ since $\theta(\varphi_2)$ is already zero.

Case II. m is even:

The group $\Omega_3(K(\mathbf{Z}_m, 1) \times G/O) \cong \mathbf{Z}_m \oplus \mathbf{Z}_2$ has two generators:

$$\varphi: L_1^3 \longrightarrow K(\mathbf{Z}_m, 1) \times G/O$$

as above and

$$\psi: S^1 \times S^2 \xrightarrow{j \times k} K(\mathbf{Z}_m, 1) \times G/O$$

where $[j] \in \pi_1(K(\mathbb{Z}_m, 1))$ and $[k] \in \pi_2(G/O)$ are generators of respective groups. We have $\theta(\varphi) = 0$ as above. Denote by $\psi' : S^1 \times S^2 \rightarrow G/O$ the map

Determination of homotopy spheres

$$S^1 \times S^2 \xrightarrow{\psi} K(\mathbf{Z}_m, 1) \times G/O \xrightarrow{\text{proj}} G/O$$
.

Then we have $\theta(\phi) = (j)_* \theta(\phi')$ where

$$(j)_*: L_3(\mathbf{Z}) \longrightarrow L_3^{\epsilon}(\mathbf{Z}_m)$$

is equal to α . Therefore $\theta(\phi)=0$ holds by Lemma 3.2 (i).

LEMMA 3.4. For any normal map $\varphi : L^{5}(m; p_{1}, p_{2}) \rightarrow G/O$, its surgery obstruction $\theta(\varphi)$ in $L^{\epsilon}_{5}(\mathbb{Z}_{m})$ vanishes $(\varepsilon = h, s)$.

PROOF. Let N be a closed tubular neighborhood of $L^3 = L^8(m; p_1)$ in $L^5 = L^5(m; p_1, p_2)$ and put $E = L^5 - \text{int } N$. Then the surgery obstruction for $\varphi | N : N \rightarrow G/O$ is given by $\theta(\varphi | N) = p\theta(\varphi | L^3)$ in $L_5^{\varepsilon}(\mathbb{Z} \rightarrow \mathbb{Z}_m)$. This is zero by Lemma 3.3. Now consider the normal map

$$\tilde{f} = f \circ p_1 : L^5 \times CP(2) \longrightarrow G/O$$
.

Then $\theta(\bar{f}|N \times CP(2)) = 0$ by the periodicity of surgery obstructions, and we obtain an ε -equivalence ($\varepsilon = h$, s) at $N \times CP(2)$. The remaining surgery obstruction lies in $L_9(\pi_1(E \times CP(2)) = L_9(\mathbf{Z})$ which is mapped to $\theta(\bar{f}) \in L_9^{\epsilon}(\mathbf{Z}_m)$ by the natural map

$$\alpha: L_9(\mathbf{Z}) \longrightarrow L_9^{\varepsilon}(\mathbf{Z}_m)$$

since surgery obstructions are natural for inclusions ([13], 3.2). We have $\theta(\bar{f})=0$ by Lemma 3.2, and by periodicity again we see that $\theta(f)=0$. This completes the proof.

The argument above can be taken as the first step of the induction used by Wall ([13], 14E4) to calculate the surgery obstructions for lens spaces. Hence Wall's theorem 14E4 holds for $\varepsilon = s$ as well as $\varepsilon = h$. Instead of giving a reproduction of his proof, we shall turn to the general situation with $\pi_1 = Z_m$ here.

LEMMA 3.5. The surgery obstruction map

$$\theta: \Omega_{5}(K(\mathbf{Z}_{m}, 1) \times G/O) \longrightarrow L_{5}^{\epsilon}(\mathbf{Z}_{m})$$

is zero ($\varepsilon = h$, s).

PROOF. Consider the Conner-Floyd spectral sequence for $\Omega_*(K(\mathbf{Z}_m, 1) \times G/O)$ with $E_{p,q}^2 = H_p(K(\mathbf{Z}_m, 1) \times G/O; \Omega_q)$ ([4]). Then $E_{5,0}^2$ is a torsion group since $H_5(G/O; \mathbf{Z})$ is. Hence all differentials vanish on $E_{5,0}^r$. Therefore, we have $E_{5,0}^2 = E_{5,0}^\infty$, namely the Hurewicz map

$$\mu: \Omega_{\mathfrak{s}}(K(\mathbf{Z}_m, 1) \times G/O) \longrightarrow H_{\mathfrak{s}}(K(\mathbf{Z}_m, 1) \times G/O; \mathbf{Z})$$

is surjective. Put

 $A_i = \text{Image} \left\{ \mathcal{Q}_i(K(\mathbf{Z}_m, 1)) \otimes \mathcal{Q}_{5-i}(G/O) \longrightarrow \mathcal{Q}_5(K(\mathbf{Z}_m, 1) \times G/O) \right\} .$

Then we can verify that A_0 , A_1 , A_3 and A_5 generate $\Omega_5(K(\mathbb{Z}_m, 1) \times G/O)$.

I. $\theta(A_0)=0$: An element of A_0 is represented by

$$\varphi: M^{5} \xrightarrow{(\varphi_{1}, \varphi_{2})} K(\boldsymbol{Z}_{m}, 1) \times G/O$$

where φ_1 is the trivial map. We can therefore assume that M^5 is simply connected. Then we have $\theta(\varphi) = (\varphi_1)_* \theta(\varphi_2) = 0$ since $\theta(\varphi_2) \in L_5(1) = 0$.

II. $\theta(A_1)=0$: Take a representative

$$\varphi: S^1 \times M^4 \xrightarrow{\varphi' \times \varphi''} K(\mathbf{Z}_m, 1) \times G/O$$

of A_1 . Then as before we may assume that M^4 is simply connected. We have $\theta(\varphi) = (\varphi')_* \theta(p_2 \varphi'')$ by definition. If $[\varphi'] = q[j] \in \pi_1(K(\mathbb{Z}_m, 1))$ where $j: S^1 \to K(\mathbb{Z}_m, 1)$ represents the generator, $(\varphi')_*$ factors as

$$L_{5}(\mathbf{Z}) \xrightarrow{(q)_{*}} L_{5}(\mathbf{Z}) \xrightarrow{\alpha} L_{5}^{\epsilon}(\mathbf{Z}_{m})$$

which is zero by Lemma 3.2 (ii).

III. $\theta(A_5)=0$: Take a representative

$$\varphi: M^{5} \xrightarrow{(\varphi_{1}, \varphi_{2})} K(\mathbf{Z}_{m}, 1) \times G/O$$

of A_5 where φ_2 is trivial. Then $\theta(\varphi_2)$ is already zero in this case.

IV. Final case: When m is odd, we have $\theta(A_3)=0$ since $\Omega_3(K(\mathbf{Z}_m, 1))$ $\otimes \Omega_2(G/O) \cong \mathbf{Z}_m \otimes \mathbf{Z}_2 = 0$. Let us assume that m is even. The free \mathbf{Z}_m -action (Σ_s^5, T_s) of §2 defines a homotopy smoothing $\Sigma_s^5/T_s \rightarrow L^5 = L^5(m; t, 1)$ whose normal invariant is denoted by $\varphi_2: L^5 \rightarrow G/O$. We know that the k_2 -class for this normal invariant does not vanish [2] or equally we have $\theta(\varphi_2 | L^3) \neq 0$ in $L_3^6(\mathbf{Z}_m)$ where $L^3 = L^3(m; t) \subset L^5$. Let $\varphi_1: L^5 \rightarrow K(\mathbf{Z}_m, 1)$ classify the universal cover and put

$$\varphi: L^{5} \xrightarrow{(\varphi_{1}, \varphi_{2})} K(\mathbf{Z}_{m}, 1) \times G/O.$$

Denote by $x \in H^3(K(\mathbb{Z}_m, 1); \mathbb{Z}_2)$ and $k_2 \in H^2(G/O; \mathbb{Z}_2)$ the generators. Then $\varphi^*(xk_2)[L^5]$ does not vanish whereas xk_2 is annihilated by elements which belong to A_0 , A_1 and A_5 . This shows that A_0 , A_1 , A_5 and φ generate the whole group $\Omega_5(K(\mathbb{Z}_m, 1) \times G/O)$ since $A_3 \cong \mathbb{Z}_2$. The surgery obstruction for φ vanishes by Lemma 3.4. This completes the proof.

LEMMA 3.6. Let X^n be a compact n-manifold with $\pi_1(X) \cong \mathbb{Z}_m$ and $n \ge 6$. Then there exists a submanifold Y^{n-2} of X^n satisfying the following conditions: Let N be a closed tubular neighborhood of Y in X and put E=X-int N. The natural inclusions $Y \to X$ and $\partial E \to E$ induce isomorphisms $\pi_1(Y) \cong \pi_1(X) \cong \mathbb{Z}_m$ and

 $\pi_1(\partial E) \cong \pi_1(E) \cong \mathbb{Z}.$

PROOF. Consider the map $f: X^n \to L_1^{2^{\infty+1}}$ which classifies the universal cover of X. Then we can apply the theorem of Quinn [10] to deduce our assertion since $L_1^{2^{\infty-1}} \to L_1^{2^{\infty+1}}$ is a homotopy equivalence and $(L_1^{2^{\infty+1}} - L_1^{2^{\infty-1}}) \to L_1^{2^{\infty+1}}$ is homotopically an S¹-bundle.

When *n* and *m* are even, we have a canonical map $d': L_{2n-1}^{\varepsilon}(\mathbb{Z}_m) \rightarrow L_{2n-1}(\mathbb{Z}_2) \cong \mathbb{Z}_2$ ([13]).

THEOREM 3.7. Let M^{2n-1} be an oriented manifold with $\pi_1(M) \cong \mathbb{Z}_m$ $(n \ge 3)$ and $f: M^{2n-1} \to G/O$ be a normal map. Then $\theta(f) = 0$ in $L_{2n-1}^{\epsilon}(\mathbb{Z}_m)$ $(\epsilon = h, s)$ unless both n and m are even and in this case $\theta(f) = 0$ if and only if $d'\theta(f) = 0$.

PROOF. We use the induction. Let (a_k) and (b_k) be the following statements:

- (a_k) : The assertion of the theorem holds for n=k.
- (b_k) : The image of $\theta : [M^{2k-1}, G/O] \rightarrow L_{2k-1}^{\epsilon}(\mathbb{Z}_m)$ lies in the images of $\alpha : L_{2k-1}(\mathbb{Z}) \rightarrow L_{2k-1}^{\epsilon}(\mathbb{Z}_m)$ when $\pi_1(M) \cong \mathbb{Z}_m$.

We know that (a_s) and (b_s) hold by Lemma 3.5. Now we assume (a_n) and (b_n) . Let $f: M^{2n+1} \rightarrow G/O$ be a normal map. By Lemma 3.6, there exists a submanifold M'^{2n-1} of M^{2n+1} satisfying the conditions of Lemma 3.6. Let N be a closed tubular neighborhood of M' in M and put E=M-int N. The surgery obstruction for f|N is given by $p\theta(f|M') \in L_{2n+1}^{\varepsilon}(Z \rightarrow Z_m)$. But since $\theta(f|M')$ is in the image of $\alpha: L_{2n-1}(Z) \rightarrow L_{2n-1}^{\varepsilon}(Z_m)$ by (b_n) , we have $\theta(f|N)=0$ from Lemma 3.2 (i). Therefore we obtain a homotopy equivalence (ε -equivalence) at N. The remaining surgery obstruction lies in $L_{2n+1}(\pi_1(E))=L_{2n+1}(Z)$. This obstruction is mapped to $\theta(f) \in L_{2n+1}^{\varepsilon}(Z_m)$ by α . Thus we get (b_{n+1}) . $(b_{n+1}) \Rightarrow (a_{n+1})$ follows from Lemma 3.2 (ii) and the fact that the composition

$$L_{2n+1}(\mathbf{Z}) \xrightarrow{\boldsymbol{\alpha}} L_{2n+1}^{\varepsilon}(\mathbf{Z}_m) \xrightarrow{d'} L_{2n+1}(\mathbf{Z}_2) = \mathbf{Z}_2$$

is an isomorphism when n is odd and m is even ([13]).

§4. \widetilde{Z}_m -manifolds.

Let X^n be an oriented smooth manifold with an orientation preserving free \mathbb{Z}_m -action T on the boundary ∂X . Then a closed $\widetilde{\mathbb{Z}}_m$ -manifold associated to (X^n, T) is the space $\hat{X}^n = X^n / \sim$ where $x \sim y$ if and only if $x, y \in \partial X$ and $T^k(x) = y$ for some integer k. The singular subset $\partial \hat{X} = \partial X / \sim$ and $\hat{X}^n - \partial \hat{X}$ have natural smooth structures induced by that of X^n . But \hat{X}^n fails to be a manifold unless m=2, and in this case \hat{X} is a non-orientable manifold if $\partial X \neq \emptyset$. A $\widetilde{\mathbb{Z}}_m$ -manifold with boundary is defined similary by an object (W^n, V^{n-1}, T) where W^n is an oriented manifold and T is an orientation preserving free \mathbb{Z}_m action on a submanifold $V^{n-1} \subset \partial W$. We define $\hat{W}^n = W / \sim$ where $x \sim y$ if and only if $x, y \in V$ and $T^{k}(x) = y$ for some k. We write $\delta \hat{W} = V/\sim$ and the boundary $\partial \hat{W}$ of \hat{W} is defined to be $(\partial W - \text{int } V)/\sim$.

EXAMPLE 4.1. Let $X^{2n}=D^{2n}$ and the Z_m -action on $X=S^{2n-1}$ be given by

$$T(z_0, z_1, \cdots, z_{n-1}) = (\alpha z_0, \alpha^{p_1} z_1, \cdots, \alpha^{p_{n-1}} z_{n-1})$$

where $\alpha = \exp(2\pi i/m)$ and $(p_j, m) = 1$. Then $\hat{X}^{2n} = \hat{L}^{2n}(m; p_1, \dots, p_{n-1})$ and $\delta \hat{X} = L^{2n-1}(m; p_1, \dots, p_{n-1})$.

EXAMPLE 4.2. Let T_0 be an orientation preserving free \mathbb{Z}_m -action on an oriented manifold M^n . Define

$$(W^{n+1}, V^n, T) = (M^n \times I, M \times \{0\}, T_0 \times id)$$

Then \hat{W}^{n+1} is homeomorphic to the mapping cylinder of $M^n \rightarrow M^n/T_0$ with $\delta \hat{W} = M^n/T_0$ and $\partial \hat{W} = M^n$.

The notion of \tilde{Z}_m -manifolds with boundary enables us to define cobordism relations among closed \tilde{Z}_m -manifolds and thus we obtain cobordism groups of \tilde{Z}_m -manifolds denoted by $\Omega_*(\tilde{Z}_m)$ where addition is given by disjoint unions. Before giving an explicit description of these cobordism groups, we make some preparations which will be useful in later sections.

Let the objects $(X_i^{n_i}, T_i)$ (i=0, 1) define \tilde{Z}_m -manifolds $\hat{X}_i^{n_i}$. A map

$$f: (X_0, \partial X_0) \longrightarrow (X_1, \partial X_1)$$

which is Z_m -equivariant on the boundary induces a map

$$\hat{f}: \hat{X}_0 \longrightarrow \hat{X}_1$$

of \tilde{Z}_m -manifolds. In this case, we call \hat{f} a \tilde{Z}_m -map (associated to f). When $n_0=n_1$, the degree of \hat{f} is defined to be the degree of f.

Let \hat{X}^n be a \tilde{Z}_m -manifold associated to (X^n, T) . We fix a Z_m -action on a cone on *m*-points

$$C(m) = \{z \in C \mid |z| \leq 1, \arg(z) = 2\pi j/m \text{ or } z = 0\}$$

given by $z \mapsto \alpha z$, $\alpha = \exp(2\pi i/m)$. Let J be defined by

$$J = \partial X \times_{\boldsymbol{z}_m} D^2$$

where $(x, v) \sim (T^{k}(x), \alpha^{k}v)$ for $x \in \partial X$ and $v \in D^{2}$. Then J contains as subsets

$$K = \partial X \times_{\mathbf{z}_m} C(m) ,$$

$$\dot{K} = \{ [x, v] \in K \mid |v| = 1 \}$$

and boundary $\partial J = \partial X \times_{\mathbf{Z}_m} S^1$.

 \dot{K} can be be identified with ∂X by the map $[x, \alpha^k] \mapsto T^{-k}(x)$. Hence we have an embedding $\partial X = \dot{K} \rightarrow \partial J$ which has a product tubular neighborhood $\partial X \times I$. We obtain an (n+1)-dimensional manifold

$$\overline{X}^{n+1} = X \times I \underset{\partial X \times I}{\bigcup} J$$

by glueing along $\partial X \times I$. We call \overline{X}^{n+1} the regularization of the \widetilde{Z}_m -manifold \widehat{X}^n . \overline{X} contains \widehat{X} as a deformation retract since \widehat{X} is homeomorphic to $X \bigcup_{\partial X = K} K$. It can also be seen that a \widetilde{Z}_m -map

$$\hat{f}: \hat{X}_0 \longrightarrow \hat{X}_1$$

between \widetilde{Z}_m -manifolds extends to a map

$$\overline{\overline{f}}:\,(\overline{\overline{X}}_0,\,\partial\overline{\overline{X}}_0)\longrightarrow(\overline{\overline{X}}_1,\,\partial\overline{\overline{\overline{X}}}_1)$$

which is called the regularization of \hat{f} .

Let M^q be a smooth manifold. An embedding $\widehat{X}^n \to M^q$ is called regular if it factors through an embedding of $\overline{\overline{X}}^{n+1}$ in M^q as

$$\hat{X}^n \subset \overline{\overline{X}}^{n+1} \longrightarrow M^q$$
.

The regularization \overline{X} of \hat{X} has a stable normal bundle $\nu_{\overline{X}}$. The stable normal bundle $\nu_{\hat{X}}$ is defined to be its restriction to \hat{X} , $\nu_{\overline{X}} | \hat{X}$.

As a direct application of the notion of regularizations, we can describe the cobordism and bordism groups of \tilde{Z}_m -manifolds in the following form.

THEOREM 4.3. The cobordism groups and bordism groups of \tilde{Z}_m -manifolds are represented as follows:

$$\begin{split} \mathcal{Q}_n(\tilde{\mathbf{Z}}_m) &\cong \tilde{\mathcal{Q}}_{n+1}(K(\mathbf{Z}_m, 1)) , \\ \\ \mathcal{Q}_n(A; \tilde{\mathbf{Z}}_m) &\cong \tilde{\mathcal{Q}}_{n+1}(A^+ \wedge K(\mathbf{Z}_m, 1)) , \end{split}$$

Proof.

I. Definition of a map $\Omega_n(\widetilde{Z}_m) \rightarrow \widetilde{\Omega}_{n+1}(K(Z_m, 1))$: Take a representative \widehat{X}^n of $\Omega_n(\widetilde{Z}_m)$. Let $\varphi: \delta \widehat{X} \rightarrow L_1^{2^{r-1}}$ (r large) classify the covering $\partial X \rightarrow \delta \widehat{X}$. Then we get a Z_m -equivariant map $\widetilde{\varphi}: \partial X \rightarrow S^{2^{r-1}}$, which extends to a map

$$f: (X, \partial X) \longrightarrow (D^{2r}, S^{2r-1})$$

and f induces a \widetilde{Z}_m -map $\widehat{f}: \widehat{X} \rightarrow \widehat{L}_1^{2r}$. \widehat{f} extends to a regularization

$$\overline{f}: \overline{X}^{n+1} \longrightarrow \overline{(L_1^{2r})} = L_1^{2r+1} - \operatorname{int} D^{2r+1}$$

 \overline{f} , continued by the collapsing map

$$\overline{(\overline{L_1^{2r}})} \longrightarrow \overline{(\overline{L_1^{2r}})} / \partial \overline{(\overline{L_1^{2r}})} = L_1^{2r+1}$$

yields a map $(\overline{\overline{X}}^{n+1}, \partial \overline{\overline{X}}) \to (L_1^{2r+1}, *)$ which determines an element of $\tilde{\mathcal{Q}}_{n+1}(K(\mathbb{Z}_m, 1))$.

II. Definition of a map $\tilde{\mathcal{Q}}_{n+1}(K(\mathbb{Z}_m, 1)) \rightarrow \mathcal{Q}_n(\tilde{\mathbb{Z}}_m)$: Take a representative $F: (W^{n+1}, \partial W) \rightarrow (K(\mathbb{Z}_m, 1), *)$ of $\tilde{\mathcal{Q}}_{n+1}(K(\mathbb{Z}_m, 1))$. By taking r large, F can be regarded as a map (also denoted by F) $F: (W^{n+1}, \partial W) \rightarrow (L_1^{2r+1}, *)$. We may assume that the base point is not included in $\hat{L}_1^{2r}(\subset L_1^{2r+1})$. First make F t-regular to the submanifold L_1^{2r-1} in L_1^{2r+1} . Since t-regularity is an "open" condition, F is t-regular in the neighborhood of L_1^{2r-1} in L_1^{2r+1} . Outside this neighborhood, \hat{L}_1^{2r} is a submanifold of L_1^{2r+1} . Therefore we can make F t-regular to $\hat{L}_1^{2r}-L_1^{2r-1}$ by deforming F by homotopy outside the neighborhood of L_1^{2r-1} . Then $F^{-1}(\hat{L}_1^{2r})$ is a $\tilde{\mathbb{Z}}_m$ -manifold regularly embedded in W^{n+1} .

By constructions of I and II, we readily see that these maps are inverses to each other. The proof for the bordism groups is similar.

REMARK. Let $T_m = S^1 \bigcup_m e^2$ be the Moore space. We may regard T_m as the 2-skeleton \hat{L}_1^2 of $K(\mathbb{Z}_m, 1)$. The natural map

$$T_m = \hat{L}_1^2 \longrightarrow K(Z_m, 1)$$

defines a natural transformation from Sullivan's Z_m -manifold theory to our \widetilde{Z}_m -manifold theory (see [7]).

§ 5. Surgery on \widetilde{Z}_m -manifolds.

Let \hat{X}^n be a \tilde{Z}_m -manifold. A normal map of degree one is the following diagram:

where \hat{b} is a bundle map of vector bundles covering the \tilde{Z}_m -map \hat{f} of degree one. As in the case of usual manifolds, we can define normal cobordism classes of normal maps of degree one, which is denoted by $N(\hat{X})$.

Starting from the normal map given by diagram (5a), we obtain the following diagram by regularization:

where $\overline{\xi}$ is the pull-back of ξ by the retraction $\overline{\overline{X}} \rightarrow \widehat{X}$ and \overline{b} is an extension of \widehat{b} . Diagram (5b) defines a normal map of degree one into the manifold $\overline{\overline{X}}^{n+1}$. Hence this construction defines a map

$$\Phi: N(X) \longrightarrow N(\overline{X})$$

where $N(\overline{X})$ is the set of normal cobordism classes of normal maps of degree one into the manifold \overline{X}^{n+1} in the usual sense.

Conversely, let us start from a normal map of $\overline{\overline{X}}^{n+1}$:

(5c)

Make F t-regular to $\hat{X}^n \subset \overline{X}^{n+1}$ as in the proof of Theorem 4.3. Then $\hat{M}^n = F^{-1}(\hat{X}^n)$ is regularly embedded in W^{n+1} and hence we have $\nu_{\hat{M}} = \nu_W | \hat{M}$. Let $\hat{f} = F | \hat{M}, \ \hat{\xi} = \zeta | \hat{X}, \ \text{and} \ \hat{b} = B | \nu_{\hat{M}}, \ \text{then we get diagram (5a).}$ This construction gives rise to a map

$$\Psi: N(\overline{\overline{X}}) \longrightarrow N(\widehat{X}).$$

It is clear that Φ and Ψ are inverses to each other. Therefore we have a bijective correspondence:

$$N(\hat{X}) \approx N(\overline{\overline{X}})$$
.

It is well known that $N(\overline{X})$ can be identified with $[\overline{X}, G/O]$ (see e.g. [12]). Hence we obtain

PROPOSITION 5.1. We have a bijective correspondence

$$N(\hat{X}^n) \approx [\hat{X}^n, G/O].$$

DEFINITION. Let $\varepsilon = h$ or s. A \widetilde{Z}_m -map $\widehat{f}: \widehat{M}^n \to \widehat{X}^n$ of \widetilde{Z}_m -manifolds is called an ε -smoothing of \widehat{X}^n if \widehat{f} is an ε -homotopy equivalence of pairs $(\widehat{M}^n, \delta \widehat{M}) \simeq (\widehat{X}^n, \delta \widehat{X})$.

DEFINITION. Two ε -smoothings $\hat{f}_i: \hat{M}_i^n \to \hat{X}^n$ (i=0, 1) are called concordant if there exists an ε -smoothing

$$\hat{F} \colon \hat{W}^{n+1} \longrightarrow \hat{X}^n \times I$$

with

$$\partial \hat{W} = \hat{M}_0 \cup \hat{M}_1$$
 and $\hat{f}_i = \hat{F} | \hat{M}_i$.

The set of concordance classes of ε -smoothings of \hat{X}^n is denoted by $hS^{\varepsilon}(\hat{X})$.

Let $\hat{f}: \hat{M}^n \to \hat{X}^n$ be an ε -smoothing of \hat{X}^n and g be its homotopy inverse. Then we have a normal map:

whose normal cobordism class is called the normal invariant of \hat{f} . Thus we obtain a map

$$\eta: hS^{\varepsilon}(\hat{X}^n) \longrightarrow [\hat{X}^n, G/O].$$

Let the object (X^{2n}, T) define the \widetilde{Z}_m -manifold \hat{X}^{2n} .

THEOREM 5.2. Let \hat{X}^{2n} be a \tilde{Z}_m -manifold with $\pi_1(X) = \pi_1(\partial X) = \{1\}$. Then we have the following exact sequence valid for $n \ge 3$:

$$hS^{\varepsilon}(\hat{X}^{2n}) \xrightarrow{\eta} [\hat{X}, G/O] \xrightarrow{\theta} Q_{2n} \quad (\varepsilon = h, s)$$

where Q_{2n} is Z_2 when m is even and is the trivial group when m is odd.

PROOF. Let n=2k+1. Take a normal map $\hat{f}: \hat{M}^{4k+2} \rightarrow \hat{X}^{4k+2}$. By Theorem 3.7, we can make $\delta \hat{f}: \delta \hat{M} \rightarrow \delta \hat{X}$ into an ε -equivalence by surgery. Then we have a surgery problem $f:(M, \partial M) \rightarrow (X, \partial X)$ with $f \mid \partial M$ an ε -equivalence. Define $\theta(\hat{f})=\theta(f)\in \mathbb{Z}_2$, the Kervaire obstruction. We can construct a normal cobordism $F: N^{4k+2} \rightarrow \delta \hat{X} \times I$ such that $\partial N=M_0 \cup M_1$, $M_0=\delta \hat{M}$, $F \mid M_0=\delta \hat{f}$, and $F \mid M_1$ is also an ε -equivalence. Then extend this cobordism in the neighborhood of $\delta \hat{M}$ in \hat{M} . Denote by \tilde{M}_0 , \tilde{M}_1 and \tilde{N} the natural *m*-fold coverings of M_0 , M_1 and N respectively. Then the manifold $M'=M \bigcup_{\partial M=M_0} \tilde{N}$ gives a \tilde{Z}_m -manifold $\hat{M'}$ and a normal map $\hat{f'}: \hat{M'} \rightarrow \hat{X}$ which is normally cobordant to \hat{f} . Since Kervaire invariants are multiplied by *m* under coverings, $\theta(\hat{f'})$ can be made zero if *m* is odd. When *m* is even, $\theta(\hat{f})=\theta(\hat{f'})$ is a well-defined element in \mathbb{Z}_2 .

Let n=2k. Take a normal map $\hat{f}: \hat{M}^{4k} \rightarrow \hat{X}^{4k}$. Define $\theta(\hat{f})=d'\theta(\delta\hat{f})$, the surgery obstruction for $\delta\hat{f}: \delta\hat{M} \rightarrow \delta\hat{X}$. This is always zero when m is odd. Suppose that this obstruction vanishes, we have an ε -equivalence at $\delta\hat{X}$. The remaining problem is to compute the index obstruction of $f:(M, \partial M) \rightarrow (X, \partial X)$ keeping $\partial f=f|\partial M$ fixed. If this index obstruction, say σ , is not zero in $L_{4k}(1)$, we choose an element $\sigma' \in L^{\epsilon}_{4k}(\mathbb{Z}_m)$ with $\tau(\sigma')=-\sigma$ by Lemma 3.1 of Wall. Letting σ' act on $\delta\hat{f}: \delta\hat{M} \rightarrow \delta\hat{X}$ we obtain a normal map $\hat{f}': \hat{M}' \rightarrow \hat{X}$ with $\delta\hat{f}'$ an ε -equivalence. Then the normal map $f': (M', \partial M') \rightarrow (X, \partial X)$ has zero index obstruction by the additivity of index. This completes the proof.

REMARK. Let the object (X^{4k+2}, T) define the \tilde{Z}_m -manifold \hat{X} with $\pi_1(X) = \pi_1(\partial X) = \{1\}$. When *m* is even, we can construct a \tilde{Z}_2 -manifold \bar{X} by restrict-

ing the \mathbb{Z}_m -action to the subgroup $\mathbb{Z}_2 \subset \mathbb{Z}_m$. Then \overline{X} is a non-orientable manifold and we have a natural projection $\rho: \overline{X} \to \hat{X}$ which is a homeomorphism on $\overline{X} - \delta \overline{X}$ and an (m/2)-fold covering on $\delta \overline{X}$. The proof of Theorem 5.2 shows that we have a commutative diagram

$$\begin{bmatrix} \hat{X}^{4k+2}, G/O \end{bmatrix} \xrightarrow{\boldsymbol{\theta}} \boldsymbol{Z}_{2}$$

$$\rho^{*} \xrightarrow{} c$$

$$\begin{bmatrix} \overline{X}^{4k+2}, G/O \end{bmatrix}$$

where c is the Kervaire obstruction map.

Let *m* be even and consider the natural inclusions $i: \hat{L}^{4k-2} \to L^{4k-1}$ and $j: L^{4k-1} \to \hat{L}^{4k}$ where $\hat{L}^{4k} = \hat{L}^{4k}(m; p_1, \dots, p_{2k-2}, p_{2k-1}), L^{4k-1} = L^{4k-1}(m; p_1, \dots, p_{2k-2}, p_{2k-1})$ and $\hat{L}^{4k-2} = \hat{L}^{4k-2}(m; p_1, \dots, p_{2k-2}).$

LEMMA 5.3. We have the following commutative diagram

PROOF. $d'\theta j^* = \theta$ is clear by the proof of Theorem 5.2. Let $f: L^{4k-1} \to G/O$ be a normal map. Then $f | L^{4k-3}$ is representable by an ε -equivalence by Theorem 3.7. The surgery obstruction $\theta(f) \in L^{\epsilon}_{4k-1}(\mathbb{Z}_m)$ comes from a class $x \in L_{4k-1}(\mathbb{Z})$ as in the proof of Theorem 3.7. On the other hand, $\hat{L}^{4k-2} - L^{4k-3}$ gives the splitting of $L^{4k-1} - L^{4k-3}$ which induces the isomorphism $L_{4k-1}(\mathbb{Z}) \cong$ $L_{4k-2}(1) \cong \mathbb{Z}_2$. By this identification we have $d'\theta(f) = x = \theta(i^*(f))$.

LEMMA 5.4. Let m be even, then

(i)
$$\theta: [\hat{L}^{2n}(m; p_1, \cdots, p_{n-1}), G/O] \longrightarrow \mathbb{Z}_2$$

and

(ii)
$$d'\theta: [L^{4k-1}(m; p_1, \cdots, p_{2k-1}), G/O] \longrightarrow \mathbb{Z}_2$$

are surjective.

PROOF. By Lemma 5.3, it is enough to show that

$$\theta: [\hat{L}^{4k}(m ; p_1, \cdots, p_{2k-1}), G/O] \longrightarrow \mathbb{Z}_2$$

is surjective. Take an integer p_{2k} satisfying

$$p_1 \cdots p_{2k-1} p_{2k} s \equiv 1 \pmod{m},$$

then we have a homotopy equivalence

$$\Sigma_{s}^{4k+1}/T_{s} \longrightarrow L^{4k+1}(m ; p_{1}, \cdots, p_{2k-1}, p_{2k})$$

by Proposition 2.1. This example defines a normal invariant

$$f: L^{4k+1}(m; p_1, \cdots, p_{2k-1}, p_{2k}) \longrightarrow G/O$$

such that $\theta(f|\hat{L}^{4k}(m; p_1, \dots, p_{2k-1})) = d'\theta(f|L^{4k-1}(m; p_1, \dots, p_{2k-1}))$ is non-zero by Lemma 2.3. This completes the proof.

§ 6. Free Z_m -actions on homotopy spheres.

Making use of the results developed so far, we shall determine homotopy spheres which admit free Z_m -actions. We have the commutative diagram below with exact rows

where τ is the transfer map, κ takes the universal covering, $\pi_q: S^{2n-1} \to L_q^{2n-1} = L^{2n-1}(m; q, 1, \dots, 1)$ is the natural projection and the map θ' is equal to $d'\theta$ if m, n are even and is trivial otherwise.

Now we are in position to state our main theorem. We shall work in the category of h-smoothings and h-equivalences though all the results hold similarly for the "simple" category.

THEOREM 6.1. A homotopy sphere Σ^{2n-1} $(n \ge 3)$ admits a free \mathbb{Z}_m -action of type q if and only if its normal invariant $\eta(\Sigma^{2n-1})$ belongs to the subgroup

Image {
$$\pi_q^*$$
: [L_q^{2n-1} , G/O] $\longrightarrow \pi_{2n-1}(G/O)$ }

of $\pi_{2n-1}(G/O)$.

As a direct corollary, we can give the solution of Orlik's conjecture in a more detailed version.

COROLLARY 6.2. Every homotopy sphere Σ^{2n-1} $(n \ge 3)$ that bounds a parallelizable manifold admits a free \mathbb{Z}_m -action of type q for any m and q.

In the statement of the theorem above, the necessity of the condition is apparent. We shall show its sufficiency.

PROOF OF THEOREM 6.1 WHEN m is odd:

Let Σ^{2n-1} be a homotopy sphere whose normal invariant $\eta(\Sigma)$ belongs to

Image π_q^* . In this case, since the map $\eta: hS(L_q^{2n-1}) \to [L_q^{2n-1}, G/O]$ is surjective, there exists a homotopy smoothing $f: M^{2n-1} \to L_q^{2n-1}$ satisfying $\eta(\Sigma) = \pi_q^* \eta(M^{2n-1})$. The universal cover $\kappa(M) = \tilde{M}$ and Σ have the same normal invariants in $\pi_{2n-1}(G/O)$ by commutativity of the diagram (A). Hence there exists an element $\lambda \in L_{2n}(1)$ with $\lambda * M = \Sigma$. Since the transfer map τ is surjective when mis odd, there exists an element $\lambda' \in L_{2n}(\mathbb{Z}_m)$ with $\tau(\lambda') = \lambda$. Then the universal cover of the homotopy smoothing $\lambda' * M$ is diffeomorphic to Σ^{2n-1} . This completes the proof when m is odd.

From now on we assume that m is even. Then the proof of Theorem 6.1 can be deduced by the following two lemmas.

LEMMA 6.3. If $\eta_0 \in \operatorname{Image} \pi_q^*$, then there exists a homotopy smoothing $h: M^{2n-1} \to L_q^{2n-1}$ with $\eta_0 = \pi_q^* \eta(M^{2n-1})$.

LEMMA 6.4. If a homotopy sphere Σ_0^{2n-1} admits a free \mathbb{Z}_m -action of type q, then $\Sigma_0^{2n-1} \# \Sigma^{2n-1}$ admits a free \mathbb{Z}_m -action of type q for any $\Sigma^{2n-1} \in bP_{2n}$.

PROOF OF LEMMA 6.3. If *n* is odd, then any normal map $f: L_q^{2n-1} \rightarrow G/O$ is obtained as the normal invariant of a homotopy smoothing by Theorem 3.7. Hence in this case the assertion follows. When *n* is even, take a normal map $f: L_q^{2n-1} \rightarrow G/O$ with $\eta_0 = \pi_q^*(f)$. Suppose that $\theta'(f) = 0$, then *f* is the normal invariant of a homotopy smoothing of L_q^{2n-1} as before. Let $\theta'(f) \neq 0$. There exists a normal map $g: \hat{L}_q^{2n} \rightarrow G/O$ with $\theta(g) \neq 0$ by Lemma 5.4(i). Consider the normal map

$$f' = f + (g \mid L_q^{2n-1}) \colon L_q^{2n-1} \longrightarrow G/O$$

where addition is given by the *H*-space structure (Whitney sum) of G/O. Then we have $\pi_q^*(f') = \pi_q^*(f) = \eta_0$ since

$$[\hat{L}_q^{2n}, G/O] \xrightarrow{j^*} [L_q^{2n-1}, G/O] \xrightarrow{\pi_q^*} \pi_{2n-1}(G/O)$$

is exact where j is the inclusion. According to Lemma 5.3 and the remark after Theorem 5.2, we see that the map

$$\theta' = d'\theta : [L_q^{2n-1}, G/O] \longrightarrow Z_2$$

can be calculated as

$$[L_q^{2n-1}, G/O] \xrightarrow{i^*} [\hat{L}_q^{2n-2}, G/O] \xrightarrow{\rho^*} [P^{2n-2}, G/O] \xrightarrow{c} Z_2$$

Therefore θ' is a homomorphism since the Kervaire obstruction map c is a homomorphism by the primitivity of Sullivan's k-class ([11], [13]). Hence we have $\theta'(f')=0$ and there exists a homotopy smoothing $M^{2n-1} \rightarrow L_q^{2n-1}$ with $\eta(M) = f'$ satisfying the condition $\eta_0 = \pi_q^* \eta(M)$.

PROOF OF LEMMA 6.4. When n is even, surjectivity of the transfer map

 $\tau: L_{2n}(\mathbb{Z}_m) \rightarrow L_{2n}(1)$ implies the assertion by chasing the diagram (A). Let n = 2k+1. Put

$$\hat{X}^{4k+2} = \sum_{0}^{4k+1} \times_{\boldsymbol{Z}_{m}} C(m)$$

where C(m) is a cone on *m*-points, i.e. \hat{X} is the mapping cylinder of the natural projection $\pi: \Sigma_0 \to \Sigma_0 / \mathbb{Z}_m$. Then \hat{X}^{4k+2} is a $\widetilde{\mathbb{Z}}_m$ -manifold with boundary $\partial \hat{X} = \Sigma_0$. We have a cofibration

$$\Sigma_0 \xrightarrow{\pi} \Sigma_0 / Z_m = \delta \hat{X} \xrightarrow{e} \hat{X} / \partial \hat{X}.$$

Similar results hold for the surgery theory of $(\hat{X} \operatorname{rel} \partial \hat{X})$ as in the case of closed \tilde{Z}_m -manifolds. Then we have the following commutative diagram where all rows and columns are exact:

According to the remark after Theorem 5.2, we have a commutative diagram

$$\begin{array}{c|c} \begin{bmatrix} \hat{L}_{q}^{4k+2}, \ G/O \end{bmatrix} & \theta \\ h^{*} \bigvee & \searrow \mathbf{Z}_{2} \\ \begin{bmatrix} \hat{X}/\partial \hat{X}, \ G/O \end{bmatrix} & \theta \end{array}$$

where $h: \hat{X}/\partial \hat{X} \to \hat{L}_q^{4k+2}$ is a homotopy equivalence. Hence by Lemma 5.4 (i), there exists $f \in [\hat{X}/\partial \hat{X}, G/O]$ with $\theta(f) \neq 0$. Since we can perform surgery on $f|\delta \hat{X}$ by Theorem 3.7, f is represented by a normal map $\hat{g}: \hat{M}^{4k+2} \to \hat{X}^{4k+2}$ such that $\delta \hat{g}: \delta \hat{M} \to \delta \hat{X}$ is a homotopy equivalence. Then M^{4k+2} is a parallelizable manifold with Kervaire invariant $\neq 0$ and its boundary is the disjoint union of Σ_0^{4k+1} and the universal cover of $\delta \hat{M}$. Therefore the universal cover of $\delta \hat{M}$ is diffeomorphic to $\Sigma_0^{4k+1} \# \Sigma_K^{4k+1}$ where Σ_K^{4k+1} is the Kervaire sphere. Thus the proof is complete.

References

- [1] W. Browder, Free Z_p -actions on homotopy spheres, Topology of manifolds, Proc. Univ. Georgia, 1969, 217-226.
- [2] W. Browder, Cobordism invariants, the Kervaire invariant and fixed point free

involutions, Trans. Amer. Math. Soc., 178 (1973), 193-225.

- [3] G.W. Brumfiel, Homotopy equivalence of almost smooth manifolds, Proceedings of symposia in pure mathematics, XXII, Algebraic Topology, Amer. Math. Soc., 1971, 73-79.
- [4] P.E. Conner and E.E. Floyd, Differentiable periodic maps, Springer, 1964.
- [5] C.H. Giffen, Desuspendability of free involutions on Brieskorn spheres, Bull. Amer. Math. Soc., 75 (1969), 426-429.
- [6] S. Lopez de Medrano, Involutions on manifolds, Springer, 1971.
- [7] J.W. Morgan and D.P. Sullivan, The transversality characteristic class and linking cycles in surgery theory, Ann. of Math., 99 (1974), 463-544.
- [8] P. Olum, Mappings of manifolds and the notion of degree, Ann. of Math., 58 (1953), 458-480.
- [9] P. Orlik, Smooth homotopy lens spaces, Michigan Math. J., 16 (1969), 245-255.
- [10] F. Quinn, Almost canonical inverse images, Comm. Math. Helv., 49 (1974), 168-174.
- [11] C.P. Rourke and D.P. Sullivan, On the Kervaire obstruction, Ann. of Math., 94 (1971), 397-413.
- [12] D. P. Sullivan, Triangulating and smoothing homotopy equivalences and homeomorphisms, Geometric Topology Seminar Notes (mimeographed), Princeton Univ., 1967.
- [13] C.T.C. Wall, Surgery on compact manifolds, Academic Press, 1970.

Yasuhiko KITADA Department of Mathematics Tokyo Institute of Technology Oh-okayama, Meguro-ku Tokyo, Japan