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\S 1. Introduction.

One of important problems in the theory of partial differential equations
in the complex domain is the following: When can the holomorphic solutions
of a partial differential equation defined in some domain be continued to a
larger domain? For linear partial differential equations this question has been
answered by several authors. (See $e.g$ . $[3]$ and the references quoted therein.)

One of the main results regarding this question is a theorem of M. Zerner [5]

which states that the solutions of a linear partial differential equation can be
continued holomorphically over any non-characteristic hypersurfaces.

In this paper we are concerned with holomorphic continuation of solutions
of general nonlinear partial differential equations in the complex domain. Our
Purpose here is to present a continuation theorem which corresponds to that
of Zerner [5] for linear equations. It can be stated as follows: If the tangent
plane at a boundary point of the domain in which the solutions are defined is
non-characteristic for any Cauchy data, then every bounded solution can be
holomorphic near that point. Our argument depends on the quantitative pro-
perty of the domain in which the solutions of the Cauchy problem become
holomorphic. In \S 2, following carefully the well-known proof ([1], [2]) of the
Cauchy-Kowalewsky theorem, we obtain the desired result. Then in \S 3 we
find the continuation theorem. In the last section, \S 4, we study the single
equation of the first order with two independent variables for which the assump-
tions of the results in section 3 are not satisfied. In this case we can construct
a solution which cannot be prolonged under some conditions on the boundary
of the domain and the characteristic curve.

The results of this paper was already announced in [4] without proofs.
I wish to thank Professor T. Kusano for his encouragement and constant

interest in my work.

$*)$ Partially supported by F\^ujukai.



Prolongation of local holomorphjc solutions 455

\S 2. The Cauchy-Kowalewsky theorem.

We consider the following system of quasi-linear first order equations for
$N$ unknown functions $w_{1}(z),$ $\cdots$ , $w_{N}(z)$ in some domain in the complex $n$ dimen-
sional space $C^{n}$ with the coordinates $z=$ $(z_{1}, \cdots , z_{n})$ .

(1) $\frac{\partial w_{J}}{\partial z_{1}}=\sum_{k=1}^{N}\sum_{l=2}^{n}g_{jkl}(z^{\prime}, w)\frac{\partial w_{k}}{\partial z_{l}}+h_{j}(z^{\prime}, w)$ , $j=1,$ , $N$

where $z^{\prime}=$ $(z_{2}, \cdots , z_{n})$ and $w=(w_{1}, \cdots , w_{N})$ . For the regularity of the functions
$g_{jkl}(z^{\prime}, w)$ and $h_{j}(z^{\prime}, w)$ , we assume that

(i) $g_{jkl}(z^{\prime}, w)$ and $h_{j}(z^{\prime}, w)$ are holomorphic on a closed
polydisc $|z_{\nu}|\leqq\gamma$ $(\nu=2, \cdots , n),$ $|w_{\mu}|\leqq r(\mu=1, \cdots , N)$ .

Then we set

$M=\max\{|g_{jki}(z^{\prime}, w)|\{j,k,l |h_{j}(z^{\prime}, w)|\}$
.

Under these situations we have the next lemma.
LEMMA 1. A unique solution of (1) satisfying the next initial conditions

(2) $w_{j}(0, z^{\prime})=0$ , $j=1,$ $N$ ,

exists in

(3) $|z_{1}|<r/(4MNn)$ , $|z_{2}|+$ $+|z_{n}|<r/4$ .
PROOF. By the equation (1) and the initial conditions (2), the formal solu-

tion is uniquely determined. The convergence of this formal solution is proved
by the method of majorants. (See for details John [2], pp. 81-85.)

By Cauchy’s integral formula, $\frac{Mr}{r-(z_{2}+\cdots+z_{n}+w_{1}+\cdots+w_{N})}$ becomes a
majorant of all functions $g_{jkl}(z^{\prime}, w)$ and $h_{j}(z^{\prime}, w)$ . Then, if we set $\zeta=z_{1}$ and
$\xi=z_{2}+$ $+z_{n}$ , the solutions $W(\zeta, \xi)$ of the next initial value problem

(4) $\left\{\begin{array}{l}\frac{\partial W}{\partial\zeta}=\frac{Mr}{r-\xi-NW}(N(n-1)\frac{\partial W}{\partial\xi}+1)\\W(0, \xi)=0\end{array}\right.$

becomes a majorant of all components of the formal solution $w=(w_{1}, \cdots , w_{N})$

of (1) and (2). Therefore the formal solution is holomorphic where the solution
$W(\zeta, \xi)$ of (4) is holomorphic. Now we can solve (4) explicitly as follows.

$W(\zeta, \xi)=\frac{r-\xi}{Nn}-\frac{\sqrt{(r-\xi)^{2}-2MNrn\zeta}}{Nn}$

where the branch of $\sqrt{(r-\xi)^{2}-2MNrn\zeta}$ is taken so that it becomes $ r-\xi$ when
$\zeta=0$ . If we suppose that
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$|\zeta|<r/(4MNn)$ , $|\xi|<r/4$ ,

then $(r-\xi)^{2}-2MNrn\zeta$ does not vanish. Since the above domain is simply con-
nected, $W(\zeta, \xi)$ becomes holomorphic (and single-valued) there. This completes
the proof.

We next study the more general system of equations for $N$ unknown
functions $u_{1}(z),$ $\cdots$ , $u_{N}(z)$ , which is of the normal form (Courant-Hilbert [1],

p. 39),

(5) $\frac{\partial^{m}u_{j}}{\partial z_{1}^{m}}=f_{j}(z,$
$u_{1},$

$(\frac{\partial}{\partial z})^{\alpha}u_{k},$ $)$ $j=1,$ $N$ ,

where $f_{j}$ depends on the variables $z=$ $(z_{1}, \cdots , z_{n})$ and $(\partial/\partial z)^{\alpha}u_{k}(k=1, \cdots , N)$

with multi-indices $\alpha=$ $(\alpha_{1}, \cdots , \alpha_{n}),$ $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}\leqq m$ and $\alpha_{1}\leqq m-1$ . We
impose the initial conditions on $u_{j}(z)$ on the complex hyperplane $z_{1}=0$ as
follows.

(6) $\left\{\begin{array}{l}u_{j}(0, z^{\prime})=\phi_{j,0}(z^{\prime})\\-\frac{m- 1\mathcal{U}j}{z_{1}^{m-1}}(0\partial\partial z^{\prime})=\phi_{j,m- 1}(z^{\prime})\end{array}\right.$ $j=1,$ $N$ ,

where $\phi_{j,k}(z^{\prime})$ are arbitrary given functions. Now we assume that

(i) $f_{j}(z, \cdots , p_{k,\alpha}, \cdots)$ , where the variables $p_{k,\alpha}$ correspond to the terms
$(\partial/\partial z)^{\alpha}u_{k}$ , are holomorphic on a closed polydisc $|z_{\nu}|\leqq r,$ $|p_{k,\alpha}|<\infty$ ,

(ii) $\phi_{j,k}(z^{\prime})$ are holomorphic on $|z_{\nu}|\leqq r$ ,

and set

$C=\max_{j,k,\alpha’}\{|(\frac{\partial}{\partial z})^{\alpha^{\prime}}\phi_{j,k}(z^{\prime})|||z_{\nu}|\leqq r,$ $|\alpha^{\prime}|+k\leqq m+1\}$ ,

$M=\max j.k,\alpha\{1,$ $|f_{j}|,$ $|\frac{\partial f_{j}}{\partial z_{k}}|,$ $|\frac{\partial f_{f}}{\partial p_{k,\alpha}}|||z_{\nu}|\leqq r,$ $|P_{k,\alpha}|\leqq C+r\}$

and $\hat{N}=(m+n)!/(m!n!)$ , the cardinal number of the set of all multi-indices
$\alpha=$ $(\alpha_{1}, \cdots , \alpha_{n})$ with $|\alpha|\leqq m$ .

Then we have the next theorem.
THEOREM 1. There exists a unique solution $u(z)=(u_{1}(z), \cdots , u_{N}(z))$ of the

initial value Problem (5) and (6) in the following domain:

$|z_{1}|<r/\{4\hat{M}(N\hat{N}+1)n\}$ , $|z_{2}|+$ $+|z_{n}|<r/4$

where $\hat{M}=3(1+r+C)(NNM)^{2}$ .
PROOF. We will prove this theorem by showing that the initial value prob-

lem (5) and (6) can be reduced to the equivalent problem for a system of
quasi-linear differential equations of the first order, which is considered in
Lemma 1. The method is an adaptation of that employed in Courant-Hilbert
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[1], pp. 43-48 (see also F. John [2], pp. 78-82). For the reduction of the equa-
tions (5) to a quasilinear system, we introduce new unknown functions $v_{j,\alpha}(z)$

( $i=1,$ $\cdots$ , $N,$ $\alpha=(\alpha_{1},$ $\cdots$ , $\alpha_{n}$ ) such that $|\alpha|\leqq m$) which correspond to $(\partial/\partial z)^{\alpha}u_{j}(z)$ .
The equations for $v_{j,\alpha}(z)$ are then as follows.

(7) $\frac{\partial}{\partial z_{1}}v_{j,\alpha}=v_{j,\alpha+1}$

if $|\alpha|\leqq m-1$ , where $\alpha+1=$ $(\alpha_{1}+1, \alpha_{2}, \cdots , \alpha_{n})$ , and

(8) $\frac{\partial}{\partial z_{1}}v_{j,\alpha}(z)=\frac{\partial}{\partial z_{l}}v_{j,\alpha+1- 1l}$

if $|\alpha|=m,$ $\alpha_{1}\leqq m-1$ and for some $1=l(\alpha)\neq 1,$ $\alpha_{l}\geqq 1$ , where $\alpha+1-1_{l}=(\alpha_{1}+1$ ,
$\alpha_{2},$

$\cdots$ , $\alpha_{l}-1,$ $\cdots$ , $\alpha_{n}$ ), and if $\alpha_{1}=m$ ,

(9) $-\frac{\partial}{z_{1}}v_{j,\alpha}\partial=-\frac{\partial}{z_{1}}[f_{j}(z, v(z))]\partial$

where the terms $(\partial/\partial z_{1})v_{k,\beta}$ arising in the right hand side of (9) should be
replaced by $v_{k,\beta+1}$ or $(\partial/\partial z_{l})v_{k,\beta+1-1}$ , according as (7) or (8) holds. The initial
conditions for $v_{j,\alpha}$ are determined by

(10) $\left\{\begin{array}{ll}v_{j,\alpha}(0, z^{\prime})=(\frac{\partial}{\partial z^{\prime}})^{\alpha^{\prime}}\phi_{j,\alpha_{1}}(z^{\prime}), & if \alpha_{1}\leqq m-1,\\v_{j,\alpha}(0, z^{\prime})=f_{j}(0, z^{\prime}, \cdots, (\frac{\partial}{\partial z^{\prime}})^{\beta^{\prime}} & (z^{\prime}), \cdots), if \alpha_{1}=m,\end{array}\right.$

where $\alpha^{\prime}=$ $(\alpha_{2}, \cdots , \alpha_{n}),$ $\beta^{\prime}=(\beta_{2}, \cdots , \beta_{n})$ .
To make the initial condition homogeneous, we introduce the unknown

functions $w_{j,\alpha}(z)$ defined by

(11) $\left\{\begin{array}{ll}w_{j,\alpha}(z)=v_{j,\alpha}(z)-\phi_{j,\alpha_{1}}(z^{\prime}), & \alpha_{1}\leqq m-1,\\w_{j,\alpha}(z)=v_{j,\alpha}(z)-f_{j}(0, z^{\prime}, \cdots , (\frac{\partial}{\partial z^{\prime}})^{\beta^{\prime}} & (z^{\prime}), ), \alpha_{1}=m.\end{array}\right.$

Then, we obtain the following equations for these functions $w_{j,\alpha}(z)$ :
(i) if $|\alpha|\leqq m-1$ and $\alpha_{1}\leqq m-2$ ,

(12) $\frac{\partial}{\partial z_{1}}w_{j,\alpha}=w_{j,\alpha+1}+(\frac{\partial}{\partial z^{\prime}})^{\alpha^{\prime}}\phi_{j,\alpha_{1}+1}(z^{\prime})$ ,

(ii) if $|\alpha|\leqq m-1$ and $\alpha_{1}=m-1(i. e. \alpha= (m-1,0, \cdots , 0))$ ,

(13) $\frac{\partial}{\partial z_{1}}w_{j,\alpha}=w_{j,\alpha+1}+f_{j}(0,$ $z^{\prime},$ $\cdots$ $(\frac{\partial}{\partial z^{\prime}})^{\beta^{l}}\phi_{k,\beta_{1}}(z^{\prime}),$ $)$

(iii) if $|\alpha|=m$ and $\alpha_{1}\leqq m-2$ ,
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(14) $\frac{\partial}{\partial z_{1}}w_{j,\alpha}=\frac{\partial}{\partial z_{l}}w_{j,\alpha+1- 1\iota}+(\frac{\partial}{\partial z^{\prime}})^{\alpha^{\prime}}\phi_{j,\alpha_{1+1}}(z^{\prime})$ ,

(iv) if $|\alpha|=m$ and $\alpha_{1}=m-1$ ,

\langle 15) $\frac{\partial}{\partial z_{1}}w_{j,\alpha}=\frac{\partial}{\partial z_{l}}w_{j,a+1- 1l}+\frac{\partial}{\partial z_{\iota}}[f_{j}(0,$ $z^{\prime},$ $\cdots$ , $(\frac{\partial}{\partial z^{\prime}})^{\beta^{\prime}}\phi_{k,\beta_{1}}(z^{\prime}),$ $)]$

and

(v) if $\alpha_{1}=m$ ,

\langle 16) $\frac{\partial}{\partial z_{1}}w_{J^{\alpha}}=\frac{\partial}{\partial z_{1}}[f_{j}(z,$
$\cdots,$

$\iota v_{k,\beta}+(\frac{\partial}{\partial z^{\prime}})^{\beta^{\prime}}\phi_{k,\beta_{1}}(z^{\prime}),$ $)]$

$=\frac{\partial f_{j}}{\partial z_{1}}+\sum_{k=1\{1\beta}^{\lambda^{\tau}}\sum_{\beta_{1\leqq m-2}^{|\leqq m-1}}\frac{\partial f_{j}}{\partial p_{k,\beta}}(w_{k,\beta+1}+(\frac{\partial}{\partial z^{\prime}})^{\beta^{\prime}}\phi_{k,\beta_{1+1}}(z^{\prime}))$

$+$
$\sum_{k=1,\beta=(m-10\ldots.,0)}^{N},\frac{\partial f_{j}}{\partial p_{k,\beta}}(w_{k,\beta+1}+f_{k}(0,$

$z^{\prime},$ $\cdots$
$(\frac{\partial}{\partial z^{\prime}})^{\gamma^{\prime}}\phi_{\mu,\mathcal{T}_{1}}(z^{\prime}),$ $))$

$+\sum_{k=1t^{|\beta|=m}}^{N}\sum_{\beta_{1}\leqq m-2}\frac{\partial f_{j}}{\partial p_{k,\beta}}(\frac{\partial w_{k,\beta+1- 1l}}{\partial z_{l}}+(\frac{\partial}{\partial z^{\prime}})^{\beta^{\prime}}\phi_{k,\beta_{1+1}}(z^{\prime}))$

$+\sum_{k=1}^{N}t_{\beta_{1}\leqq m-1}\sum_{|\beta|=m}\frac{\partial f_{j}}{\partial p_{k,\beta}}(\frac{\partial w_{k,\beta+1- 1l}}{\partial z_{l}}+\frac{\partial}{\partial z_{l}}[f_{k}(0,$

$z^{\prime},$ $\cdots$

... , $(\frac{\partial}{\partial z^{\prime}})^{\gamma^{\prime}}\phi_{\mu^{\gamma_{1}}},(z^{\prime}),$ $)])$ .

Lastly we set $w_{N+1}(z)=z_{1}$ and obtain the following additional equation and the
initial condition.

(17) $\left\{\begin{array}{l}\frac{\partial}{\partial z_{1}}w_{N+1}(z)=1\\w_{N+1}(0,z)=0.\end{array}\right.$

Then we can substitute $w_{N+1}$ for the variable $z_{1}$ which appears in the right
hand side of (16). Consider the Cauchy problem consisting of the equations
(12) $-(17)$ and the homogeneous initial conditions. Since the equations (12) $-(17)$

do not depend explicitly on the variable $z_{1}$ , if we can take a constant $\hat{M}>0$

so large that all the absolute values of the coefficients of the equations (12)-
(17) de not exceed $\hat{M}$ in $|z_{\nu}|\leqq\gamma(\nu=2, \cdots , n),$ $|w_{k,\beta}|\leqq r$ and $|w_{N+1}|\leqq r$, then,
by aPplying Lemma 1, we obtain the conclusion of the theorem. In view of
the equations (12) $-(17)$ , it is sufficient for $\hat{M}$ to be larger than the following
numbers:

$r+C,$ $r+M$, max $\{1, C\}$ , max $\{1, M+N\hat{N}MC\}$ ,

max $\{N\hat{N}M, M+N\hat{N}M(r+C+r+M+C+M+N\hat{N}MC)\}$ .
It is easy to see that the constant $\hat{M}=3(1+r+C)(N\hat{N}M)^{2}$ has the desired pro-
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perty. This completes the theorem.

\S 3. Holomorphic continuation.

Throughout the rest of this paper, we denote by $U$ some neighborhood of
$0$ in $C^{n}$ and by $\Omega$ some domain in $U$ with regular boundary $\partial\Omega$ containing the
origin, that is, there exists a real-valued $C^{1}$ function $\phi$ in $U$ such that $\phi(0)=0$ ,
$d\phi\neq 0$ in $U$ and

$\Omega=\{z\in U|\phi(z)<0\}$ .
Then, under the suitable coordinates ( $z_{1},$

$\cdots$ , z) with $z_{j}=x_{j}+\sqrt{-1}y_{j}(j=1$ ,
, $n$), we can assume that

(18) $\left\{\begin{array}{l}\frac{\partial\phi}{\partial x_{1}}(0)=1,\\\frac{\partial\phi}{\partial y_{k}}(0)=0,\end{array}\right.$

$k=1,\cdots,$

$n\frac{\partial\phi}{\partial x_{j}}(0)=0.$

’
$j=2,$ $n$ ,

In this case, we have the next lemma due to Zerner [5].

LEMMA 2 (Zerner). There exist sequences $\{\alpha_{\nu}\},$ $\nu=1,2,$ $\cdots(\alpha_{v}<0, \alpha_{\nu}\rightarrow 0)$

and $\{\rho_{\nu}\},$ $\nu=1,2,$ $\cdots(\rho_{\nu}>0)$ such that

(i) $(\alpha_{\nu}, 0, 0)\in\Omega$ ,

(ii) $\{z_{1}=\alpha_{\nu}\}\cap\Omega\supset\{z_{1}=\alpha_{\nu}, |z_{2}|\leqq\rho_{\nu}, \cdots |z_{n}|\leqq\rho_{\nu}\}$ ,

and
(iii) $\lim_{\rightarrow\infty}\alpha_{\nu}/\rho_{\nu}=0$ .

Here we introduce some notion to be used later.
DEFINITION. A holomorphic function $u(z)$ in $\Omega$ is said to be bounded of

order $m$ if $u(z)$ and all its derivatives of order less than or equal to $m$ are
bounded in $\Omega$ .

We first consider the system of quasi-linear equations for $N$ unknown
functions $u_{1}(z),$ $\cdots$ , $u_{N}(z)$ .

(19) $\sum_{|\alpha|=m}\sum_{k=1}^{N}a_{a}^{j.k}(z, (\partial/\partial z)^{\beta}u_{l})(\partial/\partial z)^{a}u_{k}(z)=f_{j}(z, (\partial/\partial z)^{\beta}u_{l})$ ,

$j=1,$ , $N$ ,

where $a_{a}^{j.k}$ and $f_{j}$ depend on the variables $z_{1},$
$\cdots$ , $z_{n}$ and $P_{l,\beta}=(\partial/\partial z)^{\beta}u_{l}(1=1$ ,

... , $N,$ $|\beta|\leqq m-1$). We $suPpose$ that $a_{\alpha}^{j,k}$ and $f_{j}$ are holomorphic in $z\in U$ and
$|p_{l,\beta}|<\infty$ . Since the complex tangent plane at $0$ of the surface $\partial\Omega$ is $\{z_{1}=0\}$ ,

we make the following condition (A).

Condition (A): for all $z\in U$ and $p_{\iota,\beta}$ ,

det $(at_{\dot{r}n.0\ldots..0)}^{k}(z, P))\neq 0$ .
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Then we have
THEOREM 2. Under the condition (A), every solution of (19) in $\Omega$ which is

bounded of order $m+1$ becomes holomorPhic near the origin.
PROOF. The idea of this proof is due to Zerner [5]. By the condition (A),

we can solve (19) with respect to $\partial^{m}u_{j}/\partial z_{1}^{m}(i=1, \cdots , N)$ and obtain the fol-
lowing equations:

(20) $(\frac{\partial}{\partial z_{1}})^{m}u_{j}(z)=F_{j}(z,$ $\cdots$
$(\frac{\partial}{\partial z})^{\alpha}u_{k},$ $)$ , $j=1,$ $N$

where $F_{j}$ depends on the variables $z_{1},$
$\cdots$ , $z_{n}$ and $(\partial/\partial z)^{\alpha}u_{k},$ $|\alpha|\leqq m,$ $\alpha_{1}\leqq m-1$ ,

$k=1,$ $\cdots$ , $N$. And this type of the problem we have just studied in Theorem
1. Let $\{\alpha_{\nu}\},$ $\{\rho_{\nu}\}$ be the sequences guaranteed by Lemma 2. We may assume
that $\rho_{v}$ is bounded by some $\rho>0$ and the set { $z||z_{1}-\alpha_{v}|\leqq\rho,$ $|z_{2}|\leqq\rho,$ $\cdots$ , $|z_{n}|$

$\leqq\rho\}$ is contained in $U$ for every $\nu$ . Then we consider the initial value prob-
lem consisting of (20) and the initial conditions on the plane $\{z_{1}=\alpha_{v}\}$ with the
restrictions of $u_{j}(z),$ $\cdots$ , $(\partial/\partial z_{1})^{m-1}u_{j}(z)$ . If we apply Theorem 1 to this situa-
tion, $u_{1}(z),$ $\cdots$ , $u_{N}(z)$ become holomorphic in

$|z_{1}-\alpha_{\nu}|<\rho_{\nu}/\{4\hat{M}_{v}(N\hat{N}+1)n\}$ , $|z_{2}|+-+|z_{n}|<\rho_{\nu}/4$

for every $\nu$ . But since $u_{1}(z),$ $\cdots$ , $u_{N}(z)$ are bounded of order $m+1$ in $\Omega$ , the
sequence $\{\hat{M}_{\nu}\}$ is bounded. Therefore there exists a constant $c>0$ which is
independent of $\nu$ such that $u_{1}(z),$ $\cdots$ , $u_{N}(z)$ are holomorphic in

$|z_{1}-\alpha_{v}|<c\rho_{\nu}$ , $|z_{2}|+\cdots+|z_{n}|<\rho_{v}/4$ .

Then it is sufficient to show that

(21) $o_{\nu=1}^{\infty}\in U\{z\in U||z_{1}-\alpha_{\nu}|<c\rho_{\nu}, |z_{2}|+\cdots+|z_{n}|<\rho\lrcorner/4\}$ .

If (21) is not valid, then we have, for any $\nu,$ $|\alpha_{v}|\geqq c\rho_{v}$ . This contradicts the
property of $\alpha_{\nu},$ $\rho_{\nu}$ in Lemma 2. Thus the proof is complete.

REMARK. When the equation (19) is a single linear differential equation
$P(z, \partial/\partial z)u(z)=0$ , the condition (A) means that the plane $\{z_{1}=const.\}$ is
non-characteristic. In this case, Theorem 2 states that every solution of
$P(z, \partial/\partial z)u(z)=0$ which is bounded of order $m+1$ can be holomorphically con-
tinued over the non-characteristic hypersurface. Therefore this may be regarded
as a partial extension of Zerner’s theorem [5].

We next study the system of general nonlinear equations of order $7n$ .

(22) $F_{j}(z,$ $\cdots$ $(\frac{\partial}{\partial z})^{\alpha}u_{k},$ $)=0$ , $j=1,$ $\cdots,$
$N$ ,

where $F_{j}$ depend on $z_{1},$
$\cdots$ , $z_{n}$ and $P_{k,\alpha}=(\partial/\partial z)^{\alpha}u_{k}$ with $k=1,$ $\cdots$ , $N,$ $|\alpha|\leqq m$ ,
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and are holomorphic in $z\in U$ and $|p_{k,a}|<\infty$ . If we differentiate the equation
(22) with respect to $z_{1}$ , then (22) is reduced to a system of quasi-linear equa-
tions of order $m+1$ . Therefore, applying Theorem 2, we have the next corol-
lary.

COROLLARY. Under the condition (B) below, every solution of (22) in $\Omega$

which is bounded of order $m+2$ becomes holomorPhic near the origin.
Condition (B): for all $z\in U$ and $p_{k,\alpha}$

det $(\frac{\partial F_{j}}{\partial p_{k,(m,0,\cdots,0)}}(z, P))\neq 0$ .

We remark that the boundedness in the assumptions in Theorem 2 and
Corollary seems to be necessary because of the following example.

EXAMPLE. The equation

exp $(\frac{\partial u}{\partial z_{1}})=z_{1}$ in $C^{n}$

has a solution $u(z)=z_{1}$ log $z_{1}-z_{1}$ , which is bounded (of order $0$) in any simply
connected bounded domain not containing $z_{1}=0$ .

\S 4. Solution with singularities.

We study, in this last section, the single equation of the first order with
two independent variables for which the condition (B) in the preceding section
is not satisfied. We denote the variables by $(x, y)$ instead of $(z_{1}, z_{2})$ and write
$P=u_{x}=\partial u/\partial x,$ $q=u_{y}=\partial u/\partial y$ . The equation is given by

(23) $F(x, y, u, u_{x}, u_{y})=0$

where $F(x, y, u, p, q)$ is holomorphic in $U\times C^{3}$ . We now suPpose that $F(O,$ $0$ ,
$u_{0},$ $p_{0},$ $q_{0}$) $=0$ and $F_{p}(0,0, u_{0}, p_{0}, q_{0})=0$ for some $u_{0},$ $p_{0},$ $q_{0}$ . We may assume,
without loss of generality, that $u_{0}=p_{0}=q_{0}=0$ , since otherwise we could intro-
duce $u(x, y)-u_{0}-p_{0}x-q_{0}y$ as a new unknown function. Then our last theorem
is the following.

THEOREM 3. For the equation (23) we assume that $F(0, 0)=0,$ $F_{p}(0, 0)$

$=0$ and $F_{q}(0, \cdots , 0)=1$ . Then under the condition (C) below, there exists a
solution of (23) which is holomorphic in $\{(x, y)\in V|\phi(x, y)<0\}$ but cannot be
holomorPhic at $0$ , where $V$ is a small neighborhood of $0$ and $\phi(x, y)$ is of class $C^{2}$ .

Conditiion (C): Let $(x_{0}(t), y_{0}(t),$ $u_{0}(t),$ $p_{0}(t),$ $q_{0}(t))$ be a characteristic striP of
(23) through $(0, \cdots , 0)$ at $t=0$ , then for every $t_{0}\neq 0(t_{0}\in C)$ and a real para-
meter $\tau$ ,

$\frac{d^{2}}{d\tau^{2}}\phi(x_{0}(\tau t_{0}), y_{0}(\tau t_{0}))|_{\tau=0}>0$ .
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Before the proof of this theorem, we prepare some lemmas. Let

$f(z)=\left\{\begin{array}{ll}z^{k+1}\log z & z\neq 0\\0 & z=0\end{array}\right.$

for $z\in C$ where $k$ is any positive integer and for any $\theta_{0}$ and $\theta_{1}$ such that
$0<\theta_{0}<\theta_{1}<\pi/2$ ,

$\psi(\theta)=\left\{\begin{array}{ll}1 & |\theta|\geqq\theta_{1}\\0 & |\theta|\leqq\theta_{0}\end{array}\right.$

for $-\pi<\theta\leqq\pi$ and suppose that $\psi(\theta)$ is infinitely differentiable. And set

$g(z)=\left\{\begin{array}{l}f(z)\psi(\theta)\\0\end{array}\right.$ $z=0z\neq 0$

where $\theta=\arg z(-\pi<\theta\leqq\pi)$ . Then we have the next
LEMMA 3. $g(z)$ is a $C^{k}$ function with respect to the real two variables ${\rm Re} z$

and ${\rm Im} z$ and is hotomorphic in the sector $|\theta|>\theta_{1}$ .
PROOF. If we denote $z=re^{i\theta}$ , then $\partial/\partial z=(e^{-i\theta}/2)(\partial/\partial r)+(e^{-i\theta}/2ir)(\partial/\partial\theta)$

and $\partial/\partial\overline{z}=(e^{i\theta}/2)(\partial/\partial r)-(e^{i\theta}/2ir)(\partial/\partial\theta)$ . Therefore if $D^{m}$ is anv differentiation
of order $m(m\leqq k)$ with respect to $z$ and $\overline{z}$ ,

$|D^{m}f|\leqq const.|z^{k+1-m}|(|\log z|+1)$

and
$|D^{m}\psi|\leqq const$ . $r^{-m}$

for $r$ sufficiently small. Then

$|D^{m}g|\leqq const$ . $\sum_{\iota}|D^{m-l}f||D^{l}\psi|$

$\leqq const$ . $r^{k+1- m}(|\log r|+1)$ .

Thus $D^{m}g$ tends to zero if $r$ converges to $0$ , which shows that $g(z)$ is a $C^{k}$

function. It is trivial that $g(z)$ is holomorphic where $\psi(\theta)=1$ , thus the proof
is complete.

LEMMA 4. Let $F(x, y, u, p, q)$ be the function given in Theorem 3 and $g(z)$

be the funcfion defined in Lemma 3 with $k\geqq 2$ . Then the equation for $h(z)$

(24) $F(z,$ $0,$ $g(z),$ $\frac{\partial g}{\partial z},$ $h(z))=0$

where $\frac{\partial g}{\partial z}=\frac{1}{2}(\frac{\partial g}{\partial z_{1}}-i\frac{\partial g}{\partial z_{2}}),$ $z=z_{1}+iz_{2}(z_{1}, z_{2}\in R)$ , has a unique $C^{k-1}$ soln-

tion in a neighborhood of $0$ such that $h(O)=0$ and $h(z)$ is $hoIomorphic$ where
$g(z)$ is so.

PROOF. We denote the real and imaginary parts of $h$ and $F$ by $h_{1},$ $h_{2}$ and
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$F_{1},$ $F_{2}$ , respectively. By the assumption that $g(z)$ is of class $C^{k},$ $F_{1}$ and $F_{2}$ are
$C^{k-1}$ functions. Since $F=F_{1}+iF_{2}$ is holomorphic with respect to $h=h_{1}+ih_{2}$

and $(\partial F/\partial h)(0, \cdots , 0)=1$ , we have at $0$ ,

$\frac{\partial F_{1}}{\partial h_{1}}=\frac{\partial F_{2}}{\partial h_{2}}=1$ ,

Thus
$\frac{\partial(F_{1},F}{\partial(h_{1},h}22))_{-}=1$ ,

$\frac{\partial F_{1}}{\partial h_{2}}=-\frac{\partial F_{2}}{\partial h_{1}}=0$ .

which implies that, by the implicit function theorem, there exist unique $C^{k-1}$

functions $h_{1}(z)$ and $h_{2}(z)$ with $h_{1}(0)=h_{2}(0)=0$ such that $h=h_{1}+ih_{2}$ satisfies (24)

in a neighborhood of $0$ . If $g(z)$ is holomorphic at some point, then so is $F$.
Therefore, applying the implicit function theorem for holomorphic functions,
$h(z)$ obtained above is holomorphic at that point. This completes the proof.

Now we prove Theorem 3.
PROOF OF THEOREM 3. Consider the following characteristic differential

equations related to the equation (23).

(25) $\left\{\begin{array}{ll}\frac{dx}{dt}=F_{p}, & \frac{dy}{dt}=F_{q}, \frac{du}{dt}=pF_{p}+qF_{q},\\\frac{dp}{dt}=-F_{x}- & F_{u}, \frac{dq}{dt}=-F_{y}-qF_{u}.\end{array}\right.$

Since all the right hand sides of equations (25) are holomorphic, the solutions
$x(t),$ $y(t),$ $u(t),$ $p(t),$ $q(t)$ are holomorphic in $t$ . For the initial conditions of these
functions, we set

(26) $\left\{\begin{array}{l}x(0)=z, y(0)=0, u(0)=g(z),\\p(0)=\frac{\partial g}{\partial z}, q(0)=h(z),\end{array}\right.$

where $g(z)$ and $h(z)$ are the functions in Lemma 3 and 4, respectively, with
$k=3$ . Since the initial condition is of class $C^{2}$ , the solution of (25) and (26) is
$C^{2}$ in $z$ and $\overline{z}$ and holomorphic in $t$ . But the solution becomes holomorphic in
$z$ and $t$ where $g(z)$ is holomorphic.

Let

(27) $\left\{\begin{array}{ll}\chi=X(z, t), & y=Y(z, t), u=U(z, t)\\P=P(z, t), & q=Q(z, t)\end{array}\right.$

be the solutions of the initial problem (25) $-(26)$ . If we can solve for $z$ and $t$

in terms of $x$ and $y$ in the Prst two equations, then, substituting in the third,
we obtain the function

$Zt=u(x, y)=U(z(x, y),$ $t(x, y))$



464 Y. TSUNO

which is obviously the solution of (23) taking the initial values $g(z)$ on the
hyPerplane $\{y=0\}$ . Therefore, to prove this theorem, it is sufficient to show
that

1) the inverse mapping theorem is valid in a neighborhood of $0$ for the
functions $x=X(z, t)$ and $y=Y(z, t)$ in (27),

and that

2) the functions $z=z(x, y)$ and $t=t(x, y)$ obtained above are holomorphic
in $\{(x, y)\in V|\phi(x, y)<0\}$ where $V$ is a small neighborhood of $0$ .

If these assertions are shown to be true, then the solution $u(x, y)$ becomes
holomorphic in $\{(x, )^{1})\in V|\phi(x, y)<0\}$ , but on the plane $\{y=0\},$ $u(x, O)=g(x)$

cannot be holomorphic at $0$ . Thus this function $u(x, y)$ is the desired one in
Theorem 3.

We now prove the assertions 1) and 2).
1) Inverse mapping theorem. We denote $X(z, t)=X_{1}(z, t)+iX_{2}(z, t),$ $Y=$

$Y_{1}+iY_{2},$ $z=z_{1}+iz_{2}$ and $t=t_{1}+it_{2}$ where $X_{1},$ $X_{2},$ $\cdots$ , $t_{1},$ $t_{2}$ are real valued. Since
$X(z, O)=z,$ $Y(z, 0)=0,$ $(dX/dt)(O)=F_{p}(0, \cdots , 0)=0$ and $(dY/dt)(O)=F_{q}(0, \cdots , 0)$

$=1$ , we have

$\frac{\partial(X_{1},X_{2},Y_{1},Y_{2})}{\partial(z_{1},z_{2},t_{1},t_{2})}|_{z=t=0}=|01$

. $01|=1$ .

Therefore in a neighborhood of $0$ there exist unique inverse $C^{2}$ functions $z=$

$z(x, y)$ and $t=t(x, y)$ . We remark that the above functions are holomorphic if
$X(z, t)$ and $Y(z, t)$ are holomorphic by the inverse mapping theorem for holo-
morphic functions.

2) Holomorphy of $z(x, y)$ and $t(x, y)$ . To show that $X(z, t)$ and $Y(z, t)$ are
holomorphic, it suffices to prove that $g(z)$ is holomorphic in $\{z|\phi(X(z, t),$ $Y(z, t))$

$<0,$ $|t|$ small enough}. We now expand $\phi$ to the second order in the variables
$z$ and $t$ . In view of (18) and $(dX/dt)(O)=F_{p}(0, \cdots , 0)=0,$ $(dY/df)(O)=F_{q}(0, \cdots, 0)$

$=1$ , we have

(28) $\phi(X(z, t),$ $Y(z, t))$

$=\frac{1}{2}(z+\overline{z})$

$+\frac{1}{2}\frac{\partial^{2}\phi}{\partial x^{2}}(0)z^{2}+\frac{\partial^{2}\phi}{\partial x\partial\overline{x}}(0)z\overline{z}+\frac{1}{2}\frac{\partial^{2}\phi}{\partial\overline{x}^{2}}(0)\overline{z}^{2}$

$+\{\frac{\partial^{2}\phi}{\partial x\partial y}(0)+\frac{1}{2}\frac{\partial^{2}X}{\partial z\partial t}(0)\}zt+\{\frac{\partial^{2}\phi}{\partial\overline{x}\partial 5^{i}}(0)+\frac{1}{2}\frac{\partial^{2}\overline{X}}{\partial z\partial F}(0)\}\overline{z}\overline{t}$

$+\frac{\partial^{2}\phi}{\partial x\partial\overline{y}}(0)z\overline{t}+\frac{\partial^{2}\phi}{\partial\overline{x}\partial y}(0)\overline{z}t+\frac{1}{2}\frac{\partial^{2}\overline{X}}{\partial z\partial F}(0)z\overline{t}+\frac{1}{2}\frac{\partial^{2}X}{\partial\overline{z}\partial t}(0)\overline{z}t$
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$+\frac{1}{2}\{\frac{1}{2}\frac{\partial^{2}X}{\partial t^{2}}(0)+\frac{\partial^{2}\phi}{\partial y^{2}}(0)\}t^{2}+\frac{\partial^{2}\phi}{\partial y\partial\overline{y}}(0)t\overline{t}$

$+\frac{1}{2}\{\frac{1}{2}\frac{\partial^{2}\overline{X}}{\partial F^{2}}(0)+\frac{\partial^{2}}{\partial\overline{y}}2\not\subset(0)\}f^{2}+o(|z|^{2}+|t|^{2})$ .
If $z$ is in the sector $\Gamma$ ; arg $z|\leqq\theta_{1}(0<\theta_{1}<\pi/2)$ , then

(29) $z_{1}\geqq 0$ and $|z_{2}|\leqq\alpha z_{1}$

where $0<\alpha=\tan\theta_{1}$ . Since $x_{0}(t)=X(0, t),$ $y_{0}=Y(0, t)$ , the condition (C) in
Theorem 3 is given by the following

(30) $\frac{1}{2}\frac{\partial^{2}X}{\partial t^{2}}t^{2}+\frac{1\partial^{2}\overline{X}}{2\partial F^{2}}\overline{t}^{2}+\frac{\partial^{2}\phi}{\partial y^{2}}t^{2}+2\frac{\partial^{2}\phi}{\partial y\partial\overline{y}}t\overline{t}+\frac{\partial^{2}\phi}{\partial\overline{y}^{2}}\overline{t}^{2}\geqq\gamma|t|^{2}$

for some constant $\gamma>0$ . Then by (29) and (30), (28) can be written as follows:

$\phi(X(z, t),$ $Y(z, t))$

$\geqq z_{1}-C_{1}|z|^{2}-C_{2}(1+\alpha)|t|z_{1}+\frac{1}{2}\gamma|t|^{2}+o(|z|^{2}+|t|^{2})$

$\geqq\{1-C_{1}(1+\alpha^{2})z_{1}-C_{2}(1+\alpha)|t|\}z_{1}+\frac{1}{2}\gamma|t|^{2}+o(|z|^{2}+|t|^{2})$ ,

where
$C_{1}=\frac{1}{2}|\frac{\partial^{2}\phi}{\partial x^{2}}(0)|+|\frac{\partial^{2}\phi}{\partial x\partial\overline{x}}(0)|+\frac{1}{2}|\frac{\partial^{2}\phi}{\partial\overline{x}^{2}}(0)|$

and
$C_{2}=2|\frac{\partial^{2}\phi}{\partial x\partial y}(0)|+2|\frac{\partial^{2}\phi}{\partial x\partial\overline{y}}(0)|+|\frac{\partial^{2}X}{\partial z\partial t}(0)|+|\frac{\partial^{2}\overline{X}}{\partial z\partial F}(0)|$ .

Thus if $z$ and $t$ are sufficiently small and $z$ is in the sector $\Gamma$ , then $\phi\geqq 0$ .
This means that if $z$ and $t$ are sufficiently small and $\phi<0$ , then $g(z)$ becomes
holomorphic. This proves 2) and the proof of the theorem is complete.

REMARK. By (30) which is the condition (C), we have $(\partial^{2}\phi/\partial y\partial\overline{y})(0)>0$ .
Consider the Levi form of $\phi$ at $0$ . Since the complex vector $\lambda=(\lambda_{1}, \lambda_{2})$ satisfy-
ing $\lambda_{1}(\partial\phi/\partial x)+\lambda_{2}(\partial\phi/\partial y)=0$ is of the form $(0, \lambda_{2})$ , the Hessian of $\phi$ for this $\lambda$

is equal to

$\frac{\partial^{2}\phi}{\partial y\partial\overline{y}}\lambda_{2}\overline{\lambda}_{2}>0$ $(\lambda_{2}\neq 0)$ .

This means that the domain $\{(x, y)\in V|\phi(x, y)<0\}$ is strictly pseudoconvex
at $0$ .
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