An extension of a theorem of Myers

Dedicated to Professor S. Kashiwabara on his 60th birthday

By Katsuhiro SHIOHAMA

(Received Nov. 21, 1974)

§ 0. Introduction.

In this article we shall prove a simple extension of a theorem due to Myers [6], which states; if the sectional curvature of a connected and complete Riemannian manifold M has a positive lower bound then M is compact. He proved also that a connected and complete Riemannian manifold is compact if its Ricci curvature is bounded from below by a positive constant. The latter theorem has been generalized in several ways by Ambrose [1], Calabi [3] and Avez [2].

It is clear that a compact Riemannian manifold has a bounded volume. However as is stated below the converse does not hold in general. In this respect, M. Maeda [5] has shown that a connected and complete Riemannian manifold whose sectional curvature lies in an interval $(0, \alpha]$ is compact if and only if its volume is bounded. Recently Wu [8] proved that a complete, noncompact and orientable n-dimensional hypersurface in a Euclidean (n+1)-space has infinite volume if its sectional curvature is non-negative and all positive at one point. Our aim is to prove the following

THEOREM. Let M be a complete and connected Riemannian n-manifold of non-negative sectional curvature. Then M is compact if and only if its volume is bounded.

REMARK. In [9] Yau announced the same result by a different method. His proof is based on the existence of a non-trivial convex continuous function on complete open manifold of non-negative curvature, for which he refers to [4].

REMARK. For any positive ε , we can construct an n-dimensional complete, connected and non-compact hypersurface of revolution in a Euclidean (n+1)-space which has a bounded volume and its sectional curvature in $[-\varepsilon, \infty)$.

In order to prove our theorem it suffices to show that a connected, complete and non-compact Riemannian n-manifold M of non-negative sectional curvature has an infinite volume. Thus we may restrict our attention to such an M.

§ 1. Notations.

From now on let M be as above. A ray is by definition a geodesic γ : $[0,\infty)\to M$ such that any of its subarc is the shortest connection between the end points. In this article we always parametrize geodesics by arclengths. For a subset X of M, let $B_a(X):=\{y\in M; d(y,X)< a\}$, where $d:M\times M\to R$ is the distance function on M. For each point $x\in M$ we denote by C(x) the cut locus of x. We denote by $\exp_x:M_x\to M$ the exponential map and by $i:M\to R$ the injectivity radius function, where M_x is the tangent space to M at x.

Let $\gamma: [0, \infty) \to M$ be a fixed ray with $\gamma(0) = p$, and $\gamma_t: [0, \infty) \to M$ be $\gamma_t(s) = \gamma(t+s)$. For each $t \ge 0$, the set $C_{\tau_t} = M - \bigcup_{t' > 0} B_{t'}(\gamma_t(t'))$ is called a supporting half space and is a totally convex set (see [4]). We denote by H_{τ_t} its boundary set. Then we have a filtration $\{C_{\tau_t}\}_{t \ge 0}$ of totally convex sets (see Proposition 1.3 of [4]) satisfying; (1) $t_1 \le t_2$ implies $C_{\tau_{t_1}} \subset C_{\tau_{t_2}}$ and $C_{\tau_{t_1}} = \{y \in C_{\tau_{t_2}}; d(y, H_{\tau_{t_2}}) \ge t_2 - t_1\}$. In particular $H_{\tau_{t_1}} = \{y \in C_{\tau_{t_2}}; d(y, H_{\tau_{t_2}}) = t_2 - t_1\}$. (2) $\bigcup_{t \ge 0} C_{\tau_t} = M$. (3) $p \in H_{\tau_0}$.

For each point $x \in M$ $(x \neq p)$ a ray $\sigma : [0, \infty) \to M$, $\sigma(0) = x$, is by definition asymptotic to γ if there are a divergent sequence $\{t_j\}$ and a family of minimizing geodesics $\{\sigma_{x,t_j}\}$ each emanating from x and ending at $\gamma(t_j)$ such that $\lim_{t\to\infty} \sigma'_{x,t_j}(0) = \sigma'(0)$.

§ 2. Properties of asymptotic rays.

LEMMA 2.1. Let $\lambda: [0, a] \to M$ be a minimizing geodesic joining $p = \lambda(0)$ to $x = \lambda(a)$ and $\sigma: [0, \infty) \to M$ a ray asymptotic to γ emanating from x. Then $\chi(\sigma'(0), \lambda'(a)) \leq \chi(\gamma'(0), \lambda'(0))$.

PROOF. Let $\{t_j\}$ and $\{\sigma_{x,t_j}\}$ be a divergent sequence and a shortest connections each σ_{x,t_j} joining x to $\gamma(t_j)$ such that $\sigma'(0) = \lim_{j \to \infty} \sigma'_{x,t_j}(0)$. To the geodesic triangle $(\lambda, \sigma_{x,t_j}, \gamma | [0, t_j])$ we apply the angle comparison theorem of Toponogov and let $j \to \infty$.

LEMMA 2.2. For any $t_0 > 0$ and any two points $x_1, x_2 \in H_{\tau_{t_0}}$ let $\sigma_1, \sigma_2 : [0, \infty) \to M$ be rays emanating from $x_i = \sigma_i(0)$ and asymptotic to γ , both obtained by the same divergent sequence $\{t_j\}$. Then the function $\rho(t) := d(\sigma_1(t), \sigma_2(t))$ is monotone increasing. Moreover $\rho \mid [t^*, \infty)$ is constant if and only if there exists a totally geodesic flat surface with boundary $\sigma_1([t^*, \infty)), \sigma_2([t^*, \infty))$ and a shortest geodesic segment joining $\sigma_1(t^*)$ to $\sigma_2(t^*)$.

PROOF. From $x_i \in H_{r_{t_0}}$, follows $\lim_{t \to \infty} [d(x_i, \gamma(t)) - (t - t_0)] = 0$. Let $\{\sigma_{i, t_j}\}$ be the family of shortest connections joining x_i to $\gamma(t_j)$ which satisfy $\sigma'_i(0) = 0$

 $\lim_{j\to\infty}\sigma'_{i,t_j}(0). \quad \text{For each } t>t_0, \ \sigma_i(t)\in H_{\tau_{t_0+t}} \quad \text{follows from } \lim_{j\to\infty}\sigma_{i,t_j}(t)=\sigma_i(t) \quad \text{and } \lim_{j\to\infty} \left[d(\sigma_{i,t_j}(t),\ \gamma(t_j))-(t_j-t)\right]=0. \quad \text{To a geodesic triangle with vertices } \sigma_{1,t_j}(t), \sigma_{2,t_j}(t) \quad \text{and } \gamma(t_j) \quad \text{we apply the angle comparison theorem to get (letting } j\to\infty) \quad \text{both } \langle (\beta'(0),\ \sigma_i'(t))\geq \pi/2 \quad \text{and } \langle (-\beta'(\rho(t)),\ \sigma_2'(t))\geq \pi/2, \quad \text{where } \beta:[0,\ \rho(t)]\to M \quad \text{is a minimizing geodesic joining } \sigma_1(t) \quad \text{to } \sigma_2(t). \quad \text{Consider a 1-parameter variation } V:(-\varepsilon,\varepsilon)\times[0,\ \rho(t)]\to M \quad \text{of } \beta \quad \text{such that } V(u,0)=\sigma_1(t+u), \quad V(u,\ \rho(t))=\sigma_2(t+u) \quad \text{for } u\in(-\varepsilon,\varepsilon). \quad \text{Then the first variation formula implies } L'(0)\geq 0, \quad \text{where } L(u) \quad \text{is the length of the curve } v\to V(u,v). \quad \text{Clearly } L(u)\geq \rho(t+u) \quad \text{for any } u\in(-\varepsilon,0] \quad \text{and } L(0)=\rho(t). \quad \text{Therefore for } u\in(-\varepsilon,0] \quad \text{we see } \rho(t)-\rho(t+u)\geq 0 \quad \text{because of } \lim_{u\to 0}\inf\frac{\rho(t)-\rho(t+u)}{-u}\geq \lim_{u\to 0}\frac{L(0)-L(u)}{-u}\geq 0. \quad \text{The last statement follows from the convexity theorem due to Alexandrov (for detail see [7]).}$

LEMMA 2.3. For any $t_0 > 0$ and $x \in H_{\tau_{t_0}}$, let $\sigma : [0, \infty) \to M$ be a ray asymptotic to γ such that $\sigma(0) = x$. Then we have

- (2.1) For any t > 0, σ_t is the unique ray emanating from $\sigma_t(0)$ and asymptotic to γ .
- (2.2) $C_{\gamma_{t_0+t}} \subset C_{\sigma_t}$ for any t > 0.

PROOF. Let $\{l_j\}$ and $\{\sigma_{t,j}\}$ be a divergent sequence and a family of shortest connections, each $\sigma_{t,j}$ joining $\sigma(t)$ to $\gamma(l_j)$, such that $\{\sigma'_{t,j}(0)\}$ has a limit, say v. Suppose $v \neq \sigma'(t)$. To a geodesic triangle $(\sigma_{x,l_j},\sigma_{t,j},\sigma|[0,t])$ we apply the angle comparison theorem. Looking at the angle at $\sigma(t)$ we can derive a contradiction from $\lim_{j\to\infty} \lceil (l_j-t_0)-d(x,\gamma(l_j))\rceil = \lim_{j\to\infty} \lceil l_j-t_0-t-d(\sigma(t),\gamma(l_j))\rceil = 0$. Next we take a point $z\in M-C_{\sigma_t}$. Then there exist $\alpha>0$ and s_0 such that $(s_0-t)-d(z,\sigma(s_0))>\alpha$. Since $C_{\tau_{s_0+t_0}}$ is convex and $\sigma(t)$ is in it, $\sigma_{t,j}$ has at least one intersection with $H_{\tau_{s_0+t_0}}$. Let z_j be the intersection furthest from $\sigma(t)$. From (2.1) follows $\lim_{j\to\infty}z_j=\sigma(s_0)$ and hence there is j_0 such that $d(z_j,\sigma(s_0))<\alpha/3$, $|d(z_j,\sigma(t))-(s_0-t)|<\alpha/3$ and $|d(z_j,\gamma(l_j))-l_j+s_0+t_0|<\alpha/3$ for all $j>j_0$. Therefore we have $d(z,\gamma(l_j))< l_j-t_0-t-\alpha/3$ for $j>j_0$.

For each t > 0 let S_{t}^r be the set such that $S_{t}^r = \{\exp_{\tau(t)} uX; 0 \le u < r, X \in M_{\tau(t)}, \|X\| = 1 \text{ and } \langle X, \gamma'(t) \rangle = 0\}$ and $S_{t} := S_{t}^{\infty}$. Then we have the

LEMMA 2.4. S_{τ_t} lies in the opposite side of $\partial B_t(p)$ with respect to H_{τ_t} . If x is a point on $H_{\tau_t} \cap \partial B_t(p)$ then there exists a unique ray starting from x and asymptotic to γ .

PROOF. From the argument in Lemma 2.2 we see that any asymptotic ray emanating from $x \in H_{\tau_t}$ has an intersection with S_{τ_t} , and hence $S_{\tau_t} \subset M$ —Int C_{τ_t} . It is evident that $\overline{B_t(p)} \subset C_{\tau_t}$. Suppose $x \in H_{\tau_t} \cap \partial B_t(p)$. Then $\lim_{j \to \infty} [(t_j - t) - d(x, \gamma(t_j))] = 0$. Let $\lambda : [0, t] \to M$ be a minimizing geodesic joining $p = \lambda(0)$ to $x = \lambda(t)$. By applying the angle comparison theorem to the triangle with vertices

p, x and $\gamma(t_j)$, we see $\lambda'(t) = \sigma'(0)$. Thus the uniqueness is proved.

REMARK 1. Let y be any point on H_{r_t} (t>0). Then for any s>0 and any asymptotic ray σ starting from y, S_{σ_s} lies in the opposite side of $\partial B_s(y)$ with respect to $H_{r_{t+s}}$.

REMARK 2. If γ is a ray on the complete simply connected hyperbolic space form of constant curvature -1, S_{τ_t} lies between $\partial B_t(p)$ and the horosphere H_{τ_t} , where $p = \gamma(0)$.

REMARK 3. Let $x \in H_{r_t} \cap \mathcal{S}_{r_t}$ and $\beta : [0, b] \to M$ be a geodesic segment joining $\gamma(t)$ to x such that $\beta([0, b]) \subset \mathcal{S}_{r_t}$. Then in the same manner as in the proof of Lemma 2.2, there exists a totally geodesic flat surface with boundary $\gamma([t, \infty))$, $\beta([0, b])$ and $\sigma([0, \infty))$, where σ is the asymptotic ray whose initial vector is obtained by the parallel translation of $\gamma'(t)$ along β .

§ 3. Fermi coordinates along a ray.

Let E_1, \dots, E_n be unit parallel fields along γ such that $E_n(t) = \gamma'(t)$ and $(E_1(t), \dots, E_n(t))$ is an orthonormal basis for $M_{r(t)}$. Set $W_0 := B_3(\gamma([0, 1]))$ and let κ_0 be the maximum of sectional curvature on \overline{W}_0 and i_0 the minimum of the injectivity radius on the set. Let $T_r(\gamma([0, 1])) := \bigcup_{0 \le t \le 1} \mathcal{S}_{rt}^r$. Since $\gamma([0, \infty)) \subset M - C(p)$ there is r > 0 satisfying

$$(3.1) B_r(\gamma(\lceil 0, 1 \rceil)) \subset M - C(p)$$

and

(3.2)
$$r \leq \operatorname{Min}\left\{\pi/2\sqrt{\kappa_0}, \frac{1}{2}i_0, 1\right\}.$$

If r satisfies the above conditions then so does any $r^* \in (0, r]$. Let $\hat{R}_0 := \sup\{r > 0$; r satisfies (3.1) and (3.2)}. Then clearly \hat{R}_0 satisfies them. For any $r \in (0, \hat{R}_0]$, $T_r(\gamma([0, 1]))$ is the disjoint union of $\bigcup_{0 \le t \le 1} S^r_{tt}$ and hence we can introduce Fermi coordinates in $T_r(\gamma([0, 1]))$. Indeed, suppose $x = \exp_{r(t_1)} uX = \exp_{r(t_2)} vY$ holds for some $0 \le t_1 \le t_2 \le 1$, 0 < u, $v < \hat{R}_0$ and unit vectors X, Y each perpendicular to $\gamma'(t_1)$, $\gamma'(t_2)$ respectively. The circumference of the triangle $(x, \gamma(t_1), \gamma(t_2))$ is less than $4\hat{R}_0 \le 2\pi/\sqrt{\kappa_0}$, which enables us to draw the corresponding triangle on the standard n-sphere $S^n(\kappa_0)$ of constant curvature κ_0 . From (3.2), each of the edges does not intersect the cut locus of the corresponding vertex. Thus by means of Rauch's theorem, we derive a contradiction from $\hat{R}_0 \le \pi/2\sqrt{\kappa_0}$. We denote by $\varphi: T_{\hat{R}_0}(\gamma([0,1])) \to R^n$ the coordinate map, i. e., $\varphi^{-1}(x_1, \dots, x_n) = \exp_{T(x_n)} \sum_{i=1}^{n-1} x_i E_i(x_n)$ for $0 \le x_n \le 1$ and $\sum_{i=1}^{n-1} x_i^2 < \hat{R}_0^2$. For $z \in T_{\hat{R}_0}(\gamma([0,1]))$, we denote by dM(z) and $dR^n(\varphi(z))$ the volume element of M and R^n at the point.

LEMMA 3.1. For any x_1 , $x_2 \in \partial B_1(p) \cap T_{\hat{R}_0}(\gamma([0,1]))$ such that $d(x_i, H_{r_1}) < \frac{1}{2} \hat{R}_0$ (i=1,2), let $\sigma_i : [-a_i, \infty) \to M$ (i=1,2) be rays each asymptotic to γ and emanating from $x_i = \sigma_i(-a_i)$, where $a_i \geq 0$ and $\sigma_i(0) \in H_{r_1}$. Then we have for any numbers $r_i \in \left(0, \frac{1}{2} \hat{R}_0\right]$ such that $d(\sigma_1(0), \sigma_2(0)) \geq r_1 + r_2$,

$$(3.3) T_{r_1}(\sigma_1([0,1])) \cap T_{r_2}(\sigma_2([0,1])) = \emptyset.$$

PROOF. By means of Lemma 2.4 each $\sigma_i | [0, \infty)$ is the unique ray emanating from $\sigma_i(0)$ and asymptotic to γ . Hence the function $\rho(t) := d(\sigma_1(t), \sigma_2(t))$ is monotone increasing. Suppose there is a point q on $T_{r_1}(\sigma_1([0,1])) \cap T_{r_2}(\sigma_2([0,1]))$. Then $q = \exp_{\sigma_1(t_1)} r_1^* u_1 = \exp_{\sigma_2(t_2)} r_2^* u_2$ holds for some $0 < r_i^* < r_i$ and unit vectors $u_i \in M_{\sigma_i(t_i)}$, $\langle u_i, \sigma_i'(t_i) \rangle = 0$. Without loss of generality we may assume $t_2 \ge t_1$. Clearly $q \in W_0$ follows from $d(q, p) < r_1^* + t_1 + \frac{1}{2} \hat{R}_0 + 1 < 3$. From $t_2 - t_1 = d(\sigma_1(t_1), H_{r_{t_2+1}}) \le r_1^* + r_2^*$, the circumference of the triangle $(\sigma_1(t_1), \sigma_2(t_2), \sigma_2(t_1))$ is less than $4(r_1^* + r_2^*) \le 4\hat{R}_0 \le 2\pi/\sqrt{\kappa_0}$. Since $\sigma_2([t_1, t_2]) \subset M - C(\sigma_1(t_1))$ the function $f: [0, \infty) \to R$ defined by $f(t) := d(\sigma_1(t_1), \sigma_2(t))$ is smooth on an open interval containing $[t_1, t_2]$. Suppose $f(t_2) < f(t_1)$. Then there is $t_3 \in (t_1, t_2)$ such that $f'(t_3) < 0$. Hence the edge angles of the triangle $(\sigma_1(t_1), \sigma_2(t_1), \sigma_2(t_3))$ at $\sigma_2(t_3)$ and $\sigma_2(t_1)$ are not smaller than $\pi/2$. Thus we derive a contradiction from Rauch's theorem. Therefore we have $f(t_2) \ge f(t_1) = \rho(t_1) \ge \rho(0) \ge r_1 + r_2$. On the other hand $f(t_2) \le r_1^* + r_2^* < r_1 + r_2$ is a contradiction.

Now we take $R_0 \in (0, \hat{R}_0]$ in such a way that $T_{R_0}(\gamma([0, 1]))$ satisfies:

(3.4) For each $x \in \partial B_1(p) \cap T_{R_0}(\gamma([0, 1]))$ the minimizing geodesic $\lambda : [0, 1] \to M$ joining p to x has the extension $\lambda | [0, b]$ such that $\lambda(b) \in \mathcal{S}_{r_1}^{\hat{R}_0}$ and moreover $\langle (\lambda'(0), \gamma'(0)) \leq \pi/6$.

Then we have for any $x \in \partial B_1(p) \cap T_{R_0}(\gamma([0, 1]))$ and any ray $\sigma: [-a, \infty) \to M$ asymptotic to γ such that $x = \sigma(-a)$ $(a \ge 0)$ and $\sigma(0) \in H_{r_1}$,

$$(3.5) a < \frac{1}{2} \hat{R}_0.$$

This follows immediately from $a = d(x, H_{r_1}) \leq b - 1 < (1 + \hat{R}_0^2)^{\frac{1}{2}} - 1 < \frac{1}{2} \hat{R}_0^2 < \frac{1}{2} \hat{R}_0$.

PROOF OF THEOREM. For each point $x \in \partial B_1(p) \cap T_{R_0}(\gamma([0,1]))$ we choose an asymptotic ray $\sigma^x : [-a_x, \infty) \to M$ such that $\sigma^x(-a_x) = x$, $\sigma^x(0) \in H_{r_1}$, and we denote by $\lambda_x : [0,1] \to M$ the shortest connection joining p to x. We denote by A_r^x the area of $\partial B_1(p) \cap T_r(\sigma^x([-a_x',1]))$, where a_x' is chosen so that $a_x' = \min\{a_x'' \in [a_x,1]; \partial B_1(p) \cap T_r(\sigma^x([-a_x'',1]))\}$ is a connected neighborhood of x on $\partial B_1(p) \cap T_{R_0}(\gamma([0,1]))\}$. We also denote by $A_r(\sigma^x(t))$ the area of $S_{\sigma_x}^r$. Then

$$(3.6) 1 \leq \lim_{r \to 0} \frac{A_r^x}{A_r(\sigma^x(-a_x))} \leq \langle \lambda'_x(1), \sigma^{x'}(-a_x) \rangle^{-1}$$
$$\leq \langle \lambda'_x(0), \gamma'(0) \rangle^{-1}.$$

Thus we can find (making use of Lemma 2.1) R_1^* such that

$$(3.7) 1 \leq \frac{A_r^x}{A_r(\sigma^x(-a_x))} \leq 2\langle \lambda_x'(0), \gamma'(0) \rangle^{-1} \leq 4/\sqrt{3}$$

holds for any $x \in \partial B_1(p) \cap T_{R_0}(\gamma([0, 1]))$ and any $r \in (0, R_1^*]$.

Setting $W_1:=\bigcup_x B_3(\sigma^x([0,1])) \cup W_0$, where the union is taken over all points on $\partial B_1(p) \cap T_{R_0}(\gamma([0,1]))$, we see from (3.5) that $d(p,w) \leq 1+\frac{1}{2} \hat{R}_0+4$ for any $w \in W_1$. Thus \overline{W}_1 is compact and hence the sectional curvature and the injectivity radius take the maximum κ_1 and the minimum i_1 on \overline{W}_1 . Therefore we can find \hat{R}_1 such that (a) $0 < \hat{R}_1 < R_1^*$, (b) $\hat{R}_1 \leq \min \left\{ \pi/2 \sqrt{\kappa_1}, \frac{1}{2} i_1 \right\}$, (c) $T_{\hat{R}_1}(\sigma^x[0,1]) \cap C(\sigma^x(0)) = \emptyset$ for any $x \in \partial B_1(p) \cap T_{R_0}(\gamma([0,1]))$.

Next for any $\xi \in (0, 1)$, there exists $\hat{R}_1(\xi) \in (0, \hat{R}_1]$ such that for any $x \in \partial B_1(p) \cap T_{R_0}(\gamma([0, 1]))$ and any $y \in \partial B_1(\sigma^x(0)) \cap T_{\hat{R}_1(\xi)}(\sigma^x([0, 1]))$, if $\lambda_y : [0, 1] \to M$ is the shortest connection from $\sigma^x(0)$ to y, then

(3.8)
$$\langle (\lambda_y'(0), \sigma^{x'}(0)) < \frac{1}{2} \cos^{-1} \xi$$
,

and

(3.9)
$$\lambda_y$$
 has the extension $\lambda_y | [0, b], (b>1)$ such that $\lambda_y(b) \in \mathcal{S}_{\sigma_1}^{\hat{R}_1}$.

Let $D^{n-1}(r)$ be the volume of the (n-1)-dimensional disk of radius r in R^{n-1} . Then we can choose $R_1(\xi) \in (0, \hat{R}_1(\xi)]$ such that for any $x \in \partial B_1(p) \cap T_{R_0}(\gamma[0, 1])$, we have (making use of Fermi coordinates φ along $\sigma^x | [-a_x, 1]$)

$$(3.10) dM(z)/dR^n(\varphi(z)) \ge \xi \text{for any } z \in T_{R_1(\xi)}(\sigma^x([0, 1])),$$

(3.11)
$$\hat{\xi} \leq A_r(\sigma^x(t))/D^{n-1}(r) \leq 1 \quad \text{for any } t \in [-a_x, 1]$$

and

(3.12)
$$\hat{\xi} \leq \text{area of } \partial B_1(\sigma^x(0)) \cap T_r(\sigma^x([0, 1])) / A_r(\sigma^x(1))$$
 for any $r \in (0, R_1(\xi)]$.

We are now ready to prove the theorem. It follows from (3.7) and (3.11) that for any $r \in (0, R_1(\xi)]$

the area of
$$[\partial B_1(p) \cap T_r(\sigma^x([-a_x',1]))] \leq \frac{4}{\sqrt{3}} A_r(\sigma^x(-a_x)) \leq \frac{4}{\sqrt{3}} D^{n-1}(r)$$
.

By means of (3.10) the volume of $[T_r(\sigma^x([0, 1-R_0]))] \ge (1-R_0) \cdot D^{n-1}(r) \cdot \xi$. Then we can find at most countably many points $\{x_i\}$ on $\partial B_1(p) \cap T_{R_0}(\gamma([0, 1]))$, real

numbers $\{r_i\}$, $0 < r_i \le \frac{1}{2} R_i(\xi)$ and asymptotic rays $\sigma^i : [-a_i, \infty) \to M$ such that $\sigma^i(-a_i) = x_i$, $\sigma^i(0) \in H_{r_i}$, and $d(\sigma^i(0), \sigma^j(0)) \ge r_i + r_j$ for $i \ne j$, and such that

(3.13)
$$\partial B_{1}(p) \cap T_{R_{0}}(\gamma([0,1])) - \bigcup_{i=1}^{\infty} T_{r_{i}}(\sigma^{i}([-a'_{i},1])) \cap \partial B_{1}(p)$$

has measure zero on $\partial B_1(p) \cap T_{R_0}(\gamma([0,1]))$,

$$(3.14) T_{r_i}(\sigma^i([0, 1])) \cap T_{r_i}(\sigma^j([0, 1])) = \emptyset \text{for } i \neq j.$$

Setting c := the area of $\partial B_1(p) \cap T_{R_0}(\gamma([0, 1]))$, we have

$$(3.15) \qquad \qquad \sum_{i=1}^{\infty} \operatorname{vol}\left[T_{r_i}(\sigma^i([0, 1-R_0])) \ge \frac{\sqrt{3}}{4}(1-R_0) \cdot c \cdot \xi\right].$$

Next, setting $W_2:=\bigcup\limits_{i=1}^{\infty}\bigcup\limits_{y}B_3(\sigma^y(\llbracket 0,1\rrbracket))\cup W_1\cup W_0$ where y ranges over all points on $\partial B_1(\sigma^i(0))\cap T_{r_i}(\sigma^i(\llbracket 0,1\rrbracket))$ and $\sigma^y:\llbracket -a_y,\infty)\to M$ is an asymptotic ray such that $\sigma^y(-a_y)=y,\ \sigma^y(0)\in H_{r_2}$, we see that \overline{W}_2 is compact. Hence by means of (3.8) there exists R_2^* such that

(3.7)'
$$1 \le \frac{A_r^y}{A_r(\sigma^y(-a_y))} \le \xi^{-1}$$

for any $y \in \partial B_1(\sigma^i(0)) \cap T_{r_i}(\sigma^i([0,1]))$ and any $r \in (0, R_2^*]$. Clearly \hat{R}_2 can also be found in the same way as \hat{R}_1 , and $\hat{R}_0 \ge \hat{R}_1 \ge \hat{R}_2$. In the same manner as we find $\hat{R}_1(\xi)$, we can choose $\hat{R}_2(\xi)$ satisfying (3.8) and (3.9) for any $y \in \partial B_1(\sigma^i(0)) \cap T_{r_i}(\sigma^i([0,1]))$, any $z \in \partial B_1(\sigma^y(0)) \cap T_{\hat{R}_2(\xi)}(\sigma^y([0,1]))$ and $\lambda_z : [0,1] \to M$ joining $y = \lambda_z(0)$ to $z = \lambda_z(1)$. Thus $R_2(\xi)$ can be chosen so as to satisfy (3.10), (3.11) and (3.12) for any σ^y . Hence for each i there exist at most countably many points $\{x_{ij}\}$ on $\partial B_1(\sigma^i(0)) \cap T_{r_i}(\sigma^i([0,1]))$, real numbers $\{r_{ij}\}$, $0 < r_{ij} \le \frac{1}{2} R_2(\xi)$ and asymptotic rays $\sigma^{ij} : [-a_{ij}, \infty) \to M$ such that $\sigma^{ij}(-a_{ij}) = x_{ij}$, $\sigma^{ij}(0) \in H_{r_2}$ and $d(\sigma^{ij}(0), \sigma^{ik}(0)) \ge r_{ij} + r_{ik}$ for any j and $k \ne j$, and such that

$$(3.13)' \qquad \partial B_1(\sigma^i(0)) \cap T_{r_i}(\sigma^i([0, 1])) - \bigcup_{j=1}^{\infty} T_{r_{ij}}(\sigma^{ij}([-a'_{ij}, 1])) \cap B_1(\sigma^i(0))$$

has measure zero on $\partial B_1(\sigma^i(0)) \cap T_{r_i}(\sigma^i([0,1]))$

and

$$(3.14) T_{r_{i}}(\sigma^{ij}([0,1])) \cap T_{r_{ik}}(\sigma^{ik}([0,1])) = \emptyset \text{for } j \neq k,$$

where $a'_{ij} \in (a_{ij}, 1)$ is taken so that $\partial B_1(\sigma^i(0)) \cap T_{r_{ij}}(\sigma^{ij}([-a'_{ij}, 1]))$ is a connected open neighborhood of x_{ij} on $\partial B_1(\sigma^i(0)) \cap T_{\hat{R}_i}(\sigma^i([0, 1]))$. Here we note that each $\sigma^{ij}|[0, \infty)$ is the *unique* asymptotic ray starting from $\sigma^{ij}(0) \in H_{r_2}$ and $\bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} T_{r_{ij}}(\sigma^{ij}([0, 1-R_0]))$ is a disjoint union. Thus we obtain

$$\begin{split} \sum_{j=1}^{\infty} \operatorname{vol}\left[T_{r_{ij}}(\sigma^{ij}([0, 1-R_0]))\right] &\geq \sum_{j=1}^{\infty} (1-R_0)D^{n-1}(r_{ij}) \cdot \xi \text{ (by (3.10))} \\ &\geq \sum_{j=1}^{\infty} (1-R_0) \cdot \xi \cdot A_{r_{ij}}(\sigma^{ij}(-a_{ij})) \text{ (by (3.11))} \\ &\geq \sum_{j=1}^{\infty} (1-R_0) \xi^2 A_{r_{ij}}^{x_{ij}} \text{ (by (3.7)')} \\ &\geq (1-R_0) \cdot \xi^2 \cdot \text{area of } \left[\bigcup_{j=1}^{\infty} \partial B_1(\sigma^i(0)) \cap T_{r_{ij}}(\sigma^{ij}([-a'_{ij}, 1]))\right] \\ &\geq (1-R_0) \cdot \xi^2 \cdot \text{area of } \left[\partial B_1(\sigma^i(0)) \cap T_{r_i}(\sigma^i([0, 1]))\right] \text{ (by (3.13)')} \\ &\geq (1-R_0) \cdot \xi^3 \cdot A_{r_i}(\sigma^i(1)) \text{ (by (3.12))} \\ &\geq (1-R_0) \cdot \xi^4 \cdot A_{r_i}(\sigma^i(-a_i)) \,. \end{split}$$

Thus we have

$$(3.15)' \qquad \qquad \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \operatorname{vol} \left[T_{r_{ij}}(\sigma^{ij}([0, 1-R_0])) \right] \geq \frac{\sqrt{3}}{4} (1-R_0) \cdot c \cdot \xi^4 \,.$$

Repeating this process N times, we obtain compact subsets $\overline{W}_1, \cdots, \overline{W}_N$ on which $R_1(\xi), \cdots, R_N(\xi)$ are well defined. Letting i_1, \cdots, i_N natural numbers, we have at most countably many points $\{x_{i_1,\cdots,i_N}\}$ on $\partial B_1(\sigma^{i_1,\cdots,i_{N-1}}(0)) \cap T_{r_{i_1},\cdots,i_{N-1}}(\sigma^{i_1,\cdots,i_{N-1}}([0,1]))$, real numbers $\{r_{i_1,\cdots,i_N}\}$, $0 < r_{i_1,\cdots,i_N} < \frac{1}{2} R_N(\xi)$ and asymptotic rays $\sigma^{i_1,\cdots,i_N}: [-a_{i_1,\cdots,i_N},\infty) \to M$ emanating from x_{i_1,\cdots,i_N} such that $\sigma^{i_1,\cdots,i_N}(0) \in H_{r_N}$, e.t.c. Then the above computations imply

$$(3.16) \qquad \sum_{i_1=1}^{\infty} \cdots \sum_{i_N=1}^{\infty} \operatorname{vol} \left[T_{r_{i_1}, \cdots, i_N}(\sigma^{i_1, \cdots, i_N}([0, 1-R_0])) \right] \\ \geq \frac{\sqrt{3}}{4} (1-R_0) \cdot c \cdot \xi^{3N-2} \,.$$

Hence for any number ν , there exist $\xi \in (0, 1)$ and N such that

$$\begin{aligned} \operatorname{vol} [M] > & \frac{\sqrt{3}}{4} (1 - R_0) c \cdot \xi \{ 1 + \xi^3 + \dots + \xi^{3(N-1)} \} \\ = & \frac{\sqrt{3}}{4} (1 - R_0) \cdot c \cdot \xi \frac{1 - \xi^{3N}}{1 - \xi^3} > \nu \ . \end{aligned}$$

Thus the proof is complete.

References

- [1] W. Ambrose, A theorem of Myers, Duke Math. J., 24 (1957), 345-348.
- [2] A. Avez, Riemannian manifolds with non-negative Ricci curvature, Duke Math. J., 39 (1972), 55-64.
- [3] E. Calabi, On Ricci curvature and geodesics, Duke Math. J., 34 (1967), 667-676.

- [4] J. Cheeger and D. Gromoll, On the structure of complete manifolds of non-negative curvature, Ann. of Math., 96 (1972), 413-443.
- [5] M. Maeda, On the injectivity radius of noncompact Riemannian manifolds, Proc. Japan Acad., 50 (1974), 148-151.
- [6] S.B. Myers, Riemannian manifolds in the large, Duke Math. J., 1 (1935), 39-49.
- [7] K. Shiohama, The diameter of δ -pinched manifolds, J. Differential Geometry, 5 (1971), 61-71.
- [8] H. Wu, A structure theorem for complete noncompact hypersurfaces of non-negative curvature, Bull. Amer. Math. Soc., 77 (1971), 1070-1071.
- [9] S. T. Yau, Non-existence of continuous convex functions on certain Riemannian manifolds, Math. Ann., 207 (1974), 269-270.

Katsuhiro SHIOHAMA
Department of Mathematics
University of Tsukuba
Tsukuba, Ibaraki
Japan