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Scattering theory for elliptic systems
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Abstract. We prove existence and completeness of the wave operators
and the invariance principle for first order systems even though the per-
turbation does not have compact support and no unique continuation pro-
perty is assumed.

\S 1. Introduction.

The systems considered are of the form

(1.1) $Hu=E^{-1}(\sum_{j=1}^{n}A^{j}D_{j}u+Bu)$ ,

where $u$ is an $m$ component vector valued function of $x\in E^{n},$ $A^{j}(x),$ $E(x)$ and
$B(x)$ are $m\times m$ matrix valued measurable functions of $x$ and $D_{j}=\partial/i\partial x_{j}$ . For
the unperturbed system we take

(1.2) $H_{0}u=E_{0^{-1}}\sum_{j=1}^{n}A_{0^{j}}D_{j}u$ ,

where $E_{0}$ and the $A_{0^{j}}$ are constant matrices. We make the following assump-
tions:

1. The matrices $E_{0},$ $A_{0^{j}},$ $E,$ $A^{j}$ are hermitian.
2. $H_{0}$ is elliptic and $H$ is uniformly elliptic.
3. $E_{0}$ is positive definite and $E$ is uniformly positive definite.
4. The $A^{j}$ are bounded and uniformly continuous.
5. $E$ is bounded.
6. The distribution derivatives $D_{j}A^{j}$ satisfy

(1.3) $B-B^{*}=\sum_{j=1}^{n}D_{j}A^{j}$ ,

where $B^{*}$ is the hermitian adjoint of $B$ .
7. $B(x)$ is locally square integrable and

(1.4) $\sup_{x}\int_{|x-y|<\delta}|B(y)|^{2}|x-y|^{2-n}dy\rightarrow 0$ as $\delta\rightarrow 0$ .
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8. There is an $\alpha>0$ such that

$\int(\sum|A^{j}(x)-A_{0^{j}}|+|E(x)-E_{0}|+|B(x)|+|B(x)|^{2})\rho(x)^{a}dx<\infty$ ,

where $\rho(x)=1+|x|$ .
The domain of $H_{0}$ is taken as the set of those $u\in \mathcal{H}=[L^{2}(E^{n})]^{m}$ such that

$A_{0}(\xi)Fu$ is in $\mathcal{H}$ , where $A_{0}(\xi)=\sum A_{0^{j}}\xi_{j}$ and $F$ denotes the Fourier transform.
Let $\mathcal{H}_{0}$ be $\mathcal{H}$ equipped with the scalar product

(1.6) $(u, v)_{0}=\int v(x)^{*}E_{0}u(x)dx$ .

It is easily verified that $H_{0}$ is self adjoint on $\mathcal{H}_{0}$ . The hypotheses allow us to
define $H$ on the same domain. Moreover, if we let $\mathcal{H}_{1}$ denote $\mathcal{H}$ equipped
with the scalar product

$(u, v)_{1}=\int v(x)^{*}E(x)u(x)dx$ ,

then (1.3) shows that $H$ is symmetric. In fact we have
LEMMA 1.1. Under hypotheses1-7, $H$ is self adjoint on $\mathcal{H}_{1}$ .
Let $J$ be the identification operator $Ju=u$ mapping $\mathcal{H}_{0}$ onto $\mathcal{H}_{1}$ , and put

(1.7) $W(t)=e^{itH}Je^{-itH_{0}}$ .
The wave operators are defined by

(1.8) $W_{\pm}u=\lim_{t\rightarrow\pm\infty}W(t)u$ ,

when these limits exist for each $u\in \mathcal{H}_{0}$ . They are said to be complete if their
ranges coincide and equal the absolutely continuous subspace of $H$. The in-
variance principle holds if

(1.9) $W_{\pm}u=\lim_{t\rightarrow\pm\infty}e^{it\varphi(H)}Je^{-tt\varphi(H_{0})}u$ ,

whenever $\varphi$ satisfies

(1.10) $\int_{0}^{\infty}|\int_{\Gamma}e^{-i\eta s- it\varphi(s)}ds|^{2}d\eta\rightarrow 0$ as $ t\rightarrow\infty$

and

(1.11) $\int_{\Gamma}e^{-it\varphi(s)}ds\rightarrow 0$ as $ t\rightarrow\infty$

for each bounded Borel set $\Gamma$ . One of our main results is
THEOREM 1.2. Under hypotheses1-8, the wave operators exist and are com-

plete, and the invariance Principle holds.
Denote the roots of det $(\lambda E_{0}-A_{0}(\xi))=0$ by $\lambda_{j}(\xi)$ . They are continuous

algebraic functions (cf. [1]), but in general their multiplicities need not be
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constant. However, we have
THEOREM 1.3. If the muliiplicities of the roots are constant, then hypOthesis

8 may be replaced by
8’. There are constants $\alpha>0$ and $ 1\leqq p\leqq\infty$ satisfying $\alpha>1-p-1$ such that

(1.12) $\rho(x)^{\alpha}Z(x)\in L^{p}$ ,

where

(1.13) $Z(x)=\int_{|x-y|<1}(\sum_{j=1}^{n}|A^{j}(y)-A_{0^{j}}|+|E(y)-E_{0}|+|B(y)|+|B(y)|^{2})dy$ .

The set of all $\xi\in E^{n}$ such that $\lambda_{j}(\xi)=1$ for some $j$ is called the slowness
surface for the system (1.2).

THEOREM 1.4. Assume in addition that the sheets of the slowness surface
have nonvanishing total curvature at each Point. Then hypothesis8 can be
replaced by

$8^{\prime\prime}$ . There is a $\beta<(1/2)(n-1)$ such that

(1.14) $\sup_{x}\int Z(y)\rho(x-y)^{-\beta}dy<\infty$

and

(1.15) $Z(x)\rightarrow 0$ as $|x|\rightarrow\infty$ .
THEOREM 1.5. Under the same assumptions, hypothesis 8 can be replaced by

8“‘. (1.15) holds and there are constants $\alpha\geqq 0$ and $ 1\leqq P\leqq\infty$ such that
$\alpha>1-[2n/(n+1)p]$ and (1.12) holds.

Scattering for special cases of system (1.1) has been studied by several
authors. The case $A^{j}=A_{0^{j}},$ $B=0$ was dealt with by Schulenberger and Wilcox
$[2, 3]$ , Birman [6], Avila [5], LaVita et al. [4] and others. Because of the
nature of the perturbation in this case they were able to consider nonelliptic
systems as well. Systems satisfying the hypotheses of Theorem 1.3 are called
uniformly propagative. When $E=E_{0}=I$, system (1.1) was studied by Lax and
Phillips $[8, 7]$ . They required the perturbation to have compact support and
that the system have the unique continuation property. Agmon has told the
author that he has results for symmetric elliptic systems. We do not know
what hypotheses he makes on the coefficients. To the best of our knowledge
the present paper is the first to consider systems of the general form (1.1).

June 13, 1974.

\S 2. Selfadjointness.

In this section we give a proof of Lemma 1.1. A simple calculation using
(1.3) shows that $H$ is symmetric on $\mathcal{H}_{1}$ . The proof that it is actually self
adjoint will be carried out by a series of lemmas. We let $H^{s,2}$ denote the set
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of those $u\in \mathcal{H}$ such that $\rho(\xi)^{s}Fu\in \mathcal{H}$ . Denote its norm by $\Vert\Vert_{s,2}$ . We have
LEMMA 2.1.

$D(H_{0})=H^{1,2}$

PROOF. Since $H_{0}$ is elliptic, there is a constant $C$ such that

(2.1) $C^{-1}|\xi||\omega|\leqq|A_{0}(\xi)\omega|\leqq C|\xi||\omega|$

for $\xi\in E^{n}$ and $\omega$ a complex vector. If we put $\omega=Fu$ in (2.1) we see that $u$

and $A_{0}(\xi)Fu$ are in $\mathcal{H}$ if and only if $u\in H^{12}$ . $\square $

LEMMA 2.2. For each $\epsilon>0$ there is a constant $K$ such that

(2.2) $\Vert Bu\Vert\leqq\epsilon\Vert u\Vert_{1,2}+K\Vert u\Vert$ , $u\in H^{1,2}$

PROOF. This follows from hypothesis 7 as in the scalar case (cf. [9, $p$ .
140]). $\square $

LEMMA 2.3. Put $A=EH$. Then there exists a constant $C$ such that

(2.3) $ C^{-1}\Vert u\Vert_{1,2}\leqq\Vert$ Au $\Vert+\Vert u\Vert\leqq C\Vert u\Vert_{1,2}$ , $u\in H^{12}$

PROOF. Since the $A^{j}$ are bounded and uniformly continuous and $H$ is uni-
formly elliptic, we have

(2.4) $C^{-1}\Vert u\Vert_{1,2}\leqq\Vert\sum A^{j}D_{j}u\Vert+\Vert u\Vert\leqq C\Vert u\Vert_{1,2}$

by the usual coerciveness inequality [10]. Now (2.3) follows from (2.4) and
(2.2) with $\epsilon$ sufficiently small. $\square $

Let $H_{1\dot{o}c}^{12}$ be the set of those $u$ such that $\varphi u$ is in $H^{1,2}$ for every $\varphi\in C_{0}^{\infty}$ ,
the test functions.

LEMMA 2.4. If $u\in H_{1\dot{o}c}^{12}$ and $u$ , Au are in $\mathcal{H}$ , then $u\in H^{1,2}$ .
PROOF. There is a system $\{N_{k}\}$ of open sets and a sequence $\{\zeta_{k}\}$ of test

functions such that 1) the support of $\zeta_{k}$ is in $\Lambda^{r_{k}},$ $2$ ) $UN_{k}=E^{n}$ and

$\sum_{k}\Vert v\Vert^{(N_{k})}\leqq C\Vert v\Vert$ , $v\in L^{2}$

where

$\Vert v\Vert^{(S)}=(J_{s}|v(x)|^{2}dx)^{1/2}$ ,

3) $\zeta_{k}\geqq 0$ and $\sum\zeta_{k}\equiv 1$ and 4) $\zeta_{k}+\sum|D_{j}\zeta_{k}|\leqq C$ . Now $\zeta_{k}u$ is in $H^{12}$ and by (2.3)

$\Vert\zeta_{k}u\Vert_{1,2}\leqq C(\Vert A\zeta_{k}u\Vert+\Vert\zeta_{k}u\Vert)\leqq C^{\prime}$ ( $\Vert$ Au $\Vert^{(Nk)}+\Vert u\Vert^{(Nk)}$).
Thus

$\Vert u\Vert_{1,2}=\Vert\sum\zeta_{k}u\Vert_{12}\leqq\sum\Vert\zeta_{k}u\Vert_{1,2}$

$\leqq C^{\prime}\sum$ ( $\Vert$ Au $\Vert^{(Nk)}+\Vert u\Vert^{(Nk)}$ ) $\leqq C$ “( $\Vert$ Au $\Vert+\Vert u\Vert$ ).

Thus $u\in H^{12}$ . $\square $
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LEMMA 2.5. If, in addition, the coefficients of $A$ are in $C^{\infty}$ , then $A$ with
$D(A)=H^{12}$ is self adjoint.

PROOF. Suppose $u,$ $f\in \mathcal{H}$ and $(u, Av)=(f, v)$ for every $v\in C_{0}^{\infty}$ . The $u\in H_{1o^{2}c}^{1}$

by the regularity theory for elliptic systems. Thus $Au=f\in \mathcal{H}$ . Apply Lemma
2.4. $\square $

LEMMA 2.6. Let $B$ be a closed symmetric operatOr on a Hilbert space $\mathcal{H}$ ,
and suppOse there is a sequence $\{B_{k}\}$ of self adjoint oPerators such that $D(B_{k})$

$=D(B)=D$ and

(2.6) $\Vert(B_{k}-B)u\Vert\leqq\epsilon_{k}(\Vert Bu\Vert+\Vert u\Vert)$ , $u\in D$ ,

where $\epsilon_{k}\rightarrow 0$ as $ k\rightarrow\infty$ . Then $B$ is self adjoint.
PROOF. Note that (2.6) implies

(2.7) $\Vert(B_{k}-B)u\Vert\leqq\delta_{k}(\Vert B_{k}u\Vert+\Vert u\Vert)$ , $u\in D$ ,

where $\delta_{k}\rightarrow 0$ . Suppose $u,$ $f\in \mathcal{H}$ satisfy

(2.8) $(u, Bv)=(f, v)$ , $v\in D$ .

Put $\Phi(v, B_{k}v)=(u, (B_{k}-B)v)$ . It is a conjugate linear functional on the graph
of $B_{k}$ . By (2.7)

$|\Phi(v, B_{k}v)|\leqq\delta_{k}\Vert u\Vert(\Vert B_{k}v\Vert+\Vert v\Vert)$ .

By the Hahn-Banach theorem it can be extended to the whole of $\mathcal{H}\times \mathcal{H}$ with-
out increasing its norm. Thus there are elements $u_{k},$ $f_{k}\in \mathcal{H}$ such that

$(u, (B_{k}-B)v)=(u_{k}, B_{k}v)+(f_{k}, v)$ , $v\in D$

and
max $(\Vert u_{k}\Vert, \Vert f_{k}\Vert)\leqq\epsilon_{k}$ I $u\Vert\rightarrow 0$ as $ k\rightarrow\infty$ .

Thus by (2.8)
$(u-u_{k}, B_{k}v)=(f+f_{k}, v)$ .

Since $B_{k}$ is self adjoint, $u-u_{k}\in D$ and $B_{k}(u-u_{k})=f+f_{k}$ . By this and (2.7)

$\Vert(B-B_{k})(u-u_{k})\Vert\leqq\delta_{k}(\Vert f+f_{k}\Vert+\Vert u-u_{k}\Vert)\rightarrow 0$ .

Hence $B(u-u_{k})\rightarrow f$. Since $u-u_{k}\rightarrow u$ and $B$ is a closed operator, we see that
$u\in D$ and $Bu=f$. $\square $

LEMMA 2.7. There exists a sequence $\{A_{k}\}$ of self adjoint oPerators on $\mathcal{H}$

such that $D(A_{k})=H^{12}$ and

(2.9) $\Vert(A_{k}-A)u\Vert\leqq\epsilon_{k}\Vert u\Vert_{1,2}$ ,

where $\epsilon_{k}\rightarrow 0$ as $ k\rightarrow\infty$ .
PROOF. Apply the Friedrichs molliPer $J_{\epsilon}$ to each element of the matrices
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$A^{j}$ and $B$ . Put $\epsilon=1/k$ and denote the corresponding operator by $A_{k}$ . The
coefficients of the system are infinitely differentiable and satisfy hypotheses
1-7 with constants independent of $k$ for $k$ sufficiently large. By Lemma 2.5,
each $A_{k}$ is self adjoint. Inequality (2.9) follows from standard arguments. $\square $

PROOF OF LEMMA 1.1. $H$ is self adjoint on $\mathcal{H}_{1}$ if and only if $A$ is self
adjoint on $\mathcal{H}$ . The latter fact follows from Lemmas 2.6 and 2.7. $\square $

\S 3. The abstract theory.

We prove Theorems 1.2-1.5 by verifying that the hypotheses of an abstract
theorem are satisfied. We take the theorem from [11], which uses ideas of
Kato, Kuroda and Birman (cf. [11] for references). We state the theorem in
a form convenient for the application at hand. Let $\mathcal{H}_{0}$ (resp. $\mathcal{H}_{1}$ ) be a Hilbert
space, and let $H_{0}$ (resp. $H$ ) be a self adjoint operator on it with spectral
family $\{E_{0}(\lambda)\}$ (resp. $\{E(\lambda)\}$ ). Put $R_{0}(\zeta)=(\zeta-H_{0})^{-1}$ when it exists. Assume

$a$ . There is a linear bijective operator $J$ from $\mathcal{H}_{0}$ onto $\mathcal{H}_{1}$ such that
$JD(H_{0})=D(H_{1})$ .

$b$ . There are a Hilbert space $JC$ and closed linear operators $A,$ $B$ from $\mathcal{H}_{0}$

to $JC$ such that $A$ is injective and $D(H_{0})\subset D(A)\cap D(B)$ .
$c$ . $BR(Z)A^{*}$ is bounded for some $Z,$ $D(H_{0})\subset D(B^{*}A)$ and

(3.1) $HJ=JH_{0}-JB^{*}A$ .
$d$ . $BR_{0}(\zeta)$ is a compact operator for all nonreal $\zeta$ .
$e$ . The spectrum of $H_{0}$ is absolutely continuous and $[J^{*}J-I]E_{0}(\Gamma)$ is a

compact operator for each bounded interval $\Gamma$ .
$f$ . There are functions $M(s),$ $N(s)$ from $\sigma(H_{0})$ to $B(JC)$ which are locally

H\"older continuous such that

(3.2) $d(E_{0}(s)A^{*}u, A^{*}v)_{0}/ds=M(s)u,$ $v)_{X}$

(3.3) $d(E_{0}(s)B^{*}u, A^{*}v)_{0}/ds=(N(s)u, v)_{X}$ .
THEOREM 3.1. Under hypotheses a-f, the wave operatOrs(1.8) exist and

are complete and the invariance principle holds.
Theorem 3.1 is a special case of a theorem proved in [11]. We now use

Theorem 3.1 to give the
PROOF OF THEOREM 1.2. We show that hypotheses 1-8 imply a-f. There

exist matrix functions $V(x),$ $W(x),$ $S^{j}(x),$ $T^{j}(x),$ $L(x)$ and $M(x)$ such that $L(x)$

is bounded and
1) $V,$ $W,$ $S^{j},$ $T^{j}$ are hermitian
2) $W(x)$ is nonsingular for each $x$

3) $VW=E-E_{0},$ $S^{j}T^{j}=A^{j}-A_{0^{f}},$ $LM=B$



Scattering theory for elliptic systems 77

4) $\int(\Sigma|S^{j}(x)|^{2}+\Sigma|T^{j}(x)|^{2}+|V(x)|^{2}+|W(x)|^{2}+|L(x)|^{2}+|M(x)|^{2})$

$\rho(x)^{a}dx<\infty$

5) $\sup_{x}\int_{|x-y|<1}|M(y)|^{2}|x-y|^{2-n}dy\leqq C_{0}$ .

We take $c\chi$ as the direct sum of $n+2$ copies of $\mathcal{H}$ and define

$Au=(\{T^{j}D_{j}u\}, Mu, WH_{0}u)$

$Bu=(\{S^{j}E^{-1}u\}, LE^{-1}u, VE^{- 1}u)$

with $D(A)=H^{1,2}$ and $D(B)=\mathcal{H}$ . This is possible because 5) implies

$\Vert Mv\Vert\leqq C\Vert v\Vert_{1,2}$

(cf. [9, p. 138]). Note that

$B^{*}(\{v_{j}\}, v, w)=E^{-1}(\Sigma S^{j}v_{j}+Lv+Vw)$ ,

and consequently $B^{*}A=H-H_{0}$ . Now

$BR_{0}(\zeta)u=(\{S^{j}E^{-1}R_{0}(\zeta)u\}, LE^{-1}R_{0}(\zeta)u, VE^{-1}R_{0}(\zeta)u)$ .
By 4) this is a compact operator (cf. [9, p. 111]). Next note that

(3.4) $FE_{0}(\Gamma)f=\sum X_{j}(\xi)P_{j}(\xi)Ff$ ,

where $X_{j}(\xi)$ is the characteristic function of the set $\lambda_{j}(\xi)\in\Gamma$ and $P_{j}(\xi)$ are
bounded homogeneous matrices of degree $0$ (cf., $e$ . $g.,$ $[3]$ , where explicit for-
mulas are given for the $P_{j}(\xi))$ . Since the $\lambda_{j}$ are bounded away from $0$ , the $X_{j}$

have compact support if $\Gamma$ is bounded. Thus there is a $\varphi\in C_{0}^{\infty}$ such that
$\varphi FE_{0}(\Gamma)f=FE_{0}(\Gamma)f$. Let $Q$ be the operator given by $Qu=\overline{F}\varphi*u$ , where $\overline{F}$

denotes the inverse Fourier transform. By 4), $WQ$ is a compact operator on
$\mathcal{H}$ ([9, p. 86]). Since $J^{*}=E_{0}^{-1}E$, we have $(J^{*}J-I)E(\Gamma)=E_{0}^{-1}VWQE(\Gamma)$ . Thus
this operator is compact for $\Gamma$ bounded.

Next note that ([3, 12, 11])

$d(E_{0}(s)f, g)_{0}/ds=(K_{s}*f, g)$ ,

where

$ K_{s}(x)=\sum_{j}\int_{s_{j’ s}}e^{ix\xi}E_{0}P_{f}(\xi)d\sigma$

and $S_{j,s}$ is the set $\lambda_{j}(\xi)=s$ . Since the $\lambda_{j}$ are continuous and homogeneous of
degree 1, the set $S_{j,s}$ are bounded for each $s$ . Thus $K_{s}(x)$ is a bounded func-
tion of $x$ for each $s$ . Note also that $K_{s}(x)=s^{n-1}K_{1}(sx)$ . This implies that for
each $\alpha>0,$ $\alpha\leqq 1$ ,

$|K_{s}(x)-K_{t}(x)|\leqq C|s-t|^{\alpha}\rho(x)^{a}$
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where $C$ is independent of $x$ . Thus if $X(x),$ $Y(x)$ are matrix functions

$|(K_{s}*(Xu), Yv)|\leqq C\Vert X\Vert\Vert Y\Vert\Vert u\Vert\Vert v\Vert$

and
$|([K_{s}-K_{t}]*(Xu), Yv)|^{2}\leqq C|s-t|^{a}\Vert u\Vert^{2}\Vert v\Vert^{2}$

$\times\int\int\rho(x-y)^{2\alpha}|X(y)|^{2}|Y(x)|^{2}dxdy$

$\leqq C|s-t|^{\alpha}\Vert u\Vert^{2}\Vert v\Vert^{2}\Vert\rho^{\alpha}X\Vert^{2}\Vert\rho^{\alpha}Y\Vert^{2}$

Thus we see that if $\Vert\rho^{\alpha}X\Vert$ and $\Vert\rho^{\alpha}Y\Vert$ are finite for some $\alpha>0$ , then

$d(E_{0}(s)Xu, Xv)_{0}/ds=(R(s)u, v)$ ,

where $R(s)$ is a locally H\"older continuous function from the reals to $B(\mathcal{H})$ .
We now replace $X$ and $Y$ by $V,$ $W,$ $S^{j},$ $T^{j},$ $L,$ $M$ in the aPpropriate combina-
tions to see that (3.2) and (3.3) hold. $\square $

PROOF OF THEOREM 1.3. If the multiplicities of the $\lambda_{j}$ are constant, then
the $S_{j,s}$ are smooth bounded surfaces depending smoothly on $s$ . By Lemma
3.7 of [11], condition $f$ will be satisfied if $\rho(x)^{\alpha}Z(x)$ is bounded for some $\alpha>1$ .
Employing an interpolation theorem as in $[12, 11]$ we obtain hypothesis 8’. $\square $

PROOF OF THEOREMS 1.4 AND 1.5. If the sheets of the slowness surface
have nonvanishing total curvature, then it follows from a theorem of Littman
[13] that

$|K_{s}(x)|\leqq C\rho(x)^{1}/2^{(1-n)}$

and
$|K_{s}(x)-K_{t}(x)|\leqq C|s-t|^{\alpha}\rho(x)^{1/2(1-n)+a}$

for each $\alpha>0,$ $\alpha\leqq 1$ (cf. [11]). An application of Lemma 7.2 of [11] gives
Theorem 1.4. Now hypothesis 8”’ implies 8” for $p<2n/(n+1)$ . It implies
hypothesis 8’ for $ p=\infty$ . As in $[12, 11]$ another application of the interpolation
theorem gives Theorem 1.5. $\square $
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