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\S 1. Introduction.

It was proved by Hartman and Stampacchia [8] in 1966 that if $T:R^{n}\rightarrow R^{n}$

is a continuous mapping on a compact, convex subset $X$ of $R^{n}$ , then there
exists $x_{0}\in X$ such that $\langle Tx_{0}, x_{0}-x\rangle\geqq 0$ for all $x\in X$. This remarkable result
has been investigated and generalized in various points of views by Browder
[1], [2], Mor\’e [10] and others. For example, Browder extended this theorem
to the case of which our considering mappings $T$ are of a compact convex
subset $X$ of a topological vector space $E$ into the dual space $E^{*};$ see Theorem
2 of [2]. In \S 2 of this paper, we shall obtain two generalizations of this
Browder’s theorem. One of them is Lemma 1 that has various applications.
The other is Theorem 3 that generalizes the Browder’s result to closed and
convex sets in topological vector spaces. We shall also make use of Theorem
3 to prove Theorem 4 that generalizes Mor\’e’s theorem [10, Theorem 2.4]. In
\S 3, using Lemma 1, we shall prove some fixed point theorems. Theorem 5 and
Theorem 9 extend Browder’s fixed point theorems [1, Theorem 1], [2, Theorem
3]. In \S 4, we shall discuss Sion’s minimax theorem and Terkelsen’s minimax
theorem. At first, we shall show that Sion’s theorem follows simply from the
fundamental and useful theorem of Browder [2, Theorem 1]. Furthermore, we
state a necessary and sufficient condition that a minimax condition holds. Using
this, we shall generalize Terkelsen’s minimax theorem; see Theorems 16 and
17. In \S 5, we give another proof for Fan’s theorem [5] concerning systems of
convex inequalities. The proof is simple. Furthermore, using this Fan’s result,
we prove Fan’s minimax theorem [4] and also obtain a generalization of the
result of Browder [2, Lemma 1]; see Theorems 18, 19 and 20. At last, by
Lemma 1, we generalize Browder’s theorem [2, Theorem 6] for multi valued
mappings; see Theorem 21. By the same methods, we shall also generalize
Kakutani’s fixed point theorem [9]; see Theorem 22.

The author wishes to express his hearty thanks to Prof. H. Umegaki for
many kind suggestions and advices.
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\S 2. Variational inequalities.

Throughout this paper, we assume that a topological space is separated
and a topological vector space is real. We also denote by $R$ the set of all
real numbers. In [2], Browder proved the following useful theorem.

THEOREM 1 (Browder). Let $X$ be a nonempty compact convex subset of a
topological vector space $E$ (where we assume that $E$ is separated but not neces-
sari $ly$ locally convex). Let $T$ be a mapping of $X$ into $2^{X}$, where for each $x$ in
$X,$ $T(x)$ is a nonempty convex subset of $X$ [resp. open in $X$]. SuppOse further
that for each $y$ in $X,$ $T^{-1}(y)=\{x\in X;y\in T(x)\}$ is open in $X$ [resp. a nonempty
convex subset of $X$]. Then, there exists $x_{0}$ in $X$ such that $x_{0}\in T(x_{0})$ .

By using this, we can prove the following Lemma 1. However, we shall
directly give a proof.

LEMMA 1. Let $X$ be a nonempty compact convex subset of a topolOgical
vector space $E$ and let $F$ be a real valued function on $X\times X$ satisfying:

(1) For each $y\in X$, the function $F(x, y)$ of $x$ is upper semicontinuous;
(2) for each $x\in X$, the function $F(x, y)$ of $y$ is convex;
(3) $F(x, x)\geqq c$ for all $x\in X$ with some real number $c\in R$ . Then, there exists

$x_{0}\in X$ such that $F(x_{0}, y)\geqq c$ for all $y\in X$.
PROOF. Suppose that for each $x\in X$, there exists $y\in X$ such that $F(x, y)$

$<c$ . Setting $A_{y}=\{x\in X;F(x, y)<c\}$ for each $y\in X$, we have $X=\bigcup_{y\in X}A_{y}$ . Since

$X$ is compact, there exists a finite family $\{y_{1}, y_{2}, y_{n}\}$ such that $X=\bigcup_{i=1}^{n}A_{y_{\iota}}$ .
Let $\{\beta_{1}, \beta_{2}, \cdots , \beta_{n}\}$ be a partition of unity corresponding to this covering, $i$ . $e$ .
each $\beta_{i}$ is a continuous mapping of $X$ into $[0,1]$ which vanishes outside of
$A_{y_{i}}$ , while $\sum_{i=1}^{n}\beta_{i}(x)=1$ for all $x$ in $X$. For each $i$ such that $\beta_{i}(x)\neq 0,$ $x$ lies in
$A_{y_{i}}$ , so that $F(x, y_{i})<c$ . Hence we have that

$\sum_{\iota=1}^{n}\beta_{i}(x)F(x, y_{i})<c$

for all $x\in X$. Define a continuous mapping $p$ of $X$ into $X$ by setting

$p(x)=\sum_{i=1}^{n}\beta_{i}(x)y_{i}$ .
By using the Brouwer’s fixed point theorem, we obtain an element $x_{0}\in X$ such
that

$x_{0}=p(x_{0})=\sum_{i=1}^{n}\beta_{i}(x_{0})y_{i}$ .
For this point $x_{0}$ , we have

$c\leqq F(x_{0}, x_{0})=F(x_{0},\sum_{\iota=1}^{n}\beta_{i}(x_{0})y_{i})$
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$\leqq\sum_{i=1}^{n}\beta_{i}(x_{0})F(x_{0}, y_{i})<c$ .

This is a contradiction. Therefore, there exists $x_{0}\in X$ such that $F(x_{0}, y)\geqq c$

for every $y\in X$.
The following Theorem which has been given in [2] is very useful. We

shall prove this by using Lemma 1.
THEOREM 2 (Browder). Let $X$ be a compact convex subset of a locally

convex topological vector space $E,$ $T$ a continuous (single valued) mapping of
$X$ into $E^{*}$ . Then, there exists $x_{0}$ in $X$ such that $\langle Tx_{0}, x_{0}-y\rangle\geqq 0$ for all $y$ in $X$ .

PROOF. Define a real valued function $F$ on $X\times X$ by setting $F(x, y)=$

$\langle Tx, x-y\rangle$ . Then, for each $y\in X$, the function $F(x, y)$ of $x$ is continuous and
for each $x\in X$, the function $F(x, y)$ of $y$ is affine. Furthermore, $F(x, x)=0$

for all $x$ in $X$. Therefore, by Lemma 1, there exists $x_{0}\in X$ such that

$F(x_{0}, y)=\langle Tx_{0}, x_{0}-y\rangle\geqq 0$

for all $y$ in $X$.
We shall generalize Theorem 2 to closed and convex sets $X$ in topological

vector spaces. Let $H,$ $X$ be nonempty subsets of a topological vector space
$E$ , then we put $B_{H}X=\overline{X}\cap\overline{H-X}$ and $I_{H}X=X\cap(B_{H}X)^{c}$ where $\overline{A}$ is the closure
of $A\subset E$ and $A^{c}$ is the complement of $A$ .

THEOREM 3. Let $H$ be a closed convex subset of a locally convex topological
vector space $E$ and $T$ be a continuous mapping of $H$ into $E^{*}$ . If there exists
a compact convex subset $X$ of $H$ such that $ I_{H}X\neq\emptyset$ and for each $z\in B_{H}X$, there
is $u_{0}\in I_{H}X$ with $\langle Tz, z-u_{0}\rangle\geqq 0$ , then there exists $x^{*}\in H$ such that $\langle Tx^{*}, x-x^{*}\rangle$

$\geqq 0$ for all $x\in H$.
PROOF. By Theorem 2, there exists $x^{*}\in X$ such that $\langle Tx^{*}, x-x^{*}\rangle\geqq 0$ for

all $x\in X$. If $x^{*}\in I_{H}X$, for each $y\in H$, we can choose $\lambda(0<\lambda<1)$ small enough
so that $x=\lambda y+(1-\lambda)x^{*}$ lies in $X$. Hence

$ 0\leqq\langle Tx^{*}, x-x^{*}\rangle=\lambda\langle Tx^{*}, y-x^{*}\rangle$ ,

and consequently, $ 0\leqq\langle Tx^{*}, y-x^{*}\rangle$ . If $x^{*}\in B_{H}X$, by the hypothesis, there exists
$u_{0}\in I_{H}X$ such that

$\langle Tx^{*}, x^{*}-u_{0}\rangle\geqq 0$ .
Since $\langle Tx^{*}, x-x^{*}\rangle\geqq 0$ for all $x\in X$, it follows that $\langle Tx^{*}, x-u_{0}\rangle\geqq 0$ for all $x\in X$.
Since $u_{0}\in I_{H}X$, for each $y\in H$ there exists $\lambda(0<\lambda<1)$ such that $x=$

$\lambda y+(1-\lambda)u_{0}\in X$. Hence we obtain $ 0\leqq\langle Tx^{*}, y-u_{0}\rangle$ for all $y\in H$. Since $u_{0}\in X$

implies $ 0\leqq\langle Tx^{*}, u_{0}-x^{*}\rangle$ , we obtain $ 0\leqq\langle Tx^{*}, y-x^{*}\rangle$ for all $y\in H$.
If $H=E$ in Theorem 3, it is obvious that tbere exists $x^{*}\in E$ such that

$Tx^{*}=0$ . In fact, there exists $x^{*}\in E$ such that $\langle Tx^{*}, u-x^{*}\rangle\geqq 0$ for all $u\in E$

and consequently $Tx^{*}=0$ . Theorem 3 has a very interesting interpretation
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when $H$ is a cone in $E,$ $i$ . $e$ . a nonempty, closed set $H$ in $E$ such that $\alpha x+\beta y$

belongs to $H$ for all $\alpha,$ $\beta\geqq 0$ and $x,$ $y\in H$. We shall also need to know that
the Polar $H^{*}$ of a cone $H$ is the cone dePned by

$H^{*}=$ { $y\in E^{*}:$ $\langle y,$ $x\rangle\geqq 0$ for all $x\in H$ }.

THEOREM 4. Let $H$ be a cone in $E$ and $T$ be a continuous mapping of $H$

into $E^{*}$ . If there exists a compact convex subset $X$ of $H$ such that $ I_{H}X\neq\emptyset$ and
for each $z\in B_{H}X$, there is $u_{0}\in I_{H}X$ with

$\langle Tz, z-u_{0}\rangle\geqq 0$ ,

then, there exists $x^{*}\in H$ such that $Tx^{*}\in H^{*}$ and $\langle Tx^{*}, x^{*}\rangle=0$ .
PROOF. By Theorem 3, there exists $x^{*}\in H$ such that $\langle Tx^{*}, y-x^{*}\rangle\geqq 0$ for

all $y\in H$. Since $\langle Tx^{*}, \alpha y\rangle\geqq\langle Tx^{*}, x^{*}\rangle$ for all $\alpha>0$ and $y\in H$, we obtain that
$\langle Tx^{*}, y\rangle\geqq 0$ for all $y\in H,$ $i$ . $e$ . $Tx^{*}\in H^{*}$ . That $\langle Tx^{*}, x^{*}\rangle=0$ is obvious from
$\langle Tx^{*}, 0-x^{*}\rangle\geqq 0$ .

The above Theorems 3 and 4 generalize the results proved by Mor\’e [10].

These proofs were similar to those of [10].

\S 3. Fixed point theorems.

In this section, using Lemma 1, we shall prove some fixed point theorems.
In [7], Fan has already obtained the following theorem by continuous semi-
norms instead of continuous linear functionals.

THEOREM 5. Let $X$ be a nonempty compact convex subset of a top0l0gical
vector space $E$ and $T$ be a continuous mapping of $X$ into E. Then, either there
exists $y_{0}\in X$ such that $y_{0}$ and $Ty_{0}$ can not separated by a continuous linear
functional, or there exist $x_{0}\in X$ and $g\in E^{*}$ such that

$g(x_{0}-Tx_{0})<0\leqq\inf_{y\in X}g(x_{0}-y)$ .

PROOF. Suppose that for each $x\in X$, there exists $f\in E^{*}$ such that $f(x-Tx)$

$<0$ . Setting $A_{f}=\{x\in X;f(x-Tx)<0\}$ for each $f\in E^{*}$ , we have $X=UA_{f}f\in E^{*}$

Since $X$ is compact, there exists a finite family $\{f_{1}, f_{2}, \cdots f_{n}\}$ in $E^{*}$ such that

$X=_{i=}^{n_{1}}UA_{f_{i}}$ . Let $\{\beta_{1}, \beta_{2}, \cdots , \beta_{n}\}$ be a partition of unity corresponding to this

covering $\{A_{f_{i}}\}$ of $X$. Define a real valued function $F$ on $X\times X$ by setting

$F(x, y)=\sum_{i=1}^{n}\beta_{i}(x)f_{i}(x-y)$ .

Then, by Lemma 1, there exists $x_{0}\in X$ such that

$F(x_{0}, y)=\sum_{i=1}^{n}\beta_{i}(x_{0})f_{i}(x_{0}-y)\geqq 0$
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for all $y\in X$. On the other hand, we know that

$F(x_{0}, x_{0})=\sum_{i=1}^{n}\beta_{i}(x_{0})f_{i}(x_{0}-Tx_{0})<0$ .

By putting $g=\sum_{i=1}^{n}\beta_{i}(x_{0})f_{i}$ , we complete the proof.

As direct consequences of Theorem 5, we have the following two Theorems.
THEOREM 6 (Browder). Let $X$ be a nonempty compact convex subset of a

locally convex topOlOgical vector space $E$ and $T$ be a continuous mapping of $X$

into E. If for each $x\in X$, there exist $x_{1}\in X$ and $\lambda\geqq 0$ such that $Tx-x=\lambda(x_{1}-x)$ ,
then $T$ has a fixed Point.

PROOF. Suppose $T$ has no Pxed point. By Theorem 5, there exist $x_{0}\in X$

and $g\in E^{*}$ such that
$g(x_{0}-Tx_{0})<0\leqq\inf_{y\in X}g(x_{0}-y)$ .

For this $x_{0}$ , we can choose $x_{1}\in X$ and $\lambda\geqq 0$ such that $Tx_{0}-x_{0}=\lambda(x_{1}-x_{0})$ . Since
$T$ has no fixed point, $\lambda>0$ . Hence we have

$g(x_{0}-Tx_{0})<0\leqq\frac{1}{\lambda}g(x_{0}-Tx_{0})$ .

This is a contradiction. Therefore, we have a fixed point.
THEOREM 7. Let $H$ be a closed convex subset of a locally convex topOlOgical

vector sPace $E$ and $T$ be a continuous maPping of $H$ into H. If there exists a
compact convex subset $X$ of $H$ such that for each $x\in B_{H}X$, there exist $x_{1}\in X$

and $\lambda\geqq 0$ with $Tx-x=\lambda(x_{1}-x)$ , then $T$ has a fixed point in $H$.
PROOF. Consider the restriction to $X$ of $T$ . If $T$ has no fixed point in $X$,

by Theorem 5 there exist $x_{0}\in X$ and $g\in E^{*}$ such that

$g(x_{0}-Tx_{0})<0\leqq\inf_{y\in X}g(x_{0}-y)$ .

Let $x_{0}\in I_{H}X$. Since $Tx_{0}\in H$, we can choose $\lambda(0<\lambda<1)$ small enough so that
$y=\lambda Tx_{0}+(1-\lambda)x_{0}$ lies in $X$. Hence we obtain

$g(x_{0}-Tx_{0})<0\leqq\lambda g(x_{0}-Tx_{0})$ .

This is a contradiction. Similarly, we obtain a contradiction for the case of
$x_{0}\in B_{H}X$. Therefore, $T$ has a fixed point.

We shall generalize Theorem 5 to multi valued mappings. Let $X$ and $Y$

be topological spaces. A mapping $T$ of $X$ into $2^{Y}$ such that for each $x\in X,$ $Tx$

is a nonempty subset of $Y$ is said to be uPper semicontinuous, if for every
point $x_{0}\in X$ and any open set $G$ in $Y$ containing $T(x_{0})$ , there is a neighborhood
$U$ of $x_{0}$ in $X$ such that $T(x)\subset G$ for all $x\in U$ . The following definition is due
to Fan [7]. Let $E$ be a topological vector space, and let $X\subset E$. A mapping
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$T$ of $X$ into $2^{E}$ such that for each $x\in X,$ $Tx$ is a nonempty subset of $E$ is said
to be uPper demi-continuous, if for every $x_{0}\in X$ and any open half-space $H$ in
$E$ containing $Tx_{0}$ , there is a neighborhood $U$ of $x_{0}$ in $X$ such that $Tx\subset H$ for
all $x\in U$ . An open half-space $H$ in $E$ is a set of the form $\{x\in E:h(x)>r\}$

where $h$ is a continuous linear functional, not identically zero, and $r$ is a real
number. It is obvious that if a mapping $T$ of $X$ into $2^{E}$ is upper semicontinuous,
then $T$ is upper demi-continuous. As usual, we say that two sets $A,$ $B$ in $E$

can be strictly separated by a closed hyperplane, if we can find a continuous
linear form $h\in E^{*}$ and a real number rsuch that $h(x)<r$ for $x\in A$ and $h(y)>r$

for $y\in B$ . We can prove the following Theorem. The proof employs suitable
modifications of the methods used in [2, Theorem 3] and [7, Theorem 5].

THEOREM 8. Let $X$ be a nonemPty compact convex set in a topological
vector space E. Let $S,$ $T$ be two upper demi-continuous set valued mappings
defned on $X$ such that for each $x\in X,$ $Tx$ and $Sx$ are nonempty subsets of $E$ .
Then, there exists $y_{0}\in X$ for which $Sy_{0}$ and $Ty_{0}$ can not be strictly separated by
a closed hyperplane, or there exist $x_{0}\in X$ and $g\in E^{*}$ such that $g(x_{0}-Tx_{0})<$

$g(x_{0}-Sx_{0})$ and $0\leqq\inf g(x_{0}-y)$ .
PROOF. Suppose that for each $x\in X,$ $Sx$ and $Tx$ can be strictly separated

by a closed hyperplane. Thus for each $x\in X$, we can find $g_{x}\in E^{*}$ and $r_{x}\in R$

such that $g_{x}(Sx)<r_{x}$ and $r_{x}<g_{x}(Tx)$ . Because $S,$ $T$ are upper demi-continuous
on $X$, there exists a neighborhood $U_{x}$ of $x$ in $X$ such that $g_{x}(Sy)<r_{x}$ and
$r_{x}<g_{x}(Ty)$ for all $y\in U_{x}$ . Hence, $x$ is an element of the interior $N(g_{x})$ of
$\{z\in X;g_{x}(Sz)<g_{x}(Tz)\}$ . Thus, $X=\bigcup_{x\in X}N(g_{x})$ . By compactness of $X$, there

exists a finite set $\{x_{1}, x_{2}, \cdots , x_{n}\}\subset X$ such that $X=\bigcup_{i=1}^{n}N(g_{x_{i}})$ . Let $\{\beta_{i}\}_{i=1}^{n}$ be a
partition of unity corresponding to the open covering $\{N(g_{x_{i}})\}$ of $X$. Let

$F(x, y)=\sum_{i=1}^{n}\beta_{i}(x)g_{x_{i}}(x-y)$

for $X,$ $y\in X$. By Lemma 1, we have $x_{0}\in X$ such that

$\sum_{i=1}^{n}\beta_{i}(x_{0})g_{x_{i}}(x_{0}-y)\geqq 0$

for all $y\in X$. We also know that

$\sum_{i=1}^{n}\beta_{i}(x_{0})g_{x_{i}}(Sx_{0})<\sum_{i=1}^{n}\beta_{i}(x_{0})g_{x_{i}}(Tx_{0})$ .

By putting $g=\sum\beta_{i}(x_{0})g_{x_{i}}$ , we complete the proof.
If $S$ is the identity mapping of $X$, then Theorem 8 becomes the following

result which generalizes Theorem 5.
THEOREM 9. Let $X$ be a nonempty compact convex subset of a topOlOgical
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vector sPace $E$ and $T$ be a upper semicontinuous maPping of $X$ into $2^{E}$ such
that for each $x\in X,$ $Tx$ is a nonempty subset of E. Then, either there exists
$y_{0}\in X$ such that $y_{0}$ and $Ty_{0}$ can not be strictly separated by a closed hyperplane,
or there exist $x_{0}\in X$ and $g\in E^{*}$ such that

$g(x_{0}-Tx_{0})<0\leqq\inf_{y\in X}g(x_{0}-y)$ .

As a consequence of Theorem 9, we have
THEOREM 10 (Browder). Let $X$ be a compact convex subset of a locally

convex topOlOgical vector space $E$ and $T$ be a upper semicontinuous mapping of
$X$ into $2^{E}$ such that for each $x\in X,$ $Tx$ is a nonempty closed convex set in $E$.
If for each $x\in X$, there exist $x_{1}\in X,$ $w_{1}\in Tx$ and $\lambda\geqq 0$ such that $w_{1}-x=\lambda(x_{1}-x)$ ,
then $T$ has a point $x_{0}\in X$ such that $x_{0}\in Tx_{0}$ .

Using Lemma 1 for normed vector spaces, we have
THEOREM 11. Let $X$ be a nonempty compact convex subset of a normed

vector space $E$ and $T$ be a continuous maPping of $X$ into E. Then, there exists
$x_{0}\in X$ such that

$\min_{y\in X}\Vert Tx_{0}-y\Vert\geqq\min_{x\in X}\Vert Tx-x\Vert$ .

PROOF. Define a real valued function $F$ on $X\times X$ by $ F(x, y)=\Vert Tx-y\Vert$ .
Theorem is obvious from Lemma 1.

Using Theorem 10, we shall prove the following Theorem which generalizes
Theorem 17 of [2].

THEOREM 12. Let $X$ be a nonempty compact convex subset in a locally
convex top0l0gical vector space $E$ and $A$ be an open subset of $X\times X$ having the
following properti es:

(1) $(x, x)\in A$ for every $x\in X$ ;
(2) for any $x\in X$, the set $\{y\in X:(x, y)\not\in A\}$ is convex.

Then, there exists a point $x_{0}\in X$ such that $x_{0}\times X\subset A$ .
PROOF. Suppose that for each $x\in X$, there exists $y\in X$ such that $(x, y)\not\in A$ .

We define a set valued mapping $T$ of $X$ into $2^{X}$ setting $Tx=\{y\in X;(x, y)\not\in A\}$

for each $x\in X$. It is obvious that for each $x\in X,$ $Tx$ is nonempty, closed and
convex. Since the graph of $T,$ $i$ . $e$ . $G(T)=\{(x, y):x\in X, y\in Tx\}=\{(x, y):(x, y)$

$\not\in A\}$ is closed, it follows that $T$ is upper semicontinuous. Now, by using
Theorem 10, we obtain an element $x_{0}\in Tx_{0},$ $i$ . $e$ . $(x_{0}, x_{0})\not\in A$ . This completes
the proof.

As direct consequences of Theorem 12, we have the following two Theorems.
THEOREM 13 (Browder). Let $X$ be a nonempty compact convex subset of a

locally convex top0l0gical vector space $E_{1}$ , let $E_{2}$ be a separated top0l0gical
vector space, and let $g$ be a continuous mapping of $X\times X$ into $E_{2}$ . Let $C$ be a
closed subset of $E_{2}$ . Supp0se that for each $x$ in $X$, the set $\{y\in X:g(x, y)\in C\}$
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is nonempiy and convex. Then there exists an element $u$ of $X$ such that $g(u, u)$

$\in C$.
PROOF. Let $A=\{(x, y)\in X\times X;g(x, y)\not\in C\}$ . Then, by Theorem 12, we can

obtain an element $u$ of $X$ such that $g(u, u)\in C$ .
THEOREM 14. Let $X$ be a nonempty compact convex subset in a locally

convex toPological vector space $E$ and let $F$ be a real valued lower semicon-
tinuous function on $X\times X$. Let $c\in R$ and suppOse that for each $x\in X,$ { $y\in X$ :
$F(x, y)\leqq c\}$ is nonempty and convex. Then, there exists $x_{0}\in X$ such that
$F(x_{0}, x_{0})\leqq c$ .

PROOF. Let $A=\{(x, y)\in X\times X:F(x, y)>c\}$ . Then, by Theorem 12, we can
obtain an element $x_{0}$ of $X$ such that $F(x_{0}, x_{0})\leqq c$ .

As a consequence of Theorem 1, we have the following Theorem which
generalizes Lemma 1 and [7, Lemma].

THEOREM 15. Let $X$ be a nonempty compact convex set in a separated
toPological vector space E. Let $A$ be a subset of $X\times X$ having the following
properties:

(1) For any $y\in X$, the set $\{x\in X;(x, y)\in A\}$ is closed;
(2) $(x, x)\in A$ for every $x\in X$ ;
(3) for any $x\in X$, the set $\{y\in X:(x, y)\not\in A\}$ is convex.

Then, there exists a Point $x_{0}\in X$ such that $x_{0}\times X\subset A$ .
PROOF. Suppose that for each $x\in X$, there exists $y\in X$ such that $(x, y)\not\in A$ .

Setting $Tx=\{y\in X:(x, y)\not\in A\}$ for each $x\in X$, it is obvious that for each $x\in X$,
$Tx$ is nonempty and convex and for each $y\in X,$ $T^{-1}y$ is open. Hence by
Theorem 1 we have $x_{0}\in X$ such that $x_{0}\in Tx_{0},$ $i$ . $e$ . $(x_{0}, x_{0})\not\in A$ .

\S 4. Minimax theorems.

In this section, we discuss minimax theorems. At first, as a direct con-
sequence of Theorem 1, we shall prove Sion’s minimax theorem [12]. Let $X$

and $Y$ be convex subsets each in a topological vector space and let $f$ be a
mapping of $X\times Y$ into $R$ . If for each $(y, a)\in Y\times R,$ $\{x:f(x, y)<a\}$ is convex,
$f(x, y)$ is said to be quasi-convex on $X$. If for each $(x, a)\in X\times R,$ $\{y;f(x, y)>a\}$

is convex, $f(x, y)$ is said to be quasi-concave on $Y$ ; see Sion’s paper [12].

THEOREM 16 (Sion). Let $X$ and $Y$ be compact convex subsets each in a
top0l0gical vector space and let $f:X\times Y\rightarrow R$ be a function satisfying:

(1) For each $y\in Y,$ $f(x, y)$ is lower semicontinuous and quasi-convex on $X$ ;
(2) for each $x\in X,$ $f(x, y)$ is upper semicontinuous and quasi-concave on $Y$ .

Then,
$\max_{y\in Y}\min_{x\in X}f(x, y)=\min_{x\in X}\max_{y\in Y}f(x, y)$ .

PROOF. Let us be
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$\max_{y}\min_{x}f(x, y)<c<\min_{x}\max_{y}f(x, y)$ .

We define a set valued mapping $T$ of $X\times Y$ into $2^{X\times Y}$ setting $T(x, y)=B_{y}\times A_{x}$ ,

where $A_{x}=\{y\in Y:f(x, y)<c\}$ and $B_{y}=\{x\in X:f(x, y)>c\}$ . By using Theorem
1, we obtain an element $(x_{0}, y_{0})\in X\times Y$ such that $(x_{0}, y_{0})\in T(x_{0}, y_{0})$ . Therefore,
we have $c<f(x_{0}, y_{0})<c$ . This is a contradiction.

Secondly we state a necessary and sufficient condition that a minimax
condition holds and then generalize Terkelsen’s minimax theorem by using the
method employed in [13].

LEMMA 2. Let $X$ be a compact space, and let $F$ be a family of lower semi-
continuous real valued functions on X. If $c=\sup_{f}\min_{x}f(x)$ , the following are
equivalent.

(1) The family $\{A(f);f\in F\}$ has the finite intersection property, where
$A(f)=\{x:f(x)\leqq c\}$ for each $f\in F$.

(2) $\sup_{f}\min_{x}f(x)=\min_{x}\sup_{f}f(x)$ .

PROOF. (1) $\Rightarrow(2)$ . Since the family $\{A(f):f\in F\}$ has the finite intersection
property and $X$ is compact, we have $\bigcap_{f\in F}A(f)\neq\emptyset$ . Let $x_{0}\in\bigcap_{f}A(f)$ . Since $f(x_{0})$

$\leqq c$ for every $f\in F$, we obtain $\sup_{f}f(x_{0})\leqq c$ . Hence we have

$\min_{x}\sup_{f}f(x)\leqq\sup_{f}f(x_{0})\leqq\sup_{f}\min_{x}f(x)$ .

In the other hand, it is obvious that

$\sup_{f}\min_{x}f(x)\leqq\min_{x}\sup_{f}f(x)$ .

(2) $\Rightarrow(1)$ . The equalities

$\min_{x}\sup_{f}f(x)=\sup_{f}\min_{x}f(x)=c$

imply the existence of $x_{0}\in X$ with $\sup_{f}f(x_{0})=c$. Hence, since $f(x_{0})\leqq c$ for every

$f\in F$, it is obvious that the family $\{A(f):f\in F\}$ has the Pnite intersection
property.

THEOREM 17. Let $X$ be a compact space, and let $F$ be a family of lower
semicontinuous real valued functions on $X$ satisfying:

(1) For any $f,$ $g\in F$, there exists $h\in F$ such that $f+g\leqq 2h$ ;
(2) for each $(f, b)\in F\times\{b\in R:c\leqq b\}$ , every finite intersection of sets $\{x:f(x)$

$\leqq b\}$ is connected, with $ c=\sup$ min $f(x)$ . Then,
$\sup_{f}\min_{x}f(x)=\min_{x}\sup_{f}f(x)$ .

PROOF. Suppose that $ A(f)\cap A(g)=\emptyset$ for some pair $f,$ $g\in F$. Then, since
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$c<\min_{x}$ max $[f(x), g(x)]$ , it follows that there exists $b\in R$ such that $c<b<$

min max $[f(x), g(x)]$ . By (1), there exists $k\in F$ such that $f+g\leqq 2k$ . Let $A=$
$x$

$\{x:f(x)\leqq b\},$ $B=\{x:g(x)\leqq b\}$ and $C=\{x:k(x)\leqq b\}$ . Since $A$ and $B$ are non-
empty closed sets with $ A\cap B=\emptyset$ and $C\subset A\cup B$ , by (2) we obtain either $C\subset A$

or $C\subset B$ . If $C\subset A$ , set $f_{1}=k,$ $g_{1}=g$, and if $C\subset B$ , set $f_{1}=f,$ $g_{1}=k$ . Then
$b<\min_{x}\max[f_{1}(x), g_{1}(x)]$ in each case. Defining $r=\min f(x),$ $d=\min g(x)$ ,

$r_{1}=\min f_{1}(x)$ and $d_{1}=\min g_{1}(x)$ , it can be verified that we have either 2$r_{1}>r+b$

and $d_{1}=d$, or $r_{1}=r$ and $2d_{1}>d+b$ . Similarly, we obtain $f_{i},$ $g_{i}\in F$ for all $i=2,3,$ $\cdots$

such that either $2r_{i}>r_{i-1}+b,$ $d_{i}=d_{i-1}$ , or $r_{i}=r_{i-1},2d_{i}>b+d_{i-1}$ , where $r_{i}=$

min $f_{l}(x),$ $d_{i}=\min g_{i}(x)$ . It is obvious that at least one of the sequences $\{r_{i}\}$

and $\{d_{i}\}$ must converge to $b$ . Suppose $r_{i}\rightarrow b$ for $ i\rightarrow\infty$ . Since $c<b$ , there exists
$i_{0}$ such that $c<r_{i_{0}}<b$ . This is a contradiction, because $\{x:f_{i_{0}}(x)\leqq c\}$ is non-
empty. Therefore, we have $ A(f)\cap A(g)\neq\emptyset$ for each pair $f,$ $g\in F$.

Now, we can show by the mathematical induction that the family { $A(f)$ :
$f\in F\}$ has the finite intersection property. In fact, let $\{f_{1}, f_{2}, \cdots , f_{n}\}\subset F$ and
$A=A(f_{n})$ . Since $ A(f)\cap A\neq\emptyset$ for each $f\in F$, we have $\min_{x\in A}f(x)\leqq c$ and hence

$\sup_{f}\min_{x\in A}f(x)\leqq c$ . The inequality $\min_{x\in X}f(x)\leqq\min_{x\in A}f(x)$ implies

$c=\sup_{f}\min_{x\in X}f(x)\leqq\sup_{f}\min_{x\in A}f(x)\leqq c$ ,

$i$ . $e$ . $\sup_{f}\min_{x\in A}f(x)=c$ . Therefore, the family of restrictions $\{f|_{A} : f\in F\}$ satisfies

the assumptions of Theorem with respect to $A$ .

\S 5. Systems of convex inequalities.

In this section, at first we give another proof for Fan’s theorem [5] con-
cerning systems of convex inequalities. The proof is simple.

LEMMA 3. Let $X$ and $Y$ be topOlOgical spaces. SuppOse that $f$ is a non-
negative real valued continuous function on $X$ and $g$ is a real valued lower
semicontinuous function on Y. Then, setting $F(x, y)=f(x)g(y)$ for each $(x, y)\in$

$X\times Y,$ $F$ is lower semicontinuous on $X\times Y$.
PROOF. For any $c\in R$ , let $Z=\{(x, y):f(x)g(y)\leqq c\}$ . We shall show that if

$\{(x_{\alpha}, y_{\alpha});\alpha\in I\}$ is a generalized sequence such that $(x_{\alpha}, y_{\alpha})$ converges to
$(x_{0}, y_{0})$ , then $(x_{0}, y_{0})\in Z$. Let $c\geqq 0$ . Suppose that $f(x_{0})g(y_{0})>c\geqq 0$ . Then it
follows that $f(x_{0})>0$ and $g(y_{0})>0$ and hence there exists $\beta>0$ such that
$g(y_{0})>\beta>c/f(x_{0})$ . Defining $A=\{x:f(x)>c/\beta\geqq 0\}$ and $B=\{y;g(y)>\beta\}$ , it is
obvious that $A\times B$ is open and $(x_{0}, y_{0})\in A\times B$ . Hence, we have that $(x_{\alpha}, y_{\alpha})\in$

$A\times B$ for some $\alpha\in I$. This implies $g(y.)>\beta>c/f(x.),$ $i$ . $e$ . $f(x.)g(y.)\geqq c$ . This
is a contradiction. Therefore we have $f(x_{0})g(y_{0})\leqq c$ . Similarly we can prove
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Lemma 3 for the case of $c<0$ .
THEOREM 18 (Fan). Let $X$ be a compact convex set in a topOlOgical vector

sPace. Let $f_{1},$ $f_{2},$ $\cdots$ , $f_{n}$ be $n$ real valued lower semicontinuous convex functions
defined on $X$ and $c\in R$ . Then there exists a pOint $x\in X$ satisfying $f_{i}(x)\leqq c$

$(1\leqq i\leqq n)$ , if and only if, for any $n$ nonnegative numbers $\alpha_{i}$ with $\sum_{i=1}^{n}\alpha_{i}=1$ , there
is a Point $x\in X$ such that

$\sum_{i=1}^{n}\alpha_{i}f_{i}(x)\leqq c$ .

PROOF. We need only prove the “ if” part. Let $A(f_{i})=\{x:f_{i}(x)\leqq c\}$ and
$B(f_{i})=\{x:f_{i}(x)>c\}$ for each $i=1,2,$ $\cdots$ , $n$ . Suppose that $\cap A(f_{i})=\emptyset$ . Then,
$\cup B(f_{i})=X$. Let $\{\beta_{1}, \beta_{2}, \cdots , \beta_{n}\}$ be a partition of unity corresponding to this
covering. Setting

$F(x, y)=\sum_{i=1}^{n}\beta_{i}(x)f_{i}(y)$

for each $(x, y)\in X\times X$, then there exists a real number $\alpha_{0}$ such that $ F(x, x)\geqq$

$\alpha_{0}>c$ for all $x\in X$. By using Lemma 1, we obtain $x_{0}\in X$ such that $ F(x_{0}, y)\geqq$

$\alpha_{0}>c$ for all $y\in X$. This completes the proof.
Let $X$ and $Y$ be arbitrary sets. A function $F:X\times Y\rightarrow R$ is convexlike on

$X$, if for any $x_{1},$ $x_{2}\in X$ and $\lambda\in R$ with $0<\lambda<1$ , there exists $x_{0}\in X$ such that

$F(x_{0}, y)\leqq\lambda F(x_{1}, y)+(1-\lambda)F(x_{2}, y)$

for all $y\in Y$. Similarly, $F$ is concavelike on $Y$, if for any $y_{1},$ $y_{2}\in Y$ and $\lambda\in R$

with $0<\lambda<1$ , there exists $y_{0}\in Y$ such that

$F(x, y_{0})\geqq\lambda F(x, y_{1})+(1-\lambda)F(x, y_{2})$

for all $x\in X$. By using Theorem 18, we can prove the following Fan’s minimax
theorem [4].

THEOREM 19 (Fan). Let $X$ be a compact convex set in a toPological vector
sPace, let $Y$ be a set, and let $F:X\times Y\rightarrow R$ be a function satisfying:

(1) For each $y\in Y,$ $F(x, y)$ is lower semicontinuous and convex on $X$ ;
(2) for each $x\in X,$ $F(x, y)$ is concavelike on $Y$ .

Then,

$\sup_{y}\min_{x}F(x, y)=\min supF(x, y)$ .

PROOF. Let $c=\sup_{y}\min_{x}F(x, y)$ . Let $\{y_{1}, y_{2}, \cdots , y_{n}\}$ be a finite subset of $Y$

and $\{\alpha_{1}, \alpha_{2}, \cdots , \alpha_{n}\}$ be nonnegative numbers such that $\sum_{i=1}^{n}\alpha_{i}=1$ . By hypothesis,
there exists $y_{0}\in Y$ such that

$\sum_{i=1}^{n}\alpha_{i}F(x, y_{l})\leqq F(x, y_{0})$
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for all $x\in X$. Since for $y_{0}\in Y$ there exists $x_{0}\in X$ such that $F(x_{0}, y_{0})\leqq c,$ $i$ . $e$ .
$\sum\alpha_{i}F(x_{0}, y_{i})\leqq c$ , by Theorem 18, it follows that there exists $z\in X$ such that
$F(z, y_{i})\leqq c$ for $i=1,2,$ $\cdots$ , $n$ . Therefore, by Lemma 2, we have $\sup_{y}\min_{x}F(x, y)$

$=\min_{x}\sup_{y}F(x, y)$ .
As a direct consequence of Theorem 19, we obtain a generalization of [2,

Lemma 1].

THEOREM 20. Let $X$ be a compact convex set in a topOlOgical vector space,
let $Y$ be a set, and let $F;X\times Y\rightarrow R$ be a function satisfying:

(1) For each $y\in Y,$ $F(x, y)$ is lower semicontinuous and convex on $X$ ;
(2) for each $x\in X,$ $F(x, y)$ is concavelike on $Y$ .

Let $c\in R$ . If for each $y\in Y$, there exists $x\in X$ such that $F(x, y)\leqq c$ , then there
exists $u\in X$ such that $F(u, y)\leqq c$ for all $y\in Y$.

PROOF. By Theorem 19, we have

$\sup_{y}\min_{x}F(x, y)=\min\sup_{y}F(x, y)$ .

Since for each $y\in Y$ , there exists $x\in X$ such that $F(x, y)\leqq c$ , we have
sup min $F(x, y)\leqq c$ . Therefore, we have $u\in X$ such that $\sup_{y}F(u, y)\leqq c$ .

\S 6. Variational inequalities for multi valued mappings.

By using Lemma 1 we can prove the following Theorem.
THEOREM 21. Let $X$ be a compact convex subset of a locally convex topo-

logical vector space $E$ and $T$ be a upper semicontinuous multi valued mapping
of $X$ into $2^{E}$ such that for each $x\in X,$ $Tx$ is nonempty and comPact. If for
each $x\in X$,

$\min_{y\in X}\max_{w\in Tx}\langle w, x-y\rangle=\max_{w\in Tx}\min_{y\in X}\langle w, x-y\rangle$ ,

then there exist $x_{0}\in X$ and $w_{0}\in Tx_{0}$ such that $\langle w_{0}, x_{0}-y\rangle\geqq 0$ for all $y\in X$.
PROOF. Define a real valued function $F$ on $X\times X$ by

$ F(x, y)=\max_{w\in Tx}\langle w, x-y\rangle$ .

Then, by upper semicontinuity of $T$ , we have that $x\mapsto F(x, y)$ is upper semi-
continuous. In fact, let $y\in X,$ $a\in R$ and $A=\{x\in X;F(x, y)\geqq a\}$ . We shall show
that if $\{x_{\alpha}\in A:\alpha\in I\}$ is a generalized sequence such that $x_{\alpha}$ converges to $x_{0}$ ,
then $x_{0}\in A$ . For each $x_{a}\in A$ , there exists $w_{\alpha}\in Tx_{\alpha}$ such that $\langle w_{\alpha}, x_{\alpha}-y\rangle\geqq a$ .
Since $\bigcup_{x\in X}Tx$ is compact, there exists a subsequence $\{w_{\alpha^{\prime}}\}$ of $\{w_{a}\}$ such that
$w_{a^{\prime}}\rightarrow w_{0}$ . Since $T$ is upper semicontinuous of $X$ of $2^{E}$“, we have $w_{0}\in Tx_{0}$ . We
have also

$ a\leqq\lim_{\alpha^{\prime}}\langle w_{\alpha^{\prime}}, x_{\alpha^{\prime}}-y\rangle=\langle w_{0}, x_{0}-y\rangle$ .
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Hence $A$ is closed, $i$ . $e$ . $x\vdash\rightarrow F(x, y)$ is upper semicontinuous. It is obvious that
$y\rightarrow F(x, y)$ is convex and $F(x, x)=0$ for all $x\in X$. Hence, by Lemma 1, there
exists $x_{0}\in X$ such that $\max_{w\in Tx_{0}}\langle w, x_{0}-y\rangle\geqq 0$ for all $y\in X$. Since

$\min_{y\in Xw}\max_{\in Tx_{0}}\langle w, x_{0}-y\rangle=\max_{w\in Tx_{0}}\min_{y\in X}\langle w, x_{0}-y\rangle$ ,

we have $w_{0}\in Tx_{0}$ such that $\langle w_{0}, x_{0}-y\rangle\geqq 0$ for all $y\in X$.
In Theorem 21, if $Tx$ is convex, we know by Theorem 19 that a minimax

condition holds. So, we shall obtain Browder’s theorem [2, Theorem 6].
Furthermore, we can prove the following Theorem.

THEOREM 22. Let $X$ be a compact convex subset of a finite dimensional
Euclidean sPace $E$ and $T$ be a $uPPer$ semicontinuous multi valued maPping of
$X$ into $2^{E}$ such that for each $x\in X,$ $Tx$ is nonempty compact. If for each $x\in X$,

$\min_{y\in X}\max_{w\in Tx}\langle w-x, x-y\rangle=\max_{w\in Tx}\min_{y\in X}\langle w-x, x-y\rangle$ ,

then, there exist $x_{0}\in X$ and $w_{0}\in Tx_{0}$ such that $\langle w_{0}-x_{0}, x_{0}-y\rangle\geqq 0$ for all $y\in X$.
PROOF. Let $ F(x, y)=\max_{w\in Tx}\langle w-x, x-y\rangle$ for $x,$ $y\in X$. Since $T$ is upper

semicontinuous of $X$ into $2^{E}$, for each $y\in X,$ $x-F(x, y)$ is upper semicontinuous.
It is obvious that for each $x\in X,$ $y-*F(x, y)$ is convex. By using Lemma 1,
we obtain $x_{0}\in X$ such that

$F(x_{0}, y)=\max_{w\in Tx_{0}}\langle w-x_{0}, x_{0}-y\rangle\geqq 0$

for all $y\in X$. Since

$\min_{y\in Xw}\max_{\in Tx_{0}}\langle w-x_{0}, x_{0}-y\rangle=\max_{w\in Tx_{0}}\min_{y\in X}\langle w-x_{0}, x_{0}-y\rangle$ ,

there exists $w_{0}\in Tx_{0}$ such that $\langle w_{0}-x_{0}, x_{0}-y\rangle\geqq 0$ for all $y\in X$.
In Theorem 22, if $T$ is a mapping of $X$ into $2^{X}$, by putting $y=w_{0}$ , we obtain

$w_{1}=x_{0},$
$i$ . $e$ . $x_{0}\in Tx_{0}$ . Kakutani’s fixed point theorem [9] is the case of which

for each $x\in X,$ $Tx$ is convex; that is, a minimax condition holds.
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