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§0. Introduction.

In this article we shall prove a simple extension of a theorem due to Myers
[6] which states; if the sectional curvature of a connected and complete
Riemannian manifold M has a positive lower bound then M is compact. He
proved also that a connected and complete Riemannian manifold is compact if
its Ricci curvature is bounded from below by a positive constant. The latter
theorem has been generalized in several ways by Ambrose [1], Calabi and
Avez [2].

It is clear that a compact Riemannian manifold has a bounded volume.
However as is stated below the converse does not hold in general. In this
respect, M. Maeda [5] has shown that a connected and complete Riemannian
manifold whose sectional curvature lies in an interval (0, «] is compact if and
only if its volume is bounded. Recently Wu [8] proved that a complete, non-
compact and orientable n-dimensional hypersurface in a Euclidean (n+1)-space
has infinite volume if its sectional curvature is non-negative and all positive
at one point. Our aim is to prove the following

THEOREM. Let M be a complete and connected Riemannian n-manifold of
non-negative sectional curvature. Then M is compact if and only if its volume
1s bounded.

REMARK. In [9] Yau announced the same result by a different method.
His proof is based on the existence of a non-trivial convex continuous func-
tion on complete open manifold of non-negative curvature, for which he refers
to [4].

REMARK. For any positive ¢, we can construct an n-dimensional complete,
connected and non-compact hypersurface of revolution in a Euclidean (n4-1)-
space which has a bounded volume and its sectional curvature in [—¢, o0).

In order to prove our theorem it suffices to show that a connected, com-
plete and non-compact Riemannian n-manifold M of non-negative sectional

curvature has an infinite volume. Thus we may restrict our attention to such
an M.
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§1. Notations.

From now on let M be as above. A ray is by definition a geodesic 7:
[0, o)— M such that any of its subarc is the shortest connection between the
end points. In this article we always parametrize geodesics by arclengths.
For a subset X of M, let B(X):={ye M; d(y, X)<a}, where d: M X M—R
is the distance function on M. For each point x& M we denote by C(x) the
cut locus of x. We denote by exp,: M,—M the exponential map and by
i: M—R the injectivity radius function, where M, is the tangent space to M
at x.

Let 7:[0, 00)— M be a fixed ray with y(0)=p, and 7,: [0, c0)— M be 7,s)
=y(t+s). For each t=0, the set Cn:M_tgoBt'(ﬁ(t')) is called a supporting

half space and is a totally convex set (see [4])). We denote by H;, its boundary
set. Then we have a filtration {Cy,};-, of totally convex sets (see Proposition
1.3 of satisfying; (1) ¢, <1, implies Cr,, CCy,, and Cy,,={y € Cy,,; d(y, Hy,,)
=t,—t}. In particular Hy, = {y < Cy,,; d(y, Hy,))=t,—t}. (2) t&}ﬂ Cr,=M. (3)
p e Hy, h

For each point xe M (x#p) a ray o:[0, 0)—M, ¢(0)=1x, is by definition
asymptotic to 7y if there are a divergent sequence {f;} and a family of mini-
mizing geodesics {o,,;} each emanating from x and ending at y(f;) such that
ljiirla’x,;j(O) =¢’(0).

§2. Properties of asymptotic rays.

LEMMA 2.1. Let 2:[0, a]— M be a minimizing geodesic joining p= A(0) to
x=12a) and 0:[0,00)—M a ray asymptotic to y emanating from x. Then
L (07(0), 2'(a)) = <L(7(0), 2(0)).

Proor. Let {{;} and {o.,.;} be a divergent sequence and a shortest con-
nections each o,,; joining x to 7(¢;) such that 0’(0):}92 04:;0). To the

geodesic triangle (4, Oztjr 71[0, t;1) we apply the angle comparison theorem of
Toponogov and let j— oo,

LEMMA 2.2. For any t,>0 and any two poinis x,, x, € Hy, let oy, 0,: [0, o)
—M be rays emanating from x;=0,0) and asymptotic to y, both obtained by
the same dwergent sequence {it;}. Then the function p(f):=d(o,(), o,(t)) is
monotone increasing. Moreover p|[t*, co) is constant if and only if there exists
a totally geodesic flat surface with boundary o ,([t*, o)), o,([t*, o)) and a shortest
geodesic segment joining o,(t*) to o,(t*).

ProoF. From x; € Hy,, follows %Hf} [d(x,, y())—(t—1,)1=0. Let {0y,,} be

the family of shortest connections joining x; to y(f;) which satisfy ¢j(0)=
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iim 0i,0). For each t>t, ot)< Hyy,, follows from lim oy, (t)=0,t) and
—r00 J—reo
gm Ld(o,. (1), 7(t;)—(t;—1)1=0. To a geodesic triangle with vertices 01,0,

a,,.1) and y(¢;) we apply the angle comparison theorem to get (letting j— o)
both <C(8(0), 6i(t)) =z =/2 and < (—p(p(1)), o5(t)) = /2, where B:[0, p(t)]—M
is a minimizing geodesic joining o,(f) to o,(t). Consider a l-parameter varia-
tion V:(—e, )xX[0, p(£)]—M of B such that V(u, 0)=o,(t+u), V(u, p(t)=
o,(t+u) for us(—e, ). Then the first variation formula implies L/(0)=0,
where L(u) is the length of the curve v— V(u, v). Clearly L(u)= p(t+u) for
any u<(—e, 0J and L(0)=p(t). Therefore for us(—¢, 0] we see p(t)—p(t+u)

=0 because of lim inf —M—U—__—f)y—i@— = lim _fg(L)_—_qu@_ =0. The last statement

u—0 u—0
follows from the convexity theorem due to Alexandrov (for detail see [7)).
LEMMA 2.3. For any t,>0 and x < Hy,,, let 0:[0, c0)—M be a ray asymp-
totic to y such that o(0)=x. Then we have

(2.1) For any t>0, g, is the unique ray emanating from o,0)
and asymptotic to y.

(2.2) Cryyr & Co; Jor any > 0.

Proor. Let {/;} and {o,;} be a divergent sequence and a family of shortest
connections, each ag;,; joining o(t) to y([;), such that {o7;(0)} has a limit, say v.
Suppose v#0’'(t). To a geodesic triangle (a,,Lj, 01,5, 010, t]) we apply the
angle comparison theorem. Looking at the angle at ¢(f) we can derive a con-
tradiction from 5112 [(—t)—d(x, r(lj))]:yxﬁl Ll—t—t—d(a(?), y(;))]=0. Next
we take a point ze M—C,,. Then there exist «>0 and s, such that (s,—%)—
d(z, a(s,)) > a. Since Cy,,, is convex and o(f) is in it, g,; has at least one
intersection with Hyg,,. Let z; be the intersection furthest from o(f). From
(2.1) follows ]11r3 z;=o0(s,) and hence there is j, such that d(z;, a(s,) < a/3,

ld(z;, o(t))—(so—1)| < a/3 and [d(zj, 7({;))—l;+se+1 | <a/3 for all > j,. There-
fore we have d(z, y(I;)) <!l;—t,—t—a/3 for j> J,.

For each #>0 let S7, be the set such that Sf,={expreuX; 0=u<r,
X< My, | XII=1 and (X, y’(£)>)=0} and S;,: =S8%,. Then we have the

LEMMA 24. S8y, lies in the opposite side of dB,(p) with respect to Hy,. If
x is a point on Hy,N\0B,(p) then there exists a unique ray starting from x and
asymptotic to 7.

PROOF. From the argument in Lemma 22 we see that any asymptotic ray
emanating from x < Hy, has an intersection with Sy,, and hence Sy, C M—Int Cy,.

It is evident that B,(p»)CCr,. Suppose x& Hy,NdB,(p). Then lim [(t;—1t)—
j—oo

d(x, y(t;)]=0. Let A:[0,t]—M be a minimizing geodesic joining p=4(0) to
x=A(t). By applying the angle comparison theorem to the triangle with vertices
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b, x and 7(¢;), we see A/(t)=07(0). Thus the uniqueness is proved.

REMARK 1. Let y be any point on Hy, (>0). Then for any s>0 and any
asymptotic ray o starting from ¥, S,, lies in the opposite side of dB,(¥) with
respect to Hy,,,.

REMARK 2. If y is a ray on the complete simply connected hyperbolic
space form of constant curvature —1, Sy, lies between 0B,(p) and the horo-
sphere Hy, where p=71(0).

REMARK 3. Let xe H,NSy, and B:[0,b]—M be a geodesic segment
joining 7(¢) to x such that B([0, b])CSy,. Then in the same manner as in the
proof of there exists a totally geodesic flat surface with boundary
r([t, o)), B[O, b1) and o([0, o)), where ¢ is the asymptotic ray whose initial
vector is obtained by the parallel translation of y/(t) along p.

§3. Fermi coordinates along a ray.

Let E,, ---, E, be unit parallel fields along y such that E,({)=7’(f) and
(Ey(2), -+, E,(1)) is an orthonormal basis for M;q,. Set W,:=B;(y([0,1])) and
let £, be the maximum of sectional curvature on VI_/O and 7, the minimum of
the injectivity radius on the set. Let T,(y([0, 1]): 205%15;" Since 7([0, o))
C M—C(p) there is ¥>0 satisfying

(3.1 B,(r(L0, 1) M—C(p)
and
(3.2) r<Min{n/2 vy, —5-ia, 1}

If r satisfies the above conditions then so does any r*<(0,7]. Let Ry:=

sup {r>0; r satisfies and [3.2)}. Then clearly R, satisfies them. For any

r&(0, Ry, T.7([0,11) is the disjoint union of \UJ S%, and hence we can intro-
0

=t=1
duce Fermi coordinates in T.(7([0, 1])). Indeed, suppose x=eXpr¢UX=eXPrun?Y
holds for some 0<#,<t,<1, 0<u, v<R, and unit vectors X, ¥ each perpen-
dicular to y/(t,), y'(t,) respectively. The circumference of the triangle (x, y(Z)),
7(t,) is less than 4R, =27/+/k,, which enables us to draw the corresponding
triangle on the standard n-sphere S™(x,) of constant curvature k,. From [3.2),
each of the edges does not intersect the cut locus of the corresponding vertex.
Thus by means of Rauch’s theorem, we derive a contradiction from R0§

7/2~+/k,. We denote by ¢: Ta(y([0, 11))— R" the coordinate map, i.e, ¢ '(xy,
- xn):expmn)’il x;E(x,) for 0Zx,<1 and n‘;jll x?< R:. For zeTe(r (L0, 10)),
i=1 i=

we denote by dM(z) and dR™¢(z)) the volume element of M and R" at the
point.
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LEMMA 3.1. For any x;, x,€0B,(p)N\Ta(r([0,11)) such that d(x;, Hy)<
%}?0 (1=1, 2), let 0;:[—a;, 0)—M (1=1, 2) be rays each asymptotic to y and
emanating from x;=o,—a;), where a;=0 and o, 0)€Hy,. Then we have for

any numbers r; (O, —%——RO] such that d(e,(0), 6,(0)) = 7,7,

3.3) T, (0400, 1NN T, (0,0, 11))=0.

PrOOF. By means of Lemma 2.4 each o;|[0, o) is the unique ray emanat-
ing from o,(0) and asymptotic to 7. Hence the function p(t):=d(o,(?), 0,(t)) is
monotone increasing. Suppose there is a point ¢ on 7T',,(¢,([0, 11)) N\ T,(a2([0, 11)).
Then ¢=eXps 7 Uty = €XDoyn? ¥4, holds for some 0<r¥<r; and unit vectors
U € Myyeyy, <uy, 0i(t;)>=0. Without loss of generality we may assume f,=1?,.

Clearly g W, follows from d(q, p)<r¥-+1t + % R,+1<3. From t,—t,=

d(o,(t), Hy,,,,) Sr¥+r¥, the circumference of the triangle (o4(t), 0.(ty), 05(t)) is
less than 4(r¥-+r¥) <4R,<2x/+/k,. Since o,([t;, t,])C M—C(a,(t,)) the function
f:[0,00)—R defined by f(t):=d(o.(t)), o4(t)) is smooth on an open interval
containing [, ¢,]. Suppose f(t,) < f(t). Then there is f,=(t,t,) such that
f'(t5)<0. Hence the edge angles of the triangle (o,(f,), 0,(t)), 05(t5)) at g.(ts)
and o,(t,) are not smaller than =/2. Thus we derive a contradiction from
Rauch’s theorem. Therefore we have f(f,) = f(t,)= p(t,) = p(0) = 7;+7;. On the
other hand f(t,) < r¥+r¥<r,+r, is a contradiction.
Now we take R,=(0, R,] in such a way that Tx,(y([0, 1])) satisfies:

(3.4) For each x=dB,(p) "\ Tg,(r(0, 1])) the minimizing geodesic
A:[0,1]— M joining p to x has the extension 4|[0, b] such
that Z(b)eé’?;’ and moreover < (4(0), y’(0)<=x/6.

Then we have for any x€0B,(p) N\ Tr(7((0, 1)) and any ray o:[—a, co)—M
asymptotic to y such that x=o¢(—a) (¢=0) and ¢(0)=H;,,

(3.5) a< %Ro .

A L ~ .
This follows immediately from a=d(x, Hy)<b—1<(1+R)F—1<-5 Ri<--R,.

PROOF OF THEOREM. For each point x € 0B,(p) N\ Tr(r(0, 11)) we choose
an asymptotic ray ¢”:[—a,, co)— M such that ¢*(—a,)=x, ¢*(0)eHy,, and we
denote by A4;:[0, 11— M the shortest connection joining p to x. We denote by
A% the area of 0B(p)NT,(c*([—a% 1])), where a, is chosen so that a,=
Min {a?€[a,, 17; 0B,(p) " T,(¢%([—aZ, 17)) is a connected neighborhood of x on
0B, (D) N Tr(r([0,11)}. We also denote by A,(¢”(t)) the area of Sz, Then
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(3.6) 1< lim ——4—(0%_—(17 = (&), 6% (=a)™

r—0

= <A5(0), /(0.
Thus we can find (making use of Lemma 2.1) R¥ such that

Af ’ ’ ~1 9
3.7 1= A (0% (—ay) S 2400), (0t =4/4/3

holds for any x<0B,(p) N\ Tr(7([0, 11)) and any r=(0, R¥].
Setting W, :=\UB;(¢*([0, 11))\J W,, where the union is taken over all points

on B,(#) N Tr(r([0, 11)), we see from [35] that d(p, w)= 1+ -5 Ry+4 for any

w=W, Thus W, is compact and hence the sectional curvature and the injec-
tivity radius take the maximum %, and the minimum i, on W,. Therefore we

can find R, such that (a) 0<R,<R¥ (b) 1?1§Min{7r/2\/751, —%—il, (c)

Ta(oL0, 1NN C(a*(0)) =9 for any x < dB.(p) N Try(r(L0, 11)).

Next for any £<(0,1), there exists R,(&)= (0, R,] such that for any
1€ 0B.(P) N Tr(r([0, 11)) and any y & dB,(a7(0) N\ Taue(0®([0, 1)), if 4,:[0, 1]
— M is the shortest connection from ¢*(0) to ¥, then

(38) L(H(0), 07(0) < - cos™¢,
and

(3.9) 2, has the extension 2,|[0, b], (b>1) such that 4,(b)s S™ .
%1

Let D*!(r) be the volume of the (n—1)-dimensional disk of radius 7 in R"'.
Then we can choose R,(&)<(0, R,(£)] such that for any x€0B,(p) N\ Tr(r[0, 1)),
we have (making use of Fermi coordinates ¢ along ¢%|[ —a,, 1])

(3.10) dM(z)/dR™(¢(z))= &  for any z&Tg,¢)(a%([0, 1])),
(3.11) §<A(o*(t))/D"(r)=<1  for any te[—a,, 1]

and

(3.12) ¢=area of dB,(a”(0)NT.(¢%([0, 11))/ A(o*(1))

for any r=(0, Ry(8)].

We are now ready to prove the theorem. It follows from and (3.11)
that for any r=(0, R,(£)]

the area of [0B,($) N To(o*([—ak, 1S e ALr(—a) = —=D"(r).

By means of the volume of [T,(¢*([0, 1—R,))1=(1—R,)-D*"*(r)-£. Then
we can find at most countably many points {x;} on 9B,(p) "\ Tg(r([0, 11)), real
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numbers {r;}, 0<r, < %Rl(é) and asymptotic rays ¢*: [—a;, ©0)— M such that
o'(—a;)=x;, 0" (0)e Hy,, and d(c¥(0), 6(0))=7;+r; for i+ j, and such that

(3.13) BB.(D) N Tas(r([0, 1)~ U Tri(o"(C—af, 1) M3BA(P)
has measure zero on 05,(p) N\ Tg(r((0, 11)),
(3.14) T, (o*C0, INN T (00, 11) =0 for i#].

Setting c¢: =the area of 9B,(p) \Tr(r((0, 1)), we have
(3.15) 3 Vol [T, (000, 1= R,I) = Y- (1—Ry) c €.

Next, setting W,: = O \J By(a¥([0, 1)V W,UW, where ¥y ranges over all
i=1 ¥

points on 8B,(¢*(0)) N T,,(6*([0, 1)) and ¢?:[—a,, c0)— M is an asymptotic ray
such that ¢¥(—a,)=2y, ¢¥(0)< Hy, we see that ¥, is compact. Hence by means
of there exists R¥ such that

/ Ay -1
(3.7 1= A= ay)y =¢

for any y€0B,(¢*(0)) N\ T-,(¢%([0, 1)) and any r=(0, R¥]. Clearly R, can also
be found in the same way as R,, and R,=R,=R,. In the same manner as
we find R,(£), we can choose R,(&) satisfying and (3.9) for any y<
0B, (" (0) N T, (6*([0, 11)), any 2€0B,(6¥(0)) N\ Thyex(0¥([0, 1])) and 4,:[0, 11> M
joining ¥=2,(0) to z2=21,(1). Thus R,(§) can be chosen so as to satisfy [3.10},
(3.11) and (3.12) for any oY. Hence for each i there exist at most countably
many points {x;;} on 9B,(c*(0)) "\ T,;(¢*([0,1])), real numbers {ry}, 0<r;=
—é—RZ(E) and asymptotic rays ¢*/:[—a,;, 00)— M such that ¢*/(—a;;)=x;;, ¢/(0)
€Hy, and d(¢"/(0), 0*¥(0)) = 7;;+ 7, for any j and 2+ j, and such that

313y 0B,(a () N T (%[0, 11)— JQ T,;(a*(L—dl;, 10)) N By(a*(0))

has measure zero on 9B,(¢%(0)) "\ Tr,(¢*([0, 1]))
and

3.14) T, (0" (0, INNTy (o' "0, 1]))=0  for j#£,

where a};(ay;, 1) is taken so that aB,(¢*(0) N\ T, j(o“([—*aéj, 17)) is a connected
open neighborhood of x;; on 9B,(¢*(0) N\T2,(6*([0, 1])). Here we note that
each ¢%/|[0, o0) is the unique asymptotic ray starting from ¢*/(0)= H;, and

=1 J=

U U Tr (60, 1—-R,])) is a disjoint union. Thus we obtain
1
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Vol [Ty, (6"(00, 1R D)1= B A—R)D™ry))-£ (by

=

M

(1=Ry)-§- Ay, (6Y(—aiy) (by (3.11))

I
-

J

=

M

(1—Ry)E* Az (by (3.7))

I
-

=(1—R,)-&*-area of [JQ 0B(a" O N T (0" ([—ai;, 1])]
= (1—R,)-&*-area of [0B,(a"(0)NT,,(a"([0, 11))] (by (3.13)")
= (1—R,)- £+ A,5(a*(1)) (by (3.12))
=(1—Ro)-&* Ay (0% (—a) .
Thus we have

(315 2 S Vol [T0,,(6400, 1R Z V- (1= Ry)-c-€*.

Repeating this process N times, we obtain compact subsets WI, cee VT/N on
which R,(§), -+, Ry(§) are well defined. Letting iy, ---, iy natural numbers,
we have at most countably many points {x;,.,;x} on 0By (¢ "V H0) N

Tri]’m’iN—l(oil,-..,iN—l([:O, 17)), real numbers {r; . iy}, 0<7y iy < —%—RN(S) and

asymptotic rays o"'V:[—a,; ..y, ©)— M emanating from x,,,.;y such that
o'»*¥(0)e Hyy, e.t.c. Then the above computations imply

(3.16) 3 o SVl Ty in (@0, 1— R, 1]

;=1 iy=1
= Y3 (1= R)- -6,
Hence for any number v, there exist £=(0, 1) and N such that

vol[M]> %(I—Ro)c-f{l-}—fa-]- oo - gEN=DY

=3 (1-R)-c-é 11__5;1: >y,

Thus the proof is complete.
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