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\S 1. Introduction.

The purpose of the present paper is to characterize the images of some
function spaces on the motion groups by the Fourier transform.

Let $K$ be a connected compact Lie group acting on a finite dimensional
real vector space $V$ as a linear group. Let $G$ be the semidirect product of
$V$ and $K,$ $i$ . $e$ . $G$ is the group comprised of all pairs $(x, k)(x\in V, k\in K)$ with
the direct product topology, multiplication being given by $(x_{1}, k_{1})(x_{2}, k_{2})=$

$(x_{1}+k_{1}x_{2}, k_{1}k_{2})$ . $G$ is called the motion group.
Let $\hat{V}$ be the dual space of $V$ . For any $\xi\in\hat{V}$ we denote by $U^{\xi}$ the induced

representation of $G$ by the unitary representation $x->e^{i<\xi,x>},$ $(i=\sqrt{-1})$ of the
normal abelian subgroup V. $U^{\xi}$ is not irreducible. Any irreducible unitary
representation of $G$ is, however, contained in $U^{\xi}$ for some $\xi\in\hat{V}$ as an irre-
ducible component. Let $E$ be a function space on $G$ . We define the Fourier

transform $T_{f}$ of $f\in E$ by $T_{f}(\xi)=\int_{G}f(g)U_{g}^{\xi}dg$. If $f$ is integrable, this transform

has meaning and $T_{f}$ is a bounded operator valued function on V.
The Plancherel formula for $G$ ( $L_{2}$-theory) was given by A. Kleppner and

R. Lipsman ([1], Theorem 4.4). Let $C_{c}^{\infty}(G)$ be the space of all infinitely dif-
ferentiable functions with compact support on $G$ . Let $S(G)$ be the space of
all infinitely differentiable and rapidly decreasing functions on $G$ . In this
paper we consider these two cases $E=C_{c}^{\infty}(G)$ (the Paley-Wiener theorem) and
$E=S(G)$ . Then $T_{f}(\xi)$ is an integral operator on $L_{2}(K)$ for any $f\in E$ and $\xi\in\hat{V}$

and its kernel function is given by $\kappa_{f}(\xi;k_{1}, k_{2})=\int_{V}f(k_{1}x, k_{1}k_{2}^{-1})e^{i<\xi,x>}dx,$ $(k_{1}, k_{2}\in K)$ .
When $K$ is the identity group, $\kappa_{f}$ is the ordinary Fourier transform on Eucli-
dean space $V$. We call $\kappa_{f}$ the scalar Fourier transform of $f$. Let $\tilde{E}$ and $\hat{E}$

be the images of $E$ by the scalar Fourier transform and Fourier transform,
respectively. The characterization of $\tilde{E}$ can be accomplished by the ordinary
arguments of the classical Fourier analysis. To study the mapping $\kappa_{f}-T_{f}$

from $\tilde{E}$ to $\hat{E}$ we use an auxiliary theorem which can be proved using the
representation theory of compact groups.

We can assume that there exists a $K$-invariant inner product on $V$. There-
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fore, we can assume beforehand that $K$ is a connected subgroup of $SO(n)$ ,
where $n$ is the dimension of $V$ . If $K=\{1\},$ $G=V\cong R^{n}$ . If $K=SO(n),$ $G$ is the
Euclidean motion group. We state another example. Let $G_{0}$ be a connected
noncompact semisimple Lie group with finite centre and $K$ be a maximal com-
pact subgroup of $G_{0}$ . Let $\mathfrak{g}=f+\mathfrak{p}$ be the Cartan decomposition of the Lie
algebra $\mathfrak{g}$ of $G_{0}$ , where $\mathfrak{k}$ is the subalgebra corresponding to $K$. Then $K$

operates on $\mathfrak{p}$ via the adjoint representation. If $V=\mathfrak{p},$ $G$ is called the Cartan
motion group. If $G_{0}$ is the Lorentz group $SO_{0}(n, 1),$ $G$ is again the Euclidean
motion group. K. Okamoto and the author proved the Paley-Wiener theorem
for the Euclidean motion group in [3]. M. Sugiura determined the space $S(G)^{\wedge}$

for the Euclidean motion group ([5]).

This paper, in the first presented form, was entitled as ”Fourier Trans-
forms on the Cartan Motion Group”, and treated the Cartan motion group case
only. The author was suggested by the referee to represent in this more
general form. The author is very thankful to the referee for his remarks of
great value. The short summary for the Cartan motion group case is in [2].

The author would like to express his sincere gratitude to Professors O.
Takenouchi and K. Okamoto who have encouraged him with kind advices. He
also would like to express his thanks to Professor M. Sugiura who suggested
the generalization of our problems.

\S 2. Scalar Fourier transform.

Let $(, )$ be a K-invariant inner product in V. $K$ also operates on $\hat{V}$ via
the contragredient of the action on $V$ . In $V$ and $\hat{V}$ we can define the K-
invariant measure which are induced by the above inner product. We normalize
these measures by multiplying $(2\pi)^{-n/2},$ $(n=\dim V)$ , and denote them by $dx$ and
$ d\xi$ , respectively. Let $dk$ be the Haar measure on $K$ normalized such as the
total measure equals to 1. Then $dg=dxdk$ is the normalized Haar measure
on $G$ .

Let $\mathfrak{H}=L_{2}(K)$ be the space of all square integrable functions on $K$. The
representation $U^{\xi}$ induced by $\xi\in\hat{V}$ is realized on $\mathfrak{H}$ as follows; for $g=(x, k)\in G$

$(U_{g}^{\xi}F)(k_{1})=e^{i<\xi,k_{1^{-1}}x>}F(k^{-1}k_{1})$ , $(F\in \mathfrak{H}, k_{1}\in K)$ .
Hence if $f\in L_{1}(G)$ , we have

$(T_{f}(\xi)F)(k_{1})=\int_{G}f(g)(U_{g}^{\xi}F)(k_{1})dg$

$=\int_{K}\kappa_{f}(\xi;k_{1}, k_{2})F(k_{2})dk_{2}$ ,

where $F\in \mathfrak{H},$ $k_{\iota}\in K$ and
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$\kappa_{f}(\xi;k_{1}, k_{2})=\int_{V}f(k_{1}x, k_{1}k_{2}^{-1})e^{i<\xi,x>}dx$ .

1) $E=C_{c}^{\infty}(G)$ . Let $|x|=(x, x)^{1/2}$ . We define a compact subset $\Omega(a)$ of $G$

for any positive number $a$ by $\Omega(a)=\{(x, k)\in G;|x|\leqq a\}$ . We denote by $\hat{V}^{c}$

the complexification of $p$. We extend naturally the K-action on $V$ to the K-
action on $\hat{V}^{c}$ .

LEMMA 1. A function $\kappa(\xi;k_{1}, k_{2})$ on $\hat{V}\times K\times K$ is the scalar Fourier trans-
form of $f\in C_{c}^{\infty}(G)$ such that $supp(f)\subset\Omega(a)(a>0)$ if and only if it satisfies the
following conditions:

(i) $\kappa(\xi;k_{1}, k_{2})$ can be extended to a $C^{\infty}$ function on $V^{c}\times K\times K$ and $\kappa(\zeta;k_{1}, k_{2})$

$(\zeta\in i\rangle_{C})$ is entire analytic with resPect to $\zeta$ for each $k_{1},$ $k_{2}\in K$.
(ii) For any K-invariant polynomial function $p(\zeta)$ on $i\}_{C}$ and for any right

invariant differential operatOrs $y,$ $y^{\prime}$ on $K$ there exists a constant $C_{n}^{y.y^{\prime}}\geqq 0$ such that

$|p(\zeta)y_{k_{1}}y_{k_{2}}^{\prime}\kappa(\zeta;k_{1}, k_{2})|\leqq C_{p}^{y,y^{\prime}}$ exp $a$ lIm $\zeta|$

for any $k_{1},$ $k_{2}\in K$.
(iii) For any $k\in K$

$\kappa(k\zeta;k_{1}, k_{2})=\kappa(\zeta;k_{1}k, k_{2}k)$ , $(\zeta\in i\rangle_{C}k_{1}, k_{2}\in K$).

PROOF. Let $f\in C_{c}^{\infty}(G)$ and supp $(f)\subset\Omega(a)$ . For $\zeta\in\hat{V}^{c}$ we define the scalar
Fourier-Laplace transform of $f$ by

$\kappa_{f}(\zeta;k_{1}, k_{2})=\int_{V}f(k_{1}x, k_{1}k_{2}^{-1})e^{i<\zeta,x>}dx$ .

It is easy to see that the scalar Fourier-Laplace transform is a holomorphic
extension of the scalar Fourier transform to $\hat{V}^{c}\times K\times K$ satisfying $(i)\sim(iii)$ .
Conversely, for a function $\kappa(\zeta;k_{1}, k_{2})$ on $\hat{V}^{c}\times K\times K$ satisfying $(i)\sim(iii)$ we de-
fine a function $f$ on $G$ by

$ f(g)=\int_{\hat{V}}\kappa(\xi;1, k^{-1})e^{-i<\xi,x>}d\xi$ , (2.1)

where g$=(x, k)\in G$ . Then we have that $f\in C_{c}^{\infty}(G)$ , supp $(f)\subset\Omega(a)$ and $\kappa(\xi;k_{1}, k_{2})$

$=\kappa_{f}(\xi;k_{1}, k_{2})$ for all $\xi\in\hat{V}$ and $k_{1},$ $k_{2}\in K$ by the classical Paley-Wiener theorem.
2) $E=S(G)$ . Let $\mathfrak{k}$ be the Lie algebra of $K$. We denote by $U(f^{c})$ the

universal enveloping algebra of the complexiPcation $\mathfrak{k}^{c}$ of $f$ . Let $Y_{1},$ $\cdots$ , $Y_{\delta}$

$(\delta=\dim K)$ be a fixed basis of $f$ . Then the set $y(m)=\{Y_{1}^{m_{1}}\cdots Y_{\delta^{m_{\delta}}}$ ; $m=$

$(m_{1}, \cdots , m_{\delta})\in N^{\delta}\}$ forms a basis of $U(\mathfrak{k}^{c})$ by the Birkhoff-Witt theorem. We
regard any element of $U(f^{c})$ as a right invariant differential operator on $K$.
Then it operates on $\mathfrak{H}=L_{2}(K)$ in the sense of distributions. The Lie algebra
of $G$ is $V+f$ and $[V, V]=\{0\},$ $[f, V]\subset V$ and $[\mathfrak{k}, f]\subset f$ . We consider that $U(f^{c})$

is a subalgebra of the universal enveloping algebra of the complexification of
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the Lie algebra of $G$ . We denote by $\lambda$ and $\mu$ the left and the right regular
representations of $G$ , respectively, and also denote by the same notations the
corresponding representations of the universal enveloping algebra on the space
of $C^{\infty}$-vectors. The bracket product $[Y, x]$ of $Y\in \mathfrak{k}$ and $x\in V$ is the differential
of the K-action on $V$ .

Let $v_{1},$ $\cdots$ , $v_{n}$ be an orthonomal basis of $V$ with respect to the K-invariant
inner product $(, )$ . And let $w_{1},$ $\cdots$ , $w_{n}$ be its dual basis of $\hat{V}$. The inner pro-

duct $(, )$ induces the K-invariant inner product of $\hat{V}$. If $x=\sum_{j=1}^{n}x_{j}v_{j}\in V$ and

$\xi=\sum_{j=1}^{n}\xi_{j}w_{j}\in\hat{V}$, then $|x|^{2}=(x, x)=\sum_{j=1}^{n}\chi_{j}^{2}$ and $|\xi|^{2}=\sum_{=J1}^{n}\xi_{j}^{2}$ . Making use of the

coordinate systems with respect to these bases, we dePne differential operators
$D_{x}^{a}$ on $V$ and $D_{\xi^{a}}$ on $\hat{V}$ for any $\alpha=(\alpha_{1}, \cdots, \alpha_{n})\in N^{n}$ by

$D_{x}^{\alpha}=(\frac{\partial}{\partial x_{1}})^{\alpha_{1}}\cdots(\frac{\partial}{\partial x_{n}})^{\alpha_{n}}$

and

$D_{\xi^{\alpha}}=(\frac{\partial}{\partial\xi_{1}})^{a_{1}}\cdots(\frac{\partial}{\partial\xi_{n}})^{a_{n}}$ ,

respectively. For $f\in C^{\infty}(G)$ we have $\frac{\partial}{\partial x_{j}}f(x, k)=\lambda(-v_{j})f(x, k)$ for all $j=1,$ $n$ .
Let $S=S(G)$ be the set of all those functions $f$ on $G$ satisfying the follow-

ing conditions:
(i) $f$ is of class $C^{\infty}$ ,

(ii) for any $\alpha\in N^{n},$ $\beta\in N$ and $m,$
$m^{\prime}\in N^{\delta}$ there exists a constant $C_{\alpha.\beta^{m^{\prime}}}^{m}\geqq 0$

such that
$|(1+|x|^{2})^{\beta}(D_{x}^{\alpha}\lambda(y(m))\mu(y(m^{\prime}))f)(x, k)|\leqq C_{\alpha.\beta^{m^{\prime}}}^{m}$

for all $(x, k)\in G$ .
Such functions are called rapidly decreasing.

LEMMA 2. $S$ is closed with resPect to the aPplications of $D_{x}^{c\iota}$ and $\lambda(y)$ ,
$\mu(y^{\prime})$ for all $\alpha\in N^{n}$ and $y,$ $y^{\prime}\in U(\mathfrak{k}^{c})$ .

PROOF. Because the left regular representation and the right regular
representation commute, we have $\lambda(y)\mu(y^{\prime})=\mu(y^{\prime})\lambda(y)$ for all $y,$ $y^{\prime}\in U(\mathfrak{k}^{c})$ and
$D_{x}^{a}\mu(y)=\mu(y)D_{x}^{a}$ for all $y\in U(\mathfrak{k}^{c})$ and $\alpha\in N^{n}$ . Therefore we only have to
see that $\lambda(y)D.af\in S$ for all $f\in S$ and for all $y\in U(\mathfrak{k}^{c}),$ $\alpha\in N^{n}$ . For $Y\in \mathfrak{k}$ and
$1\leqq j\leqq n$ we have

$\lambda(Y)\frac{\partial}{\partial x_{f}}f=\lambda(Y)\lambda(-v_{j})f$

$=\lambda(-v_{j})\lambda(Y)f+\lambda([Y, -v_{f}])f$

$=\lambda(-v_{j})\lambda(Y)f+\sum_{q=1}^{n}([Y, v_{j}], v_{q})\lambda(-v_{q})f$
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$=\frac{\partial}{\partial x_{j}}\lambda(Y)f+\sum_{q=1}^{n}([Y, v_{j}], v_{q})\frac{\partial}{\partial x_{q}}f$ .

Therefore $\lambda(Y)\frac{\partial}{\partial x_{j}}f\in \mathcal{S}$ by the condition (ii) of $\mathcal{S}$ . And hence we obtain
$\lambda(y)D_{x}^{a}f\in \mathcal{S}$ for all $y\in U(f^{c})$ and $\alpha\in N^{n}$ . $q$ . $e$ . $d$ .

We topologize $\mathcal{S}$ by the system of semi-norms of the form

$\gamma_{a}^{m}.p^{\prime}(f)=\sup_{(x,k)\in G}|(1+|x|^{2})^{\beta}(D_{x}^{\alpha}\lambda(y(m))\mu(y(m^{\prime}))f)(x, k)|$ ,

where $\alpha\in N^{n},$ $\beta\in N$ and $m,$
$m^{\prime}\in N^{\delta}$ .

PROPOSITION 1. $\mathcal{S}$ is a Fr\’echet space.
PROOF. It is easy to see that $\mathcal{S}$ is a locally convex topological vector

space by the topology defined above. The topology is defined by a system of
countable semi-norms. As is easily seen, $\mathcal{S}$ is a Hausdorff space. Hence $\mathcal{S}$ is
metrizable. Using Lemma 2, we have the sequentially completeness of $\mathcal{S}$ .
Hence $\mathcal{S}$ is complete. $q$ . $e$ . $d$ .

Let $\tilde{\mathcal{S}}$ be the set of those functions $\kappa(\xi;k_{1}, k_{2})$ on $\hat{V}\times K\times K$ satisfying the
following conditions:

$(i)^{\sim}$ $\kappa(\xi;k_{1}, k_{2})$ is a $C^{\infty}$ function on $\hat{V}\times K\times K$,
$(ii)^{\sim}$ for any $\alpha\in N^{n},$ $\beta\in N$ and $m,$

$m^{\prime}\in N^{\delta}$ there exists a constant $C_{\alpha.\beta^{m^{\prime}}}^{m}$

such that
$|(1+|\xi|^{2})^{\beta}(D_{\xi^{\alpha}}y(m)_{k_{1}}y(m^{\prime})_{k_{2}}\kappa)(\xi;k_{1}, k_{2})|\leqq C_{a,\beta^{m^{\prime}}}^{m}$

for all $(\xi, k_{1}, k_{2})\in\hat{V}\times K\times K$,
$(iii)^{\sim}$ for any $k\in K$

$\kappa(k\xi;k_{1}, k_{2})=\kappa(\xi;k_{1}k, k_{2}k)$ , $(\xi\in p, k_{1}, k_{2}\in K)$ .

We topologize $\tilde{\mathcal{S}}$ by the system of semi-norms of the form

$\tilde{r}_{\alpha}^{m}.\Psi^{\prime}(\kappa)=\sup_{(\xi,k_{1}k_{2})}|(1+|\xi|^{2})^{\beta}(D_{\xi^{\alpha}}y(m)_{k_{1}}y(m^{\prime})_{k_{2}}\kappa)(\xi;k_{1}, k_{2})|$ ,

where $\alpha\in N^{n},$ $\beta\in N$ and $m,$
$m^{\prime}\in N^{\delta}$ . Then we have the following proposition.

PROPOSITION 2. $\tilde{\mathcal{S}}$ is a Fr\’echet sPace.
Now we prove the space $\tilde{\mathcal{S}}$ is the image of the space $\mathcal{S}$ by the scalar

Fourier transform.
LEMMA 3. The scalar Fourier transform $f\rightarrow\kappa_{f}$ is a topOlOgical isomorphism

from $\mathcal{S}$ onto 8.
PROOF. Let $f\in \mathcal{S}$ . We put $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ for $\alpha=$ $(\alpha_{1}, \cdots , \alpha_{n})\in N^{n}$ .

If $x=\sum_{j=1}^{n}x_{j}v_{j}\in V$, we have

$|x_{j}|\leqq 1+|x_{j}|^{2}\leqq 1+|x|^{2}$ (2.2)
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for any $j=1,$ $\cdots$ , $n$ . By the condition (ii) of the definition of $S$ and (2.2) we
have, for any $\alpha\in N^{n}$ ,

$|f(k_{1}x, k_{1}k_{2}^{-1})D_{\xi^{\alpha}}e^{i<\xi,x>}|=|(ix_{1})^{a_{1}}\cdots(ix_{n})^{\alpha_{n}}f(k_{1}x, k_{1}k_{2}^{-1})e^{i<\xi,x>}|$

$=|x_{1}|^{\alpha_{1}}\cdots|x_{n}|^{\alpha_{n}}|f(k_{1}x, k_{1}k_{2}^{-1})|$

$\leqq(1+|x|^{2})^{|a|}|f(k_{1}x, k_{1}k_{2}^{-1})|$

$=(1+|k_{1}x|^{2})^{|a|}|f(k_{1}x, k_{1}k_{2}^{-1})|$

$\leqq C_{0}^{00}:|a|+n(1+|k_{1}x|^{2})^{-n}$

$=C_{0}^{0}:^{0}|a|+n(1+|x|^{2})^{-n}$

This is integrable on $V$. Hence $\kappa_{f}(\xi;k_{1}, k_{2})$ is infinitely differentiable with
respect to $\xi$ for any $k_{1}$ and $k_{2}$ . On the other hand, for any $Y,$ $Y^{\prime}\in \mathfrak{k}$ we obtain

$Y_{k_{1}}Y_{k_{2}}^{\prime}(f(k_{1}x, k_{1}k_{2}^{-1}))=(\lambda(-Y)\mu(-Y^{\prime})f)(k_{1}x, k_{1}k_{2}^{-1})$

for all $x\in V$, where $Y_{k_{1}}$ (resp. $Y_{k_{2}}^{\prime}$ ) denote the differential by the right invari-
ant vector field $Y$ (resp. $Y^{\prime}$ ) with respect to $k_{1}$ (resp. $k_{2}$). By this fact and
the condition (ii) of the definition of $S,$ $\kappa_{f}(\xi;k_{1}, k_{2})$ is infinitely differentiable

with respect to $k_{1}$ and $k_{2}$ . Because $f=0$ at $ x=\infty$ and $(1-\sum_{j=1}^{n}(\frac{\partial}{\partial x_{j}})^{2})^{\beta}$ is a
K-invariant differential operator on $V$ for any $\beta\in N$, we have

$(1+|\xi|^{2})^{\beta}\kappa_{f}(\xi;k_{1}, k_{2})=\int_{V}((1-\sum_{j=1}^{n}(\frac{\partial}{\partial x_{j}})^{2})^{\beta}f)(k_{1}x, k_{1}k_{2}^{-1})e^{i<\xi,x>}dx$ ,

using the integration by parts. If we expand $(1-\sum_{=J1}^{n}(\frac{\partial}{\partial x_{j}})^{2})^{\beta}$, we can find
positive numbers $c_{1},$

$\cdots$ , $c_{v}$ and $\alpha(1),$ $\cdots$ , $\alpha(\nu)\in N^{n}$ and $\beta(1),$ $\cdots$ , $\beta(\nu)\in N$ such
that

$\tilde{\gamma}_{a}^{m}.\beta^{n^{\iota}}(\kappa_{f})\leqq\sum_{j=1}^{\nu}c_{j}\gamma_{\alpha\{j).\beta^{(fi}}^{mm^{\prime}}(f)$ .

It is easy to see that $\kappa_{f}(k\xi;k_{1}, k_{2})=\kappa_{f}(\xi;k_{1}k, k_{2}k)$ for all $k\in K$. Thus we
proved that $\kappa_{f}\in\tilde{S}$ and the mapping $f-\kappa_{f}$ is continuous from $S$ to $\tilde{S}$ . As for
the case of $C_{c}^{\infty}(G)$ , for any $\kappa(\xi;k_{1}, k_{2})\in\tilde{S}$ we put

$ f(x, k)=\int_{\theta}\kappa(\xi;1, k^{-1})e^{-i<\xi,x>}d\xi$ . (2.3)

If we can see that $f\in S$ , we have $\kappa_{f}(\xi;k_{1}, k_{2})=\kappa(\xi;k_{1}, k_{2})$ without difficulty.
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By the conditions $(i)^{\sim}\sim(iii)^{\sim}$ we can prove $f\in C^{\infty}(G)$ in similar way. We can
also prove that for any $\alpha\in N^{n},$ $\beta\in N$ and $m,$

$m^{\prime}\in N^{\delta}$ there exist positive num-
bers $c_{1},$

$\cdots$ , $c_{\nu}$ and $\alpha(1),$ $\cdots$ , $\alpha(\nu)\in N^{n}$ and $\beta(1),$ $\cdots$ , $\beta(\nu)\in N$ such that

$\gamma_{a.\beta^{m^{\prime}}}^{m,}(f)\leqq\sum_{f=1}^{\nu}c_{j}\tilde{\gamma}_{a(D\cdot\beta^{(j)}}^{mm^{\prime}}(\kappa)$ .

Hence $f\in S$ and the mapping $\kappa-\rightarrow f$ defined by (2.3) is a continuous mapping
from $\tilde{S}$ to $S$ . As stated above, this mapping is the inverse of the mapping
$f-\rightarrow\kappa_{f}$ . Thus we proved Lemma 3.

\S 3. Auxiliary theorem on compact Lie groups.

Let $K$ be a compact connected Lie group and $\mathfrak{k}$ be its Lie algebra. Let $T$

be a maximal torus subgroup of $K$ and $i$ the corresponding subalgebra of $f$ .
Let $r$ and $r^{\prime}$ be the ranks of $\mathfrak{k}$ and of the derived subalgebra $[\mathfrak{k}, \mathfrak{k}]$ of $\mathfrak{k}$, respec-
tively. We fix an Ad $(K)$ -invariant positive definite inner product $(Y, Y‘)$ on

$\mathfrak{k}$ . We dePne the norm by $|Y|=(Y, Y)^{1/2}$ . Let $Y_{1},$ $\cdots$ , $Y_{\delta}(\delta=\dim K)$ be a

basis of $\mathfrak{k}$ and $g_{ij}=(Y_{i}, Y_{j})$ and $(g^{ij})=(g_{ij})^{-1}$ . The element $\Delta=-.\sum_{i_{J}=1}^{\delta}g^{ij}Y_{i}Y_{j}$

in the universal enveloping algebra of $\mathfrak{k}$ is the Casimir operator of $\mathfrak{k}$ . We
regard $\Delta$ as a differential operator on $K$.

We put $\Gamma=\{H\in\downarrow;\exp {}_{K}H=1\}$ . For any $\lambda\in\sqrt{-1}^{\wedge}\mathfrak{t}$ we denote by $H_{\lambda}\in \mathfrak{t}$ the
element defined by $\langle\lambda, H\rangle=\sqrt{-1}(H_{\lambda}, H)(H\in \mathfrak{t})$ . We identify $\lambda$ and $H_{\lambda}$ . Let
$I$ be the set of all K-integral forms on $\mathfrak{t}$ ;

$I=$ { $\lambda\in\downarrow;(\lambda,$ $H)\in 2\pi Z$ for all $ H\in\Gamma$ }.

Let us fix a lexicographic order in $i$ . Let $P$ be the set of all positive roots
with respect to this order. Then $P$ consists of $(\delta-r)/2$ elements. The simple
root system in $P$ consists of $r^{\prime}$ elements, say $\alpha_{1},$

$\cdots$ , $\alpha_{r^{\prime}}$ . The set

$\mathcal{F}=\{\lambda\in I;(\lambda, \alpha_{i})\geqq 0, 1\leqq i\leqq r^{\prime}\}$

is the set of all dominant K-integral forms on $\mathfrak{t}$ . Let $K$ be the set of all equi-
valence classes of irreducible unitary representations of $K$. For any irreduci-
ble unitary representation $\tau$ of $K$ we denote by $[\tau]$ the equivalence class
which contains $\tau$ . For each $\lambda\in \mathcal{F}$ we denote by $\tau^{\lambda}$ a representative of $[\tau^{\lambda}]\in X$

which is a matricial representation of $K$ with the highest weight $\lambda$ . Then we
have the bijection between $\mathcal{F}$ and $\hat{K}$ by the mapping $\lambda->[\tau^{\lambda}]$ . Let $d(\lambda)$ be
the degree of $\tau^{\lambda}$ .

Let $dk$ be the Haar measure on $K$ normalized such as the total measure
equals 1. Put $\mathfrak{H}=L_{2}(K)$ . We consider the set $\{\phi_{j}\}_{j\in J}$ of functions on $K$
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such that $\phi_{j}=d(\lambda)^{1/2}\tau_{pq}^{\lambda}$ for some $\lambda\in \mathcal{F}$ and $p,$ $q=1,$ $\cdots$ , $d(\lambda)$ $(\tau^{\lambda}(k)=(\tau_{pq}^{\lambda}(k)))$ .
That is, $\{\phi_{j}\}_{j\in J}$ is the complete orthonormal basis of $\mathfrak{H}$ owing to the Peter-
Weyl theorem. We denote by $J_{\lambda}$ for $\lambda\in \mathcal{F}$ the set of $j\in J$ such that $\phi_{j}=$

$d(\lambda)^{1/2}\tau_{pq}^{\lambda}$ for some $p,$ $q=1,$ $\cdots$ , $d(\lambda)$ .
We put $\rho=(1/2)\sum_{\alpha\subset P}\alpha$ . Then the following lemma is well known (see [4]).

LEMMA 4. (i) (Weyl’s dimension formula) For every $\lambda\in \mathcal{F}$

$d(\lambda)=\prod_{\alpha\in P}\frac{(\lambda+\rho,\alpha)}{(\rho,\alpha)}$ (3.1)

If $K$ is abelian, we understand that the right hand side of (3.1) expresses1.
(ii) For every $\lambda\in \mathcal{F}$ and $j\in J_{\lambda}$ we have

$(\Delta+|\rho|^{2})\phi_{j}=|\lambda+\rho|^{2}\phi_{j}$ . (3.2)

(iii) The Dirichlet series

$Z(s)=\sum_{\lambda\in \mathcal{F}}|\lambda+\rho|^{-S}$

(in the case $K$ is abelian $Z(s)=\sum_{\lambda\equiv 5-\{0\}}|\lambda|^{-s}$ ) converges if $s>r$ .
The Casimir operator $\Delta$ is a formally selfadjoint differential operator.
THEOREM 1. Let $T$ be a bounded oPerator on $\mathfrak{H}$ . Then $T$ has a $C^{\infty}$ kernel

function if and only if it leaves the space $C^{\infty}(K)$ stable and for any 1, $m\in N$

there exists a constant $C^{l,m}$ such that

$\Vert\Delta^{l}T\Delta^{m}\Vert\leqq C^{l,m}$ . (3.3)

From this theorem we have immediately the following corollary.
COROLLARY. Let $T$ be a bounded operatOr on $\mathfrak{H}$ such that for any 1, $m\in N$

there exists a constant $C^{l,m}$ satisfying (3.3). Then $T$ is of the trace class.
PROOF OF THEOREM 1. Let $\kappa(k_{1}, k_{2})$ be the kernel function of $T,$ $i$ . $e$ .

$(TF)(k_{1})=\int_{K}\kappa(k_{1}, k_{2})F(k_{2})dk_{2}$ .

And assume that $\kappa(k_{1}, k_{2})$ is of class $C^{\infty}$ on $K\times K$. Then

$(\Delta^{l}T\Delta^{m}F)(k_{1})=\Delta^{l}\int_{K}\kappa(k_{1}, k_{2})(\Delta^{m}F)(k_{2})dk_{2}$

$=\int_{K}(\Delta_{k_{1}}^{l}\Delta_{k_{2}}^{m}\kappa)(k_{1}, k_{2})dk_{2}$ .
Hence

$\Vert\Delta^{l}T\Delta^{m}\Vert\leqq C^{l,m}$ ,

where $C’’=(\int_{K}\int_{K}|\Delta_{k_{1}}^{\iota}\Delta_{k_{2}}^{m}\kappa(k_{1}, k_{2})|^{2}dk_{1}dk_{2})^{1/2}$

Conversely, we assume that there exists a constant as in Theorem. Then
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we can prove that there exists a constant $C_{1}^{l.m}$ such that

$\Vert(\Delta+|\rho|^{2})^{m}T(\Delta+|\rho|^{2})^{l}\Vert\leqq C_{1}^{l,m}$ .
We put

$\kappa(k_{1}, k_{2})=\sum_{i,j\in J}(T\phi_{j}, \phi_{i})\phi_{i}(k_{1}\overline{)\phi_{j}(k_{2}})$ . (3.4)

First we show that the series in the right hand side of (3.4) converges absolutely
when $K$ is not abelian. If $j\in J_{\lambda}$ , we have $|\phi_{j}(k)|\leqq d(\lambda)^{1/2}$ because $|\tau_{pq}^{\lambda}(k)|\leqq 1$ .
By (3.1)

$d(\lambda)\leqq\prod_{\alpha\in P}|\lambda+\rho||\alpha|(\rho, \alpha)^{-1}$

$=|\lambda+\rho|^{(\delta- r)/2}\prod_{\alpha\in P}|\alpha|(\rho, \alpha)^{-1}$

On the other hand by (3.2)

$\phi_{j}=|\lambda+\rho|^{-2l}(\Delta+|\rho|^{2})^{l}\phi_{j}$

for $1=0,1,2,$ $\cdots$ Therefore, for $j\in J_{\lambda}$ and $i\in J_{\lambda^{\prime}}$ , we have

$|(T\phi_{j}, \phi_{l})|\leqq|\lambda+\rho|^{-2l}|\lambda^{\prime}+\rho|^{-2m}|(T(\Delta+|\rho|^{2})^{l}\phi_{j}, (\Delta+|\rho|^{2})^{m}\phi_{i})$ I
$=|\lambda+\rho|^{-2l}|\lambda^{\prime}+\rho|^{-2m}|((\Delta+|\rho|^{2})^{m}T(\Delta+|\rho|^{2})^{l}\phi_{j}, \phi_{i})|$

$\leqq|\lambda+\rho|^{-2l}|\lambda^{\prime}+\rho|^{-2m}\Vert(\Delta+|\rho|^{2})^{m}T(\Delta+|\rho|^{2})^{l}\Vert$

$\leqq C_{1}^{l.m}|\lambda+\rho|^{-2l}|\lambda^{\prime}+\rho|^{-2m}$ .
Hence

$\sum_{j\in J_{\lambda}}\sum_{i\in J_{\lambda^{\prime}}}|(T\phi_{j}, \phi_{i})\phi_{i}(k_{1})\overline{\phi_{j}(k_{2})}|$

$\leqq\sum_{j\in J_{\lambda}}\sum_{i\in J_{\lambda^{l}}}C_{1}^{l.m}|\lambda+\rho|^{-2l}|\lambda^{\prime}+\rho|^{-2m}d(\lambda)^{1/2}d(\lambda^{\prime})^{1/2}$

$=C_{1}^{l,m}|\lambda+\rho|^{-2l}|\lambda^{\prime}+\rho|^{-2m}d(\lambda)^{\epsilon/2}d(\lambda^{\prime})^{5/2}$

If we take $l=m$ ,

$\sum_{i_{j}\in J}|(T\phi_{j}, \phi_{i})\phi_{i}(k_{1})\overline{\phi_{j}(k_{2})}|$

$\leqq C_{1}^{l.l}\sum_{\lambda.\lambda’\in \mathcal{F}}|\lambda+\rho|^{-2l}|\lambda^{\prime}+\rho|^{-2l}d(\lambda)^{5/2}d(\lambda^{\prime})^{5/2}$

$=C_{1}^{l.l}(\sum_{\lambda\in 5}|\lambda+\rho|^{-2l}d(\lambda)^{5/2})^{2}$

$\leqq C_{1}^{l,l}\prod_{\alpha\in P}|\alpha|^{5}(\rho, \alpha)^{-5}(\sum_{\lambda\in f}|\lambda+\rho|^{-2l+5(\delta-r)/4})^{2}$

$=C_{1}^{l.l}\prod_{\alpha\in P}|\alpha|^{6}(\rho, \alpha)^{-5}Z(2l-5(\delta-r)/4)^{2}$ (3.5)

Then by Lemma 4 (iii) this has a finite value for $l>(5\delta-r)/8$ . When $K$ is
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abelian, $d(\lambda)=1$ and $|\phi_{j}(k)|=1$ for all $j\in J$. So we have

$\sum_{i,j\in J}|(T\phi_{j}, \phi_{i})\phi_{i}(k_{1})\overline{\phi_{j}(k_{2})}|$

$\leqq C_{1}^{l.l}(\sum_{\lambda\neq 0}|\lambda|^{-2l})^{2}+C_{1}^{l.0}\sum_{\lambda\neq 0}|\lambda|^{-2l}+C_{1}^{0.l}\sum_{\lambda\neq 0}|\lambda|^{-2l}+C_{1}^{0.0}$

$=C_{1}^{l.l}Z(2l)^{2}+(C_{1}^{l.0}+C_{1}^{0.l})Z(2l)+C_{1}^{0,0}$ . (3.6)

Hence by Lemma 4 this has a Pnite value for $l>r/2$ . Thus the series (3.4)
converges absolutely and also uniformly. Therefore $\kappa(k_{1}, k_{2})$ is a continuous
function on $K\times K$ and the double Fourier coefficients of $\kappa(k_{1}, k_{2})$ are $(T\phi_{j}, \phi_{i})$

$(i, j\in J)$ . In order to prove that $\kappa(k_{1}, k_{2})$ is a $C^{\infty}$ function it is enough to show
that the Fourier coefficients are rapidly decreasing (see [4]), $i$ . $e$ . for any $l\in N$

and $m\in N$ there exists a constant $C^{l,m}$ such that

$|\lambda+\rho|^{2l}|\lambda^{\prime}+\rho|^{2m}|(T\phi_{j}, \phi_{i})|\leqq C^{l,m}$

for any $j\in J_{\lambda}$ and any $i\in J_{\lambda^{l}}$ . This is an immediate consequence of the condi-
tions of the theorem from Lemma 4. $q$ . $e$ . $d$ .

\S 4. Paley-Wiener theorem.

Let $B(\mathfrak{H})$ be the Banach space of all bounded linear operators on $\mathfrak{H}$ . Then
the Fourier transform $T_{f}$ of $f\in C_{c}^{\infty}(G)$ defined by

$T_{f}(\xi)=\int_{G}f(g)U_{g}^{\xi}dg$

is a $B(\mathfrak{H})$ -valued function on $V$ . Let $\kappa_{f}(\zeta;k_{1}, k_{2})$ be the scalar Fourier-Laplace
transform. We define the Fourier-Laplace transform of $f$ by

$(T_{f}(\zeta)F)(k_{1})=\int_{K}\kappa_{f}(\zeta;k_{1}, k_{2})F(k_{2})dk_{2}$ , $(F\in \mathfrak{H})$ .

Then $T_{f}$ is a $B(\mathfrak{H})$ -valued function on $\hat{V}^{c}$ by (ii) of Lemma 1. For each $\zeta\in\hat{V}^{c}$

and $g=(x, k)\in G$ we put

$(U_{g}^{\zeta}F)(k_{1})=e^{i<\zeta,k_{1^{-1}}x>}F(k^{-1}k_{1})$ , $(F\in \mathfrak{H})$ .
Then $U^{\zeta}$ is a bounded representation of $G$ on $\mathfrak{H}$ . And we have

$T_{f}(\zeta)=\int_{G}f(g)U_{g}^{\zeta}dg$ .

Let $R$ be the right regular representation of $K$. The following theorem is an
analogue of the Paley-Wiener theorem.

THEOREM 2. A $B(\mathfrak{H})$ -valued function $T$ on $\hat{V}$ is the Fourier transform of
$f\in C_{c}^{\infty}(G)$ such that supp $(f)\subset\Omega(a)(a>0)$ if and only if it satisfies the following
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conditions:
(I) $T$ can be extended to an entire analytic function on $\hat{V}^{c}$ .
(II) For any $\zeta\in V,$ $T(\zeta)$ leaves the space $C^{\infty}(K)$ stable and for any K-

invariant pOlynOmial function $P$ on $i\rangle$ $c$ and for any $l,$ $m\in N$ there exists a con-
stant $C_{X}^{lm}j$ such that

$\Vert p(\zeta)\Delta^{l}T(\zeta)\Delta^{m}\Vert\leqq C_{p}^{l,m}$ exp $a$ lIm $\zeta|$ .
(1II) For any $k\in K$

$T(k\zeta)=R_{k}T(\zeta)R_{k^{-1}}$ $(\zeta\in\hat{V}^{c})$ .
PROOF. Let $f\in C_{c}^{\infty}(G)$ and supp $(f)\subset\Omega(a)$ . For any $\alpha=(\alpha_{1}, \cdots , \alpha_{n})\in N^{n}$

we dePne an operator $T_{f}^{\alpha}$ by

$(T_{f}^{a}F)(k_{1})=\int_{V}\int_{K}f(k_{1}x, k)x_{1}^{\alpha_{1}}\cdots x_{n}^{\alpha_{n}}F(k^{-1}k_{1})dxdk$ ,

where $x=\sum_{j=1}^{n}x_{j}v_{j}$ . By the inequality

$\Vert T_{f}^{\alpha}\Vert\leqq a^{|a_{1}}\{\int_{K}(\int_{V}|f(x, k)|dx)^{2}dk\}^{1/2}$

we can see that for any fixed $\zeta=\sum_{j=1}^{n}\zeta_{j}w_{j}\in\hat{V}^{c}$ the series

$\sum_{l=0}^{\infty}i^{l}\sum_{l=|\alpha|}\frac{|\alpha|1}{\alpha_{1}1\cdots\alpha_{n}1}T_{f}^{a}\zeta_{1}^{\alpha_{1}}\cdots\zeta_{n}^{cv_{n}}$

converges in the norm of $B(\mathfrak{H})$ and equals $T_{f}(\zeta)$ . Hence $T_{f}(\zeta)$ is entire an-
alytic on $\hat{V}^{c}$ .

Let us define a differential operator on $\hat{V}$ by

$P(D)=p(i\frac{\partial}{\partial x_{1}},$ $\cdots$ $i\frac{\partial}{\partial x_{n}})$ .

Then the K-invariance of $p$ and the standard arguments on the Fourier trans-
form theory of the Euclidean space give us

$P(\zeta)T_{f}(\zeta)=T_{p(D)f}(\zeta)$ . (4.1)

Because $\Delta$ is a two-sided invariant differential operator on $K$ of the 2-nd order,
we have

$\Delta T_{f}(\zeta)=T_{\lambda(\Delta)f}(\zeta)$

and
$T_{f}(\zeta)\Delta=T_{\mu(\Delta)f}(\zeta)$ .

Hence we obtain, for any 1 and $m$ ,

$\Delta^{l}T_{f}(\zeta)\Delta^{m}=T_{\lambda(\Delta)}\iota_{\mu(\Delta)}m_{f}(\zeta)$ . (4.2)

By (4.1) and (4.2)
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$p(\zeta)\Delta^{l}T_{f}(\zeta)\Delta^{m}=T_{p\mu}(D)\lambda(\Delta)^{lm_{f}}(\Delta)(\zeta)$ .
Hence we have

$\Vert p(\zeta)\Delta^{l}T_{f}(\zeta)\Delta^{m}\Vert\leqq e^{a|{\rm Im}\zeta|}\{\int_{K}(\int_{V}|(p(D)\lambda(\Delta)^{l}\mu(\Delta)^{m}f)(x, k)|dx)^{2}dk\}^{1/2}$

If we put

$C_{I)}^{l.m}=\{\int_{K}(\int_{V}|(p(D)\lambda(\Delta)^{l}\mu(\Delta)^{m}f)(x, k)|dx)^{2}dk\}^{1f2}$ ,

we have (II).

The property (III) is the immediate consequence of the property $\kappa_{f}(k\zeta;k_{1}, k_{2})$

$=\kappa_{f}(\zeta;k_{1}k, k_{2}k)$ .
Conversely, let $T$ be a $B(\mathfrak{H})$ -valued function on $\hat{V}$ which satisfies the con-

ditions $(I)\sim(III)$ of the theorem. Let $\{\phi_{j}\}_{j\in J}$ be the complete orthonormal basis
of $\mathfrak{H}$ chosen in \S 3. Then, by Theorem 1, $T(\zeta)$ has $C^{\infty}$ kernel function $\kappa(\zeta;k_{1}, k_{2})$

and it is given by

$\kappa(\zeta;k_{1}, k_{2})=\sum_{i.j\in J}(T(\zeta)\phi_{j}, \phi_{i})\phi_{i}(k_{1})\overline{\phi_{j}(k_{2})}$ . (4.3)

And the series in the right hand side converges uniformly on every com-
pact set in $\hat{V}^{c}\times K\times K$. If we adopt the similar computations in \S 3 to
$P(\zeta)yT(\zeta)y^{\prime}(y, y^{\prime}\in U(f^{c}))$ , we can prove that there exists a constant $C_{p}^{y,y^{i}}$ such that

$|p(\zeta)y_{k_{1}}y_{k_{2}}^{\prime}\kappa(\zeta;k_{1}, k_{2})|\leqq C_{p}^{y.y^{\prime}}$ exp $a|{\rm Im}\zeta|$ , $(\zeta\in\hat{V}^{c}, k_{1}, k_{2}\in K)$ .

By the condition (III) and (4.3) give us

$\kappa(k\zeta;k_{1}, k_{2})=\kappa(\zeta;k_{1}k, k_{2}k)$ $(\zeta\in\hat{V}^{c}, k, k_{1}, k_{2}\in K)$ .

Thus the kernel function $\kappa(\xi;k_{1}, k_{2})$ of $T(\xi),$ $(\xi\in\hat{V})$ , satisfies the conditions
$(i)\sim(iii)$ of Lemma 1. Therefore, $\kappa(\xi;k_{1}, k_{2})$ is the scalar Fourier transform
of a function $f\in C_{c}^{\infty}(G)$ such that supp $(f)\subset\Omega(a)$ . By the equality $\kappa(\xi;k_{1}, k_{2})$

$=\kappa_{f}(\xi;k_{1}, k_{2})$ for any $\xi\in\hat{V}$ and for any $k_{1},$ $k_{2}\in K$ we have $T=T_{f}$ . This com-
pletes the proof of the theorem. $q$ . $e$ . $d$ .

REMARK. Let $T$ be a $B(\mathfrak{H})$ -valued function on $\hat{V}$ as in the theorem. Then
$T(\xi)$ is of trace class by (II) and Corollary to Theorem 1. And hence $T(\xi)U_{g}^{\xi}-1$

is of trace class and its trace is

Tr $(T(\xi)U_{g}^{\xi}- 1)=Tr(U_{g}^{\xi}- 1T(\xi))$

$=\int_{K}e^{-i<\xi,kk_{1}-1x>}\kappa(\xi;kk_{1}, k_{1})dk_{1}$ .

By the condition (ii) in Lemma 1, $\kappa(\xi;k_{1}, k_{2})$ is a rapidly decreasing function
with respect to $\xi$ . So, by the condition (iii) in Lemma 1, we have



30 K. KUMAHARA

$\int_{\hat{V}}$ Tr $(T(\xi)U_{g}^{\xi}-1)d\xi=\int_{\hat{V}}\int_{K}e^{-i<kk_{1}\xi,x>}\kappa(\xi;kk_{1}, k_{1})d\xi dk_{1}$

$=\int_{K}\{\int_{\hat{V}}e^{-i<\xi,x>}\kappa((kk_{1})^{-1}\xi;kk_{1}, k_{1})d\xi\}dk_{1}$

$=\int_{K}\{\int_{\hat{V}}e^{-t<\xi,x>}\kappa(\xi;1, k^{-1})d\xi\}dk_{1}$

$=\int_{\hat{V}}e^{-i<\xi,x>}\kappa(\xi;1, k^{-1})d\xi$ .
Hence by (2.1) we have

$f(g)=\int_{\hat{V}}$ Tr $(T(\xi)U_{g}^{\xi}-1)d\xi$ .

This is the inverse Fourier transform.

\S 5. Fourier transforms of rapidly decreasing functions.

Let $\hat{S}$ be the set of all $B(\mathfrak{H})$ -valued functions $T$ on $\hat{V}$ satisfying the fol-
lowing conditions:

$(i)^{\wedge}$ $T$ is a $B(\mathfrak{H})$ -valued $C^{\infty}$ function on $\hat{V}$,
$(ii)^{\wedge}$ for any $\alpha\in N^{n},$ $\xi\in\hat{V},$

$D_{\xi}^{\alpha}T(\xi)$ leaves the space $C^{\infty}(K)$ stable and for
any $\alpha\in N^{n},$ $\beta\in N$ and $m,$

$m^{\prime}\in N^{\delta}$ there exists a constant $C_{a.\beta^{m^{\prime}}}^{m}$ such that

$\Vert(1+|\xi|^{2})^{\beta}y(m)D_{\xi^{\alpha}}T(\xi)y(m^{\prime})\Vert\leqq C_{a.\beta^{m^{\prime}}}^{m,}$

for all $\xi\in\hat{V}$,
$(iii)^{\wedge}$ for any $k\in K$

$T(k\xi)=R_{k}T(\xi)R_{k^{-1}}$ $(\xi\in\hat{V})$ .
We topologize $\hat{S}$ by the system of semi-norms of the form

$7_{a.\beta^{m^{\prime}}}^{m}(T)=\sup_{\xi\in\hat{V}}\Vert(1+|\xi|^{2})^{\beta}y(m)D_{\xi^{\alpha}}T(\xi)y(m^{\prime})\Vert$
,

where $\alpha\in N^{n},$ $\beta\in N$ and $m,$
$m^{\prime}\in N^{\delta}$ . Then we have the following proposition

as in \S 2.

PROPOSITION 3. $\hat{S}$ is a Fr\’echet space.
Let us prove the space $\hat{S}$ is the image of the space $S$ by the Fourier

transform. Let $\kappa_{f}$ and $T_{f}$ be the scalar Fourier transform and the Fourier
transform of $f\in S,$ . respectively. Then

$(T_{f}(\xi)F)(k_{1})=\int_{K}\kappa_{f}(\xi;k_{1}, k_{2})F(k_{2})dk_{2}$ , $(F\in \mathfrak{H})$ .
LEMMA 5. The mapping $\kappa_{f}\rightarrow T_{f}$ gives a topological isomorphism from $S$

onto $\hat{S}$.
PROOF. For any $\alpha\in N^{n}$ we obtain
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$\int_{K}(\int_{K}|(D_{\xi^{\alpha}}\kappa_{f})(\xi;k_{1}, k_{2})F(k_{2})|dk_{2})^{2}dk_{1}$

$\leqq\int_{K}\int_{K}|(D_{\xi^{\alpha}}\kappa_{f})(\xi;k_{1}, k_{2})|^{2}dk_{1}dk_{2}\Vert F\Vert^{2}$

$\leqq(C_{\dot{a}.0}^{00})^{2}\Vert F\Vert^{2}$ , $(F\in \mathfrak{H})$ .
Hence, by the completeness of $B(\mathfrak{H}),$ $T_{f}$ is a $C^{\infty}B(\mathfrak{H})$ -valued function on $\hat{V}$.
For any $\alpha\in N^{n},$ $\beta\in N$ and $m,$

$m^{\prime}\in N^{\delta}$ we have

$\Vert(1+|\xi|^{2})^{\beta}y(m)D_{\xi^{\alpha}}T_{f}(\xi)y(m^{\prime})\Vert$

$\leqq(\int_{K}\int_{K}|(1+|\xi|^{2})^{\beta}y(m)_{k_{1}}y(m^{\prime})_{k_{2}}^{*}D_{\xi^{\alpha}}\kappa_{f}(\xi;k_{1}, k_{2})|^{2}dk_{1}dk_{2})^{1/2}$

The right hand side is dominated by a linear combination of $\tilde{\gamma}$ semi-norms.
The condition $(iii)^{\wedge}$ is the immediate consequence of the condition $(iii)^{\sim}$ . There-
fore $T_{f}\in\hat{S}$ and the mapping $\kappa_{f}-T_{f}$ is continuous. Conversely, we assume
that $T\in\hat{S}$ . Then, by the condition $(ii)^{\wedge}$ , for any $l,$ $1^{\prime}\in N$ there exists a con-
stant $C^{l,l^{\prime}}$ such that

$\Vert\Delta^{l}T(\xi)\Delta^{l^{\prime}}\Vert\leqq C^{l,l^{\prime}}$

From Theorem 1 $T(\xi)$ has a $C^{\infty}$ (with respect to $k_{1},$ $k_{2}$) kernel function $\kappa(\xi;k_{1}, k_{2})$

which is defined by

$\kappa(\xi;k_{1}, k_{2})=,\sum_{i_{J}\in J}(T(\xi)\phi_{j}, \phi_{i})\phi_{i}(k_{1})\overline{\phi_{j}(k_{2})}$ . (5.1)

By $(ii)^{\wedge}$ we can prove that for any $\alpha\in N^{n},$ $m,$
$m^{\prime}\in N$ and $l,$ $1^{\prime}\in N$ there exists

a constant $C$ such that

$\Vert\Delta^{l}(1+|\xi|^{2})^{\beta}y(m)D_{\xi^{\alpha}}T(\xi)y(m^{\prime})\Delta^{l^{\prime}}\Vert\leqq C$ . (5.2)

Hence the series

$\sum_{i,j\in J}((1+|\xi|^{2})^{\beta}y(m)D_{\xi^{a}}T(\xi)y(m^{\prime})\phi_{j}, \phi_{i})\phi_{i}(k_{1})\overline{\phi_{j}(k_{2})}$

converges absolutely and uniformly with respect to $\xi$ . If we take $m=m^{\prime}=0$ ,
we have the infinitely differentiability of $\kappa(\xi;k_{1}, k_{2})$ with respect to $\xi$ . We
denote by $L$ the left regular representation of $K$. Then we have

$\sum_{i.j\in J}(T(\xi)\phi_{j}, \phi_{i})\phi_{t}(\exp_{K}tY\cdot k_{1})\phi_{j}\overline{(\exp_{K}t^{\prime}Y^{\prime}\cdot k_{2})}$

$=\sum_{i.j\in J}(L_{\exp_{K}(- iY)}T(\xi)L_{\exp_{K}(t^{\prime}Y^{\prime})}\phi_{j}, \phi_{i})\phi_{i}(k_{1})\overline{\phi_{l}(k_{2})}$

for all $Y,$ $Y^{\prime}\in f$ and $t,$ $t\in R$ (see [3], page 87 for a similar computation).
Therefore, we obtain

$Y_{k_{1}}Y_{k_{2}}^{\prime}\kappa(\xi;k_{1}, k_{2})=\sum_{i.j\in J}(YT(\xi)(-Y^{\prime})\phi_{j}, \phi_{i})\phi_{i}(k_{1})\overline{\phi_{j}(k_{2})}$ .
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So we have

$y(m)_{k_{1}}y(m^{\prime})_{k_{2}}D_{\xi^{\alpha}}\kappa(\xi;k_{1}, k_{2})=\sum_{i,j\in J}\pm(y(m)^{*}D_{\xi^{\alpha}}T(\xi)y(m^{\prime})\phi_{j}, \phi_{i})\phi_{i}(k_{1})\overline{\phi_{j}(k_{2})}$ . (5.3)

As a constant $C$ in (5.2) we can take a linear combination of $f$ semi-norms of
$T$ . Hence, by (3.5), (3.6) and (5.3), the value of

$|(1+|\xi|^{2})^{\beta}D_{\xi^{a}}y(m)_{k_{1}}y(m^{\prime})_{k2}\kappa(\xi;k_{1}, k_{2})|$

is dominated by a linear combination of $\hat{\gamma}$ semi-norms of $T$ . We can obtain
$(iii)^{\sim}$ from $(iii)^{\wedge}$ as in the proof of Theorem 2. Thus we have $\kappa(\xi;k_{1}, k_{2})\in\tilde{S}$

and the mapping $ T\rightarrow\kappa$ defined by (5.1) is a continuous mapping from $\hat{S}$ to $\tilde{S}$ .
Because

$(T(\xi)F)(k_{1})=\int_{K}\kappa(\xi;k_{1}, k_{2})F(k_{2})dk_{2}$

for $F\in \mathfrak{H}$, this mapping is an isomorphism. $q$ . $e$ . $d$ .
By Lemma 3 and Lemma 5 we have the following theorem.
THEOREM 3. The Fourier transform $f\rightarrow T_{f}$ is a topological isomorphism

from $S$ onto $\hat{S}$ .
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