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\S 0 Introduction

associated with an evolution equation

(E) $du/dt+A(t)u=f(t)$

in a Banach space $X$. Here $u=u(t)$ and $f(t)$ are functions on $[0, T]$ to $X$ and
$A(t)$ is a function on $[0, T]$ to the set of linear operators acting in $X$. We
assume (E) is of parabolic type, that is, $-A(t)$ are all infinitesimal generators
of analytic semi-groups of bounded linear operators on $X$.

This problem has been considered already in many papers, for instance,
[1], [2] and [3]. The main assumption of [1] is that the inequality

$\Vert A(t)^{\rho}dA(t)^{-1}/dt\Vert\leqq N$ (0.1)

is valid with some constant $\rho\in(0,1$]; and those of [2] are that the inequality
of the form

$\Vert A(t)(\lambda-A(t))^{-1}(dA(t)^{-1}/dt)A(t)(\lambda-A(t))^{-1}\Vert$

(0.2)
$=\Vert\partial/\partial f(\lambda-A(t))^{-1}\Vert\leqq N/|\lambda|^{\rho}$

is valid with some constant $\rho\in(0,1$] and $dA(t)^{-1}/dt$ is H\"older continuous. In
[3] the following conditions are assumed: the domain of $A(t)^{\rho}$ is independent
of $t$ for some $\rho=1/m$ where $m$ is a positive integer, and $A(t)^{\rho}A(0)^{-\rho}$ is H\"older

continuous in $t$ .
In this paper we assume the inequality

$\Vert A(t)(\lambda-A(t))^{-1}dA(t)^{-1}/dt\Vert\leqq N/|\lambda|^{\rho}$ (0.3)

with a constant $\rho\in(0,1$]. This inequality (0.3) is slightly weaker than the
inequality (0.1), for (0.1) implies (0.3) by the equation

$A(t)(\lambda-A(t))^{-1}dA(t)^{-1}/dt=A(t)^{1-\rho}(\lambda-A(t))^{-1}A(t)^{\rho}dA(t)^{-1}/dt$

and the estimation
$\Vert A(t)^{1-\rho}(\lambda-A(t))^{-1}\Vert\leqq M/|\lambda|^{\rho}$ .
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On the other hand (0.3) is rather stronger than the inequality (0.2), for (0.3)
is a direct consequence of (0.2) on account of the estimation

$\Vert A(t)(\lambda-A(t))^{-1}\Vert\leqq M$ .
However we should note that in order to construct the evolution operator in
[2] (0.2) alone is not sufficient and the H\"older continuity of $dA(t)^{-1}/dt$ must
be assumed in addition.

In [1] and [2] the evolution operator is constructed directly by means of
E. E. Levi’s method. In the present case, however, this method does not work
well to prove our theorem. Instead we use Yosida’s approximation of $A(t)$

and some integral equations as was done in [3].

As a corollary of the theorem we will construct the evolution operator
under the assumptions that for some constant $\rho\in(0,1$] the domain of $A(t)^{\rho}$ is
independent of $t$ , and $A(t)^{\rho}A(0)^{-\rho}$ is strongly continuously differentiable in $t$ .
Thus we can eliminate the condition assumed in [3] that $\rho$ must be $1/m$ with
some positive integer $m$ . In our corrollary, however, we must require the
strong differentiability as for the smoothness condition of $A(t)^{\rho}A(0)^{-p}$ , though
only its H\"older continuity was sufficient in [3].

The author expresses his deep thanks to Professor H. Tanabe.

\S 1. Main theorem.

As our main result we claim the following.
THEOREM 1. For each $t\in[0, T]$ , let $A(t)$ be a densely defined, closed linear

operator acting in the Banach space X. We assume the following conditions:
(I) For each $t\in[0, T]$ the resolvent set of $A(t)$ contains a fixed closed

angular domain
$\Sigma=$ { $\lambda\in C$ ; arg $\lambda\not\in(-\theta_{0},$ $\theta_{0})$},

where $\theta_{0}$ belongs to $(0, \pi/2)$ . For any $t\in[0, T]$ and $\lambda\in\Sigma$ the resolvent satisfies
the inequality

$\Vert(\lambda-A(t))^{-1}\Vert\leqq N_{0}/(1+|\lambda|)$

with some positive constant $N_{0}$ independent of $t$ and $\lambda$ ;
(II) $A(t)^{-1}$ is strongly continuously diferentiable in $t$ , and the derivative

$dA(t)^{-1}/dt$ satisfies
$\Vert A(t)(\lambda-A(t))^{-1}dA(t)^{-1}/dt\Vert\leqq N_{1}/|\lambda|^{\rho}$

for any $t\in[0, T]$ and $\lambda\in\Sigma$ , where $N_{1}$ and $\rho\in(0,1$] are independent of $t$ and $\lambda$ .
Then there exists a family $\{U(t, s);0\leqq s\leqq t\leqq T\}$ of bounded operat0rs on

$X$ having the following properties:
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1) $U(t, s)$ is strongly continuous in $(t, s)$ ;
2) $U(t, r)U(r, s)=U(t, s),$ $0\leqq s\leqq r\leqq t\leqq T,$ $U(s, s)=I$ ;
3) For $s<t,$ $R(U(t, s))$ (the range of $U(t,$ $s)$ ) is contained in $D(A(t))$ (the

domain of $A(t))$ , and the estimates

$\Vert A(t)U(t, s)A(s)^{-1}\Vert\leqq C_{0}$

and
$\Vert A(t)U(t, s)\Vert\leqq C_{1}/(t-s)$

hold, where the constants $C_{0}$ and $C_{1}$ are determined by $\theta_{0},$
$\rho,$ $T,$ $N_{0}$ and $N_{1}$

alone. Moreover $A(t)U(t, s)A(s)^{-1}$ is strongly continuous in $0\leqq s\leqq t\leqq T$, and
$A(t)U(t, s)$ is strongly continuous in $0\leqq s<t\leqq T$ ;

4) If $f$ is a continuous function with values in $X$, then any strict solution
$u$ of (E) on $[s, T]$ with its initial value $u(s)\in X$ can be expressed in the form

$u(t)=U(t, s)u(s)+\int_{s}^{t}U(t, r)f(r)dr$ ; (1.1)

5) Conversely if $f$ is Holder continuous, then any $u$ defined by (1.1) with
any $u(s)\in X$ gives the strict solution of (E) on $[s, T]$ .

By a strict solution of (E) on $[s, T]$ we mean a continuous function defined
on $[s, T]$ which is continuously differentiable on $(s, T$ ] and satisfies (E) on
$(s, T]$ .

PROOF OF THE THEOREM. For any integer $n\geqq 1$ and $t\in[0, T]$ let us define

$A_{n}(t)=A(t)(I+n^{-1}A(t))^{-1}$

It is well known that the resolvent set of $A_{n}(t)$ contains $\Sigma$ and the estimate

$\Vert(\lambda-A_{n}(t))^{-1}\Vert\leqq M_{0}/(1+|\lambda|)$ (1.2)

still holds for any $t\in[0, T],$ $\lambda\in\Sigma$ and $n$ with some constant $M_{0}$ depending
only on $N_{0}$ and $\theta_{0}$ ( $e$ . $g$ . see [3]). We know also that $(\lambda-A_{n}(t))^{-1}$ converges
strongly to $(\lambda-A(t))^{-1}$ as $ n\rightarrow\infty$ for each $t\in[0, T]$ and $\lambda\in\Sigma$ . Since $A_{n}(t)^{-1}=$

$A(t)^{-1}+n^{-1},$ $A_{n}(t)^{-1}$ is strongly continuously differentiable in $t$ , and the estimate

$\Vert A_{n}(t)(\lambda-A_{n}(t))^{-1}dA_{n}(t)^{-1}/dt\Vert\leqq M_{1}/|\lambda|^{p}$ (1.3)

is valid for any $t\in[0, T],$ $\lambda\in\Sigma$ and $n$ with some constant $M_{1}$ dependent only
on $\theta_{0},$

$\rho$ and $N_{1}$ .
Throughout this section $M_{2},$ $M_{3},$ $\cdots$ , $M_{14}$ denote constants determined by

$\theta_{0},$
$\rho,$

$T,$ $N_{0}$ and $N_{1}$ alone.
From (1.2), $-A_{n}(t)$ generates an analytic semi-group exp $(-rA_{n}(r))$ which

is represented by

exp $(-rA_{n}(t))=\frac{-1}{2\pi i}\int_{\Gamma}e^{-\lambda r}(\lambda-A_{n}(t))^{-1}d\lambda$ (1.4)
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where $\Gamma$ is a smooth path running in $\Sigma$ from $\infty e^{-\theta_{0}t}$ to $\infty e^{\theta_{0}i}$ .
By the differentiability of $(\lambda-A_{n}(t))^{-1}$ and (1.4), exp $(-(t-s)A_{n}(s))$ is strongly

continuously differentiable in $s\in[0, t$ ) and the derivative is expressed by the
following integral

$(\partial/\partial s)$ exp $(-(t-s)A_{n}(s))$

$=\frac{-1}{2\pi i}\int_{I}e^{-\lambda(t- s)}\{\frac{\partial}{\partial s}(\lambda-A_{n}(s))^{-1}+\lambda(\lambda-A_{n}(s))^{-1}\}d\lambda$ . (1.5)

Let $U_{n}(t, s)(0\leqq s\leqq t\leqq T)$ be the evolution operator corresponding to the
equation

$du/dt+A_{n}(t)u=0$ ,
and let

$V_{n}(t, s)=A_{n}(t)U_{n}(t, s)A_{n}(s)^{-1}$

$W_{n}(t, s)=A_{n}(t)U_{n}(t, s)-A_{n}(s)\exp(-(t-s)A_{n}(s))$ .
Then we can construct three integral equations satisfied by $U_{n},$ $V_{n}$ and $W_{n}$

respectively. For $U_{n}$ ,

$U_{n}(t, s)$ –exp $(-(t-s)A_{n}(s))=\int_{s}^{t}-\partial\frac{\partial}{r}\{\exp(-(t-r)A_{n}(r))U_{n}(r, s)\}dr$

$=\int_{s}^{t}P_{n}(t, r)U_{n}(r, s)dr$ , (1.6)

where
$P_{n}(t, r)=(\partial/\partial t+\partial/\partial r)$ exp $(-(t-r)A_{n}(r))$ . (1.7)

For $V_{n}$ ,

$V_{n}(t, s)-\exp(-(t-s)A_{n}(s))$

$=\int_{s}^{t}\frac{\partial}{\partial r}\{\exp(-(t-r)A_{n}(r))V_{n}(r, s)\}dr$

$=\int_{s}^{t}\{P_{n}(t, r)+\exp(-(t-r)A_{n}(r))(dA_{n}(r)/dr)A_{n}(r)^{-1}\}V_{n}(r, s)dr$

$=\int_{s}^{t}Q_{n}(t, r)V_{n}(r, s)dr$ , (1.8)

since $(dA_{n}(r)/dr)A_{n}(r)^{-1}=-A_{n}(r)dA_{n}(r)^{-1}/dr$, we see

$Q_{n}(t, r)=P_{n}(t, r)-A_{n}(r)$ exp $(-(t-r)A_{n}(r))dA_{n}(r)^{-1}/dr$ . (1.9)

Operating $A_{n}(s)$ to (1.8) from the right, we obtain the equation for $W_{n}$

$W_{n}(t, s)=R_{n}(t, s)+\int_{s}^{t}Q_{n}(t, r)W_{n}(r, s)dr$ , (1.10)

where
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$R_{n}(t, s)=\int_{s}^{t}Q_{n}(t, r)A_{n}(s)$ exp $(-(r-s)A_{n}(s))dr$ . (1.11)

These equations will play an important role in the proof of the theorem.
We next introduce a notation for classes of operator-valued functions

which was used in [3]. By $H(\nu, M)$ we denote the set of all operator-valued
functions $K(t, s)$ , defined and strongly continuous in $0\leqq s<t\leqq T$ , such that

$\Vert K(t, s)\Vert\leqq M(t-s)^{\nu- 1}$

We see from (1.2) that

exp $(-(t-s)A_{n}(t)),$ $\exp(-(t-s)A_{n}(s))\in H(1, M_{2})$ , (1.12)

$A_{n}(t)$ exp $(-(t-s)A_{n}(t)),$ $A_{n}(s)$ exp $(-(t-s)A_{n}(s))\in H(0, M_{a})$ . (1.13)

LEMMA 1. The integral kernels $P_{n},$ $Q_{n}$ and $R_{n}$ belong to $H(\rho, M_{4})$ .
To see this let us begin with $P_{n}$ . By (1.5) and (1.7) we have

$ P_{n}(t, s)=\frac{-1}{2\pi i}\int_{T}e^{-\lambda(t- S)}(\partial/\partial s)(\lambda-A_{n}(s))^{-1}d\lambda$

$=\frac{1}{2\pi i}\int_{\Gamma}e^{-\lambda(t- s)}A_{n}(s)(\lambda-A_{n}(s))^{-1}(dA_{n}(s)^{-1}/ds)A_{n}(s)(\lambda-A_{n}(s))^{-1}d\lambda$ . (1.14)

Here we have used the formula

$(\partial/\partial s)(\lambda-A_{n}(s))^{-1}$

$=-A_{n}(s)(\lambda-A_{n}(s))^{-1}(dA_{n}(s)^{-1}/ds)A_{n}(s)(\lambda-A_{n}(s))^{-1}$ (1.15)

From (1.3) and (1.14) we can see easily that $P_{n}$ is strongly continuous in $s<t$

and satisfies the estimate

$\Vert P_{n}(t, s)\Vert\leqq\frac{(M_{0}+1)M_{1}}{2\pi}\int_{\Gamma}e^{-{\rm Re}\lambda(t- s)}|\lambda|^{-p}|d\lambda|$

$\leqq M_{5}(t-s)^{\rho- 1}$

By (1.4), (1.9) and (1.14) we have the representation

$ Q_{n}(t, s)=\frac{1}{2\pi i}\int_{\Gamma}\lambda e^{-\lambda(t- s)}A_{n}(s)(\lambda-A_{n}(s))^{-1}\frac{dA_{n}(s)^{-1}}{ds}(\lambda-A_{n}(s))^{-1}d\lambda$ . (1.16)

From (1.16) we obtain $Q_{n}\in H(\rho, M_{6})$ by the same argument as above for $P_{n}$ .
To prove $R_{n}\in H(\rho, M_{4})$ , we need some preparations. By (1.3) and (1.15)

$\Vert(\lambda-A_{n}(t))^{-1}-(\lambda-A_{n}(s))^{-1}\Vert\leqq(M_{0}+1)M_{1}(t-s)|\lambda|^{-\rho}$ ,

and therefore
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$\Vert A_{n}(t)$ exp $(-(t-s)A_{n}(t))-A_{n}(s)$ exp $(-(t-s)A_{n}(s))\Vert$

$\leqq M_{7}(t-s)^{p- 1}$ . (1.17)

Using the expression (1.16), we obtain

$\Vert Q_{n}(t, s)A_{n}(s)\Vert\leqq M_{8}(t-s)^{\rho- 2}$ . (1.18)

Now, (1.11) can be rewritten in the following form

$R_{n}(t, s)=\int_{s}^{t}Q_{n}(t, r)A_{n}(r)\exp(-(r-s)A_{n}(r))dr$

$+\int_{s}^{t}Q_{n}(t, r)\{A_{n}(s)$ exp $(-(r-s)A_{n}(s))$

$-A_{n}(r)$ exp $(-(r-s)A_{n}(r))$} $dr$

$=R_{n}^{1}(t, s)+R_{n}^{2}(t, s)$ . (1.19)

$R_{n}^{1}(t, s)$ is strongly continuous for $s<t$ by (1.12), (1.13), (1.18) and the fact
$Q_{n}\in H(\rho, M_{6})$ . $\Vert R_{n}^{1}(t, s)\Vert$ is estimated as follows

$\Vert R_{n}^{1}(t, s)\Vert\leqq\int_{(t+s)/2}^{t}\Vert Q_{n}(t, r)\Vert\Vert A_{n}(r)$ exp $(-(r-s)A_{n}(r))\Vert dr$

$+\int_{s}^{(t+s)/2}\Vert Q_{n}(t, r)A_{n}(r)\Vert$ lexp $(-(r-s)A_{n}(r))\Vert dr$

$\leqq M_{9}(t-s)^{p- 1}$

(1.17) and the fact $Q_{n}\in H(\rho, M_{6})$ give $R_{n}^{2}\in H(2\rho, M_{10})$ . Thus we have $ R_{n}\in$

$H(\rho, M_{11})$ .
Finally we have only to put $M_{4}={\rm Max}\{M_{5}, M_{6}, M_{11}\}$ .
Let us define $P(t, s),$ $Q(t, s)$ and $R(t, s)$ by the equalities (1.7), (1.9) and

(1.11) with $A_{n}(t)$ replaced by $A(t)$ , respectively. Then the whole proof of
Lemma 1 holds for $P,$ $Q$ and $R$ ; namely $P,$ $Q$ and $R$ are elements of $H(\rho, M_{4})$ .
This fact enables us to dePne $U,$ $V$ and $W$ as the solutions of the following
integral equations;

$U(t, s)=\exp(-(t-s)A(s))+\int_{s}^{t}P(t, r)U(r, s)dr$ , (1.20)

$V(t, s)=\exp(-(t-s)A(s))+\int_{s}^{t}Q(t, r)V(r, s)dr$ , (1.21)

$W(t, s)=R(t, s)+\int_{s}^{t}Q(t, r)W(r, s)dr$ . (1.22)

LEMMA 2. Let $\varphi\in H(\nu, L)$ and $\psi\in H(\mu, M)$ with $\nu>0$ and $\mu>0$ , and let $Y$

be the solution of the equation
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$Y(t, s)=\varphi(t, s)+\int_{s}^{t}\psi(t, r)Y(r, s)dr$ ,

then $Y\in H(\nu, N)$ with some constant $N$ determined by $\nu,$ $\mu,$ $L,$ $M$ and $T$ alone.
Moreover, let $\varphi_{n}\in H(\nu, L),$ $\psi_{n}\in H(\mu, M)$ and $Y_{n}$ be the solution of the

equation

$Y_{n}(t, s)=\varphi_{n}(t, s)+\int_{s}^{t}\psi_{n}(t, r)Y_{n}(r, s)dr$ .

If $\varphi_{n}(t, s)$ and $\psi_{n}(t, s)$ converge to $\varphi(t, s)$ and $\psi(t, s)$ strongly as $ n\rightarrow\infty$ for each
$0\leqq s<t\leqq T$ , then $Y_{n}(t, s)$ converges to $Y(t, s)$ strongly.

The proof is a simple calculation when we use the theorem of dominated
convergence (see [3]).

We want to apply Lemma 2 to the equations (1.6), (1.20), (1.8), (1.21) and
(1.10), (1.22). To this end it is sufficient to check the convergence of $P_{n},$ $Q_{n}$

and $R_{n}$ , for we have already showed Lemma 1 and stated the remark to it.
In view of (1.14) and (1.16), we observe easily that $P_{n}(t, s)$ and $Q_{n}(t, s)$ are

strongly convergent to $P(t, s)$ and $Q(t, s)$ . Rewriting $R_{n}^{1}(t, s)$ defined by (1.19)

in the form

$R_{n}^{1}(t, s)=(\int_{(t+s)/2}^{t}+\int_{S}^{(t+s)/2})Q_{n}(t, r)A_{n}(r)$ exp $(-(r-s)A_{n}(r))dr$ ,

we verify the strong convergence of $R_{n}^{1}(t, s)$ to $R^{1}(t, s)$ . The strong conver-
gence of $R_{n}^{2}(t, s)$ to $R^{2}(t, s)$ is rather obvious. Here $R^{1}$ and $R^{2}$ are defined cor-
respondingly. In this way we have seen that $R_{n}(t, s)$ converges to $R(t, s)$

strongly for each $0\leqq s<t\leqq T$.
Therefore, noting (1.12) and Lemma 1, and aPplying Lemma 2, we deduce

that $U_{n},$ $U,$ $V_{n}$ and $V$ are all elements of $H(1, M_{12})$ ; and that

$W_{n},$ $W\in H(\rho, M_{13})$ ; (1.23)

and that $U_{n}(t, s),$ $V_{n}(t, s)$ and $W_{n}(t, s)$ converge strongly to $U(t, s),$ $V(t, s)$ and
$W(t, s)$ , respectively, for each $0\leqq s<t\leqq T$ .

Now we will show that $U(t, s)$ has the properties $1$ ) $\sim 5$) mentioned in our
theorem. First of all, letting $ n\rightarrow\infty$ in the equation

$A_{n}(t)^{-1}V_{n}(t, s)=U_{n}(t, s)A_{n}(s)^{-1}$

we have
$A(t)^{-1}V(t, s)=U(t, s)A(s)^{-1}$ ,

which implies $R(U(t, s)A(s)^{-1})\subset D(A(t))$ and

$V(t, s)=A(t)U(t, s)A(s)^{-1}$

The term exp $(-(t-s)A(s))$ in the equations (1.20) and (1.21) is strongly con-
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tinuous in $0\leqq s\leqq t\leqq T$ , and this property is inherited by those of the solutions
$U(t, s)$ and $V(t, s)$ . The property 2) of $U_{n}$ implies that of $U$ . Thus we have
obtained 1), 2) and a part of 3).

Next, let us prove 5), dividing the proof into two steps. For the first step
we assume $f=0$ . Letting $ n\rightarrow\infty$ in the following

$U_{n}(t, s)=A_{n}(t)^{-1}$ { $W_{n}(t,$ $s)+A_{n}(s)$ exp $(-(t-s)A_{n}(s))$} ,

we obtain that $R(U(t, s))\subset D(A(t))$ for $s<t$ and

$A(t)U(t, s)=W(t, s)+A(s)$ exp $(-(t-s)A(s))$ .

This shows that $A(t)U(t, s)$ is strongly continuous in $0\leqq s<t\leqq T$ and $A_{n}(t)U_{n}(t, s)$

converges to $A(t)U(t, s)$ strongly. On the other hand by (1.13) and (1.23)

$|IA_{n}(t)U_{n}(t, s)\Vert\leqq M_{14}(t-s)^{-1}$ (1.24)

and hence
$\Vert A(t)U(t, s)\Vert\leqq M_{14}(t-s)^{-1}$

Therefore, for any $\epsilon>0$ and $ t\geqq s+\epsilon$ it follows from

$U_{n}(t, s)u(s)-U_{n}(s+\epsilon, s)u(s)=-\int_{s+\epsilon}^{t}A_{n}(r)U_{n}(r, s)u(s)dr$

that

$u(t)=U(s+\epsilon, s)u(s)-\int_{s+\epsilon}^{t}A(r)U(r, s)u(s)dr$ ,

which shows that $u$ is a strict solution on $[s, T]$ . At the same time we have
deduced the remaining part of 3).

For the second step we assume $u(s)=0$ . Put for integer $n\geqq 1$

$u_{n}(t)=\int_{s}^{t}U_{n}(t, r)f(r)dr$ , (1.25)

then by the definition of $U_{n}$ we can write

$u_{n}(t)=\int_{s}^{\ell}\{f(r)-A_{n}(r)u_{n}(r)\}dr$ . (1.26)

Multiplying (1.25) by $A_{n}(t)$ , we have

$A_{n}(t)u_{n}(t)=\int_{s}^{t}A_{n}(t)U_{n}(t, r)[f(r)-f(t)]dr$

$+[\int_{s}^{t}$ { $A_{n}(r)$ exp $(-(t-r)A_{n}(r))-A_{n}(t)$ exp $(-(t-r)A_{n}(t))$} $dr$

$+\int_{s}^{t}W_{n}(t, r)dr+\int_{s}^{t}A_{n}(t)$ exp $(-(t-r)A_{n}(t))dr]f(t)$ . (1.27)
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From (1.27), noting

$\int_{*}^{t}A_{n}(t)$ exp $(-(t-r)A_{n}(t))dr=I-$ exp $(-(t-s)A_{n}(t))$

and using (1.12), (1.17), (1.23), (1.24) and the H\"older continuity of $f$ ; we con-
clude that

$\Vert A_{n}(t)u_{n}(t)\Vert\leqq M_{15}$ , (1.28)

where $M_{15}$ depends on $f$ besides $\theta_{0},$
$\rho,$ $T,$ $N_{0}$ and $N_{1}$ , and that $A_{n}(t)u_{n}(t)$ con-

verges to a function $v(t)$ pointwise. $v$ is then defined on $[s, T]$ by the right
hand side of (1.27) with $A_{n},$ $U_{n}$ and $W_{n}$ replaced by $A,$ $U$ and $W$, respectively.
$v$ is continuous on $[s, T]$ . In a similar way to $V_{n}$ we can see $u(t)\in D(A(t))$

and $A(t)u(t)=v(t)$ for any $t\in[s, T]$ . Therefore if $n$ tends to infinity in (1.26),
the pointwise convergence of $A_{n}(r)u_{n}(r)$ and (1.28) give us

$u(t)=\int_{s}^{t}\{f(r)-A(r)u(r)\}dr$ ,

which means that $u$ is a strict solution on $[s, T]$ . Now the proof of 5) is
complete with the above two steps.

Finally we will prove4). The strong continuity of $V(t, s)$ at $t=s$ implies
the strong right differentiability of $U(t, s)A(s)^{-1}$ in $t$ at $t=s$ . And then 2), 3)
and this property give us

$\lim_{\Delta s\rightarrow+0}\frac{U(t,s+\Delta s)u_{0}-U(t,s)u_{0}}{\Delta s}=U(t, s)A(s)u_{0}$

for any $u_{0}\in D(A(s))$ and $t>s$ . Hence for any strict solution $u$ on $[s, T]$ ,
$U(t, r)u(r)$ is continuously differentiable from the right in $r\in(s, t)$ and

$(\partial^{+}/\partial r)U(t, r)u(r)=U(t, r)f(r)$ . (1.29)

Integrating (1.29) on $(s, t)$ , we conclude

$u(t)=U(t, s)u(s)+\int_{s}^{t}U(t, r)f(r)dr$ .

\S 2. A consequence of the main theorem.

As a consequence of Theorem 1 we have
THEOREM 2. Under the same situation as the theorem we assume the fol-

lowing conditions:
(I) The same condition as (I) stated in the theorem;
(II‘) There exists a constant $\rho\in(0,1$] such that the domain of $A(t)^{\rho}$ is

independent of $t$ and $A(t)^{\rho}A(0)^{-\rho}$ is strongly continuously differentiable in $t$ .
Then there exists a family $\{U(t, s);0\leqq s\leqq t\leqq T\}$ of bounded operat0rs

having the pr0perties $1$ ) $\sim 5$) stated in the theorem. In this case the constants
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$C_{0}$ and $C_{1}$ which aPpear in the statement of 3) are determined by $\theta_{0},$
$\rho,$

$T,$ $N_{0}$ ,

$ N_{2}=\sup_{\iota\in[0,T]}\Vert dA(t)^{\rho}A(0)^{-\rho}/dt\Vert$ and $ N_{3}=\sup_{t\in \mathfrak{c}0.J}\Vert A(0)^{p}A(t)^{-\rho}\Vert$ alone, the existence of
finite $N_{2}$ and $N_{3}$ being ensured by (II’). Moreover under these assumptjOns $U$

have the following Proporty:
6) For any $u_{0}\in D(A(0)^{\rho}),$ $U(t, s)u_{0}$ is continuously differentiable in $s\in[0, t$)

and

$\partial/\partial sU(t, s)u_{0}=U(t, s)A(s)^{1-\rho}A(s)^{\rho}u_{0}$ .

PROOF. By the assumption (II’) we shall show

$\Vert A(t)^{\rho}dA(t)^{-1}/dt\Vert\leqq M_{16}$ . (2.1)

Unless there is any specification, $M_{16}\cdots M_{21}$ denote the constants depending
only on $\theta_{0},$

$\rho,$
$T,$ $N_{0},$ $N_{2}$ and $N_{3}$ . Actually if $\rho=1,$ $A(t)^{-1}$ is strongly continuously

differentiable with its derivative

$dA(t)^{-1}/dt=-A(t)^{-1}(dA(t)A(0)^{-1}/dt)A(0)A(t)^{-1}$

which implies (2.1). If $0<\rho<1$ , then we can write

$ A(t)^{-1}=\frac{-1}{2\pi i}\int_{\Gamma}\lambda^{-\frac{1}{\rho}}(\lambda-A(t)^{\rho})^{-1}d\lambda$ .

Since $(\lambda-A(t)^{p})^{-1}$ is strongly continuously differentiable in $t$ , so is $A(t)^{-1}$ , whose
derivative is expressed by

$ dA(t)^{-1}/dt=\frac{-1}{2\pi i}\int_{\Gamma}\lambda^{-\frac{1}{\rho}}(\lambda-A(t)^{\rho})^{-1}\frac{dA(t)^{\rho}A(0)^{-\rho}}{dt}A(O)^{\rho}(\lambda-A(t)^{\rho})^{-1}d\lambda$ .

From this expression we obtain (2.1). Thus we have proved that the condi-
tion (II’) implies (2.1), and hence (II).

Now we have only to show 6). To this end we need a lemma concerned
with the fractional powers of $A_{n}(t)$ .

LEMMA 3. Let $\delta\in(0, \rho)$ , then $A_{n}(t)^{\rho-\delta}A(t)^{-\rho}$ converges to $A(t)^{-\delta}$ strongly as
$ n\rightarrow\infty$ .

Since
$A_{n}(t)^{p-\delta}=\frac{\sin(\rho-\delta)\pi}{\pi}\int_{0}^{\infty}\mu^{\rho-\delta-1}(\mu+A_{n}(t))^{-1}d\mu A_{n}(t)$ , (2.2)

we see that $A_{n}(t)^{\rho-\delta}A(t)^{-p}x$ converges to $A(t)^{-\delta}x$ for any $x\in D(A(t)^{1-\rho})$ . Thus
it suffices to show

$\Vert A_{n}(t)^{\rho-\delta}A(t)^{-\rho}\Vert\leqq M_{17}$ . (2.3)

If $\rho=1$ , this is clear from (2.2). If $0<\rho<1$ , it is obvious from the equation

$ A_{n}(t)^{\rho-\delta}A(t)^{-\rho}=\frac{\sin\rho\pi}{\pi}\int_{0}^{\infty}\mu^{-p}A_{n}(t)^{p-\delta}(\mu+A(t))^{-1}d\mu$
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and the well-known inequality

$\Vert A_{n}(t)^{\rho-\delta}(\mu+A(t))^{-1}\Vert\leqq M_{18}\Vert(\mu+A(i))^{-1}\Vert^{(1-\rho+\delta)}\Vert A_{n}(t)(\mu+A(t))^{-1}\Vert^{(\rho-\delta)}$ .

Thus we have proved (2.3). $M_{17}$ and $M_{18}$ are dependent also on $\delta$ .
Let $\eta\in[0,1$). Operating $A_{n}(s)^{\eta}$ to (1.6) from the right, we have

$U_{n}(t, s)A_{n}(s)^{\eta}=A_{n}(s)^{\eta}$ exp $(-(t-s)A_{n}(s))$

$+\int_{*}^{t}P_{n}(t, r)U_{n}(r, s)A_{n}(s)^{\eta}dr$ . (2.4)

In (2.4), the term $A_{n}(s)^{\eta}$ exp $(-(t-s)A_{n}(s))$ belongs to $H(1-\eta, M_{19})$ and con-
verges to $A(s)^{\eta}$ exp $(-(t-s)A(s))$ strongly, therefore Lemma 2 is applicable to
(2.4) again. Hence it follows that

$U_{n}(t, s)A_{n}(s)^{\eta}\in H(1-\eta, M_{20})$ (2.5)

and $U_{n}(t, s)A_{n}(s)^{\eta}$ is strongly convergent to the bounded extension

$\overline{U(t,s)A(s)^{\eta}}\in H(1-\eta, M_{20})$ . (2.6)

Here $M_{19}$ and $M_{20}$ depend on $\eta$ .
Now let $\delta\in(0, \rho)$ be fixed and write $\eta=1+\delta-\rho$ . By the definition of $U_{n}$

$u_{0}-U_{n}(t, s)u_{0}=\int_{l}^{t}U_{n}(t, r)A_{n}(r)^{\eta}A_{n}(r)^{\rho-\delta}A(r)^{-\rho}A(r)^{\rho}u_{0}dr$ .

Letting $ n\rightarrow\infty$ in this equation with the aid of Lemma 3, (2.3) and (2.5); we
obtain

$u_{0}-U(t, s)u_{0}=\int_{s}^{t}\overline{U(t,r)A(r)^{\eta}}A(r)^{-\delta}A(r)^{\rho}u_{0}dr$ .

Taking $\eta=1-\rho$ in (2.6), we have

$\overline{U(t,r)A(r)^{\eta}}A(r)^{-\delta}=\overline{U(t,r)A(r)^{1-\rho}}\in H(\rho, M_{21})$

and the desired relation.

\S 3. Remark.

Professor M. Watanabe informed the author that our main theorem can
be applied to the initial-boundary value problems for parabolic equations.

Let $\Omega$ be a bounded region in $R^{n}$ with a sufficiently smooth boundary,

$A(x, t, D)=\sum_{|\alpha|\leqq 2m}a_{\alpha}(x, t)D^{a}$ , $x\in\overline{\Omega},$ $t\in[0, T]$

be uniformly strongly elliptic differential operators with smooth coefficients,
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and
$B_{j}(x, t, D)=\sum_{|\beta|\leqq m_{j}}b_{J\beta}(x, t)D^{\beta}$ , $j=1,$ $m$

be normal boundary differential operators having smooth coefficients. We con-
sider the following mixed problem

$\left\{\begin{array}{ll}\partial u(x, t)/\partial t+A(x, t, D)u(x, t)=f(x, t) , & x\in\Omega, t\in(O, T]\\u(x, 0)=u_{0}(x), x\in\Omega & \\B_{j}(x, t, D)u(x, t)=0 , x\in\partial\Omega, t\in(O, T & \end{array}\right.$

in $L^{p}(\Omega),$ $ 1<P<\infty$ . For each $i\in[0, T]$ , we dePne the linear operator $A(t)$

acting in $L^{p}(\Omega)$ as follows,

$D(A(t))=\{u\in W_{p}^{2m}(\Omega);B_{j}(x, t, D)u(x)=0, x\in\partial\Omega, j=1, \cdots , m\}$

and for $u\in D(A(t))$

$(A(t)u)(x)=A(x, t, D)u(x)$ .
We denote by $W_{p}^{\iota}(\Omega)$ the set of all complex-valued functions defined in $\Omega$

whose distribution derivatives $D^{a}u$ belong to $L^{p}(\Omega)$ for any $\alpha$ with $0\leqq|\alpha|\leqq l$ .
Then, it can be shown that $A(t)$ satisfies the conditions (I) and (II) of the

theorem provided that we add a sufficiently large positive number to $A(t)$ if
necessary.

In truth it is possible to show with the aid of the interpolation theory that
such $A(t)$ satisfies the stronger condition (0.1) with a sufficiently small $\rho>0$ ;
however, the proof is not elementary. We give below a simple proof that (II)

is satisfied with

$\rho=\{$

1 , if $m=1$ and $m_{1}=0$

Min $\{m_{j}/2m;m_{j}\geqq 1, j=1, \cdots , m\}$ , otherwise.

For any $f\in L^{p}(\Omega)$ , we have by the definition

$A(x, t, D)A(t)^{-1}f(x)=f(x)$ , $ x\in\Omega$ (3.1)
and

$B_{j}(x, t, D)A(t)^{-1}f(x)=0$ , $ x\in\partial\Omega$ . (3.2)

Since $A(t)^{-1}$ , the bounded operator from $L^{p}(\Omega)$ into $W_{p}^{2m}(\Omega)$ , is strongly con-
tinuously differentiable, (3.1) and (3.2) give

$A(x, t, D)(dA(t)^{-1}/dt)f(x)=-\dot{A}(x, t, D)A(t)^{-1}f(x)$ , $ x\in\Omega$ , (3.3)

and
$B_{j}(x, t, D)(dA(t)^{-1}/dt)f(x)=-\dot{B}_{j}(x, t, D)A(t)^{-1}f(x)$ , $ x\in\partial\Omega$ , (3.4)
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where $\dot{A}$ and $\dot{B}_{j}$ are dePned by

$\dot{A}(x, t, D)=\sum_{1\alpha|\lessgtr 2m}(\partial a_{\alpha}(x, t)/\partial t)D^{\alpha}$

and
$\dot{B}_{j}(x, t, D)=\sum_{|\beta|\leqq m_{j}}(\partial b_{j\beta}(x, t)/\partial t)D^{\beta}$ .

Next, for any $\lambda\in\Sigma$ and $u\in W_{p}^{2m}(\Omega)$

$(\lambda-A(x, t, D))A(t)(\lambda-A(t))^{-1}u$

$=(\lambda-A(x, t, D))\{\lambda(\lambda-A(t))^{-1}-1\}u$

$=A(x, t, D)u$ ,

therefore using (3.3), we have

$(\lambda-A(x, t, D))A(t)(\lambda-A(t))^{-1}(dA(t)^{-1}/dt)f(x)$

$=-\dot{A}(x, t, D)A(t)^{-1}f(x)$ , $ x\in\Omega$ . (3.5)

Similarly for $\lambda\in\Sigma$ and $u\in W_{p}^{2m}(\Omega)$

$B_{j}(x, t, D)A(t)(\lambda-A(t))^{-1}u=-B_{j}(x, t, D)u$

on $\partial\Omega$ , and hence in view of (3.4) we get

$B_{j}(x, t, D)A(t)(\lambda-A(t))^{-1}(dA(t)^{-1}/dt)f(x)$

$=\dot{B}_{j}(x, t, D)A(t)^{-1}f(x)$ , $ x\in\partial\Omega$ . (3.6)

It is known that for any $\lambda\in\Sigma$ and $t\in[0, T]$ the estimate

$|\lambda|\Vert u\Vert_{p}+\Vert u\Vert_{2m,p}\leqq M_{22}\{\Vert(\lambda-A(x, t, D))u\Vert_{p}$

$+\sum_{j=1}^{m}|\lambda|^{(1- m_{j}/2m)}\Vert g_{j}\Vert_{p}+\sum_{j=1}^{m}|\Vert g_{j}\Vert_{2m- m_{j},p}\}$

holds for $u\in W_{p}^{2m}(\Omega)$ with some constant $M_{22}$ independent of $\lambda$ and $t$ . Here $g_{j}$

is an arbitrary function which belongs to $W_{p}^{2m-m_{j}}(\Omega)$ and coincides with
$B_{j}(x, t, D)u(x)$ on $\partial\Omega$ . Substituting $A(t)(\lambda-A(t))^{-1}(dA(t)^{-1}/dt)f$ for $u$ in rthis
estimate, we obtain from (3.5) and (3.6)

$|\lambda|\Vert A(t)(\lambda-A(t))^{-1}(dA(t)^{-1}/dt)f\Vert_{p}$

$\leqq M_{23}\{\Vert A(t)^{-1}f\Vert_{2m,p}+\partial_{=1}^{|\lambda|^{(1- m_{j}/2m)}\Vert h_{j}\Vert_{p}\}}m$ ,

where $h_{j}\in W_{p}^{2mm_{j}}(\Omega)$ and

$h_{j}(x)=\dot{B}_{j}(x, t, D)A(t)^{-1}f(x)$ , $ x\in\partial\Omega$ .
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If $m_{j}=0$ , then $B_{j}(x, t, D)=1$ , and therefore we can take $h_{j}=0$ . Thus we con-
clude

$\Vert A(t)(\lambda-A(t))^{-1}dA(t)^{-1}/dt\Vert\leqq M_{24}/|\lambda|^{\rho}$

with

$\rho=\{$

1 , if $m=1$ and $m_{1}=0$

Min $\{m_{j}/2m;m_{j}\geqq 1, i=1, \cdots , m\}$ , otherwise.
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