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It was shown by (also by [2] in compact case) that the structure of
a smooth manifold M with countable basis is completely determined by the
algebraic structure of the Lie algebra of smooth vector fields on M. In con-
nection with this, K. Shiga posed the problem: whether or not the complex
structure of a complex manifold is determined by the structure of the Lie
algebra of vector fields of type (1, 0). The present paper is to give the affir-
mative answer to the problem together with some generalization. In this paper,
all manifolds are assumed to have countable bases.

Let M be a complex manifold and z; =x;++/—1; (i=1, 2, ---, n) complex
analytic coordinate in a neighbourhood of a point p of M. Complexified tan-
gent vector at p is said to be of type (1, 0) if it is a complex linear combina-
tion of

0 1, 0 — 0 -
= (e —V_lg) (=12,

The set of all the tangent vectors of type (1, 0) costitutes a complex subbundie
of the complexified tangent bundle of M. Smooth sections of this subbundle
are called vector fields of type (1, 0), the totality of which forms a subalgebra
Ws(M) of the Lie algebra A(M) of complex valued vector fields on M.

Now our main result can be formulated as follows:

THEOREM 1. Let M and M’ be complex manifolds and ¢ a Lie algebraic
tsomorphism of (M) to Ug(M'). Then there exists a biholomorphic map o of
M onto M’ such that ¢ is induced by o, that is,

P=0x%.

Let us consider a more general situation. Let M be a smooth manifold.
We denote by C*(M) the set of all real valued smooth functions on M. A real
subalgebra A of UA(M) is said to be a quasi-foliation of M, if A satisfies the
following conditions :

i) Ais a module over C*(M), i.e, X A implies fX€ A for every
feCc=(M).

ii) For any point p of M, there exists X A with X,+#0.

iii) If X;€ A for i=1, 2, --- and their supports forms a locally finite family,
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then the sum X=X, belongs to A.

For a real or complex subbundle E of the complexified tangent bundle of
M, I'(E), the space of smooth sections of E, is a quasi-foliation if and only if
I'(E) forms a subalgebra of A(M). Thus a usual foliation on M (considered
as the set of smooth sections), the set of all smooth vector fields, and the set
of all vector flelds of type (1,0) on a complex manifold are special cases of
quasi-foliation.

Now can be generalized into

THEOREM 2. Let A and A’ be quasi-foliations of smooth manifolds M and
M respectively and ¢ an isomorphism of A to A’. Then there exists a diffeo-
morphism o of M onto M’ such that ox(A)=A’ and ¢ coincides with o4« on A.

is a consequence of In fact, the latter guarantees
the existence of a diffeomorphism ¢ of M to M’ with ox(UAs(M))=Ws(M").
Therefore it is only necessary to show that ¢ is biholomorphic. This is an
immediate consequence of the fact that a smooth function f is holomorphic in
an open set U whenever X(f) vanishes on U for every X < Us(M).

The proof of is based on the following fact.

THEOREM 3. Let A be a quasi-foliation of a smooth manifold M. Then a
subalgebra B of A is a maximal proper subalgebra of finite codimension if and
only if B coincides with N(A)={Xe A; X,=0} for some p= M.

PrROOF. It is obvious that N,(A) is a proper subalgebra of A with finite
codimension. Therefore it suffices to prove that every proper subalgebra B of
A with finite codimension is contained in N,(A) for some point p= M. Now
we suppose B & N,(A) for every p= M and will show that it leads to a con-
tradiction.

For an open set U of M, Ay denotes the set of all elements of A with the
supports contained in U; U is said to be admissible if there exist Y€ B and
feC=(M) such that Y(f) does not vanish in U. Then we will prove:

(i) If U is admissible, then Ay C B, and

(ii) M is covered by a finite number of admissible open sets.

If (i) and (ii) are true and M=U,V U, -.-. UU,, each U, being admissible,
then we have A=Ay, +Ay,+ -+ +Ay, C B contradicting the properness of B.

Proof of (i). Put B'={XeB,; [X,Y]eB for every Y A}. Then B’
is evidently an ideal of B. For Xe B, adX:Y—[X, Y] induces a linear
transformation Ty of the finite-dimensional space A/B. Thus B’, as the kernel
of the map X—Tyx of B into the space of endomorphisms of A/B, is of finite
codimension in B and hence in A.

By assumption, there exist Y& B and f C*(M) such that Y(f) does not
vanish in U. The set of g C*(M) with gY¥ € B’ and fgY e B’ is a subspace
of C*(M) with finite codimension, since B’ is of finite codimension in A as
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shown above. Put E={geC”(M); gAy = B}. First we will prove that the
codimension of E in C™(M) is finite by showing that g¥ e B’ and fgY € B’
imply g E.

Now we have, for any X & Ay,

BalfgY, X1=/LgY, X]-X(f)gY

B=[gY, fX1=fLgY, X]+gY(/)X
and hence

(*) B= X(/)gY+gY(f)X.
Substituting (1/Y(/)X(f)Y for X in (*), we obtain
B=X(f)gY

which, combined with (*), gives

BagY(HX.
Again substituting (1/Y(f))X for X, we have finally
gXehB.

Thus we have proved that gAy e B, or g E.
If g= E, then we have, for any Xe Ay,

B=[gX, Y]=g[X Y]-Y(g)X

and, since g[ X, Y]egA,CB,
B=>Y(g)X.

Thus g€ E implies Y(g)= E. Since E is of finite codimension in C*(M) as
proved above, we can find a non-zero polynomial P such that P(f)< E. Then,
by the fact just proved, we have also Y(P(f)=P/(/)Y(f)e E. Since 1/Y(f)
exists in U, we have (1/Y(f)Xe Ay for every XAy and hence
P(NHY(fXL/Y(f)X e B, showing P(f)= E. Applying this argument succes-
sively, we have P”(f)e E etc. and finally we obtain

leE

which is equivalent to Ay C B. Thus (i) is proved.

Proof of (ii). For each p= M, since B & N,(A), we can find Y e B with
Y,+0. Consequently, there exists a neighbourhood U, of p such that U, is
admissible. According to dimension theory, M admits finite open covering
{U, ---} such that each member U is the union of mutually disjoint open sets
U, 1=1, 2, ---, where {U;} constitutes a locally finite family of subsets in M
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and each U,; is contained in some U, and hence admissible. Moreover we can
replace each U; by an open set V; with V,C U, so that we have a finite open
covering {V,---} of M replacing each U by V=, V..

Since U; is admissible, we can find Z; € B and g; = C*(M) such that Z,(g;)
does not vanish in U;. Then multiplying a suitable smooth function to both
z; and g;, we obtain Y; € B and f; C*(M) such that the supports of Y; and
fi; are both contained in U; and Y,(f;) does not vanish in V;. Now we can
define a smooth function f=2);f; and, for any sequence a; of real numbers,
>:a;Y; which belongs to A by the condition (iii) of quasi-foliation.

Since B is of finite codimension in A, we can find a non-zero polynomial
P such that 3, P(1)Y; = B. If m is so chosen that m <1 implies P(i)+#0, then,
since all Y, and P(i)Y; belong to Ay, and hence, by (i), to B, we have

Y=Y+ 3 PG)Y, < B
t==1 t=m

and Y(f) does not vanish in V, which shows that V is admissible.

Thus the proof is completed.

The rest of the paper is devoted to the

PrROOF OF THEOREM 2. Let A, A/, M, M’, and ¢ be as stated in the theorem.

Let us call N,(A) a point-subalgebra of A. Since this notion is purely
algebraic by ¢ maps any point-subalgebra of A to a point-subalgebra
of A’. Therefore there exists a map ¢ of M to M’ such that

O(NH(A) = N,(A")  for every pe M.

It is obvious that ¢ is bijective.
For feC=(M), put g=fooe™?, then, for every p= M and every X< A, we
have
FX—f(p)X € Ny(A)
and hence
O(fX)—g(a(p)NP(X)=P{fX—F(D)X} € Nopy(A)
which shows

(*) P(fX)=g¢(X).

Since ¢(X) can be any element of A/, g is a smooth function on M’. This
means that ¢! is a smooth map and, similarly, ¢ is also smooth. Hence ¢ is
a diffeomorphism.

o induces the isomorphism ox of A(M) to A(M’) so that its restriction to
A is an isomorphism of A to A”=o04(A). Then the iteration oxo®' is an
isomorphism of A’ to A” which maps N,(A’) to N,(A”) for every p' M.
Therefore it is sufficient to consider the special case where M =AM’ and ¢ is
the identity ; we have only to prove that A=A’ and that ¢ is the identity.
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Now for feC=(M) and X< A, we have by (¥)

P(fX)=re(X).
Therefore we have
X(fro(X)=¢(X(/)X)

=¢LX, fX]
=[2(X), ¢(fX)]
=[o(X), fe(X)]
= ¢(X)()p(X)
and, ¢(X)e A’ being arbitrary,
X(f)=e(X)X)).
Here f is also arbitrary and hence we can conclude
X=¢(X).

Thus the proof is completed.
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