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§1. Introduction.

In our preceding papers [5], [6] we have established among other things
that, denoting as usual by =n(x;q, @) the number of primes less than x and
congruent to a (mod ¢), we have the inequality

M =(xiq, a><—@~(; —— (1+ (Fhgs™):

for all ¢ (mod ¢g) and for almost all ¢ (mod ¢) when ¢ < x%® and ¢ < x'"¢, respec-
tively. The former case is the first substantial improvement of the Brun-
Titchmarsh theorem and also of the recent result of Montgomery and others
[4]. The later case is an improvement of a result of Hooley [2].

Roughly speaking, these are concerning the fixed modulus ¢ and moving
residue a. And it may be interesting to consider the dual problem in which
the residue a¢ is fixed and the modulus ¢ runs over a certain interval. Then
we may expect that the Brun-Titchmarsh theorem can be improved for almost
all ¢. The first result in this field has been obtained in the above quoted
paper of Hooley. He has proved that, if a is a fixed non-zero integer, K any
positive constant and W <q <2W, (g, a)=1, then we have

(Ite)x for x2S W< xS
oa) log{(-3 -
(2) m(x;q, a)=
_ (ter for x¥"<W<xl-e,
¢(q) log -

save for at most W(log x) % exceptional values of g.

This problem has certain similarity to the celebrated mean-value prime
number theorem of Bombieri[1] (see also A.I. Vinogradov [8]), and the result
of Hooley has definite interest, since Bombieri’s theorem and even the extended
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Riemann hypothesis give no information for ¢ = x>

In the same paper Hooley applied his result to the problem of the greatest
prime factor of p+a (p a prime number) and obtained an improvement in our
estimate [7]. Recently he took up again this problem and found a further
improvement. In his new method the complex integration used in the proofs
of (1) and (2) is avoided and the whole estimate is reduced to a rather simple
application of the large sieve inequality.

The purpose of the present paper is to provide (2) with an additional im-
provement appealing to this new argument. But we do not use the large sieve
at all, and our fundamental tool is the classical theorem of Poélya-Vinogradov
(see below). We shall prove

THEOREM. Let a be a non-zero jfixed integer and K=2 be arbitrary, and
let x** < W < x(log x) K Then we have for W=q<2W, (g, a)=1,

(x5 9, a) < 99<q) log\f (1+0(-8-28% lolgog’i" )

save for at most W(log x)™® exceptional values of q.

NOTATIONS. x is a positive variable assumed to be sufficiently large. For
any two integers nj, 1, the symbol (n,, n,) denotes their greatest common
divisor. d(n) is the number of divisors of 7, and as usual we denote by ¢(n)
and p(n) Euler’s and Moebius’ functions respectively. X is a Dirichlet character
and X, is generally a principal character regardless of its modulus. Finally

we remark that the all constants implied by the symbols “O” and “<” in what
follows depend on K at most.

§2. Selberg’s sieve and the initial transformation of the problem.

Let z be a positive number to be determined optimally later. We set

=Ygy 2 AR Wsa),

where

{ _gtﬁl

117‘

Then, as it is well-known, we have

(3) A:=0(1), Y=(log 2)~*.
Further we set
g(”):{azn/{d} '—?‘ph) (hgzz)’

nin

where denoting by [d,, d,] the least common multiple of d,, d,
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Pn: Z zdlzdz .

h=[d1,d2]

Here we note that from (3) we have

(4) gn)=0dn)?,  py=0(d(h)*)
In what follows we use the notation
) Y(g)= Ln_

wD=1 h

Then it can be shown (see [2, §4]) that

(6) Y= Y.

q
©(q)
Now by the standard application of the Selberg sieve
. ~
(7) g2 B gm)+0(-).

n=a(mod ¢q)
nsx

But it should be remarked that this sieving weight g(n) is not the one that
is usual in the case of the fixed modulus ¢, and our choice is made in favor
of the moving modulus ¢. Any way the main term of the right side of (7) is

—;C— Y(g), and so we are led to consider the variance

(8) V(x s VV) o WSq<ZW{w—(L(m0 0(71)?-3‘1/(61)}2.

Henceforth we may restrict the parameters z and W by
) x \'2
9 =< W= x(log x)" & gand  z> (W) .

The second condition is necessary, since otherwise no improvement would
follow. And to make the calculations simple we introduce the following auxi-
liary function

e zw)= % {8 gm--SY@}

(mo
q,a)=1 nszx

where r=1+4(log x)"®4**0_ Then we have

Vix,z; W)<-

1 Loy dw
Tog 7 JW v(x, z; w)— .

Now we have

v, ziw)= % { % c<a+qk>—~—Y<q>}

(@.a)=1 k<“”"")

<<w<qsrw{<2g<a*qk>—7”q>) (, = sra)+(Er@-L7@)}

(@ a1 Lr-acksE w
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=v,(x, 2; W)+ G, +G,, say .

For G, we have from (4)

Gi<—-(r—1) > 3 d¥atqk)
v RS g

Ko r=D) 3 diatn)dn).

And this sum is

< {x_a§§7_x d*(a+ n)}%{x_ﬂ%}ém dz(ﬂ)}% < (r—1x(log x)™°.

Thus we have
2
Gy < 5~ (r—1)(log x)~*%
Also we have

2
G, < —%(r—l)(log X)),

Hence noticing (r—1)/logr <1 we get
d

. L (™, 5 s
(10) Vi, 2, W) <o nils ziw)

uZ}U +O(—€Vi(log x) '3") ’

which implies that the problem has been reduced to the estimation of v,(x, z; w).

We decompose this into three parts

nx z;w)= 3 { T glatkg)glathy)

WSgSTW T
(@ay=1 *1.k2=7;

(11)

~25 V@) % glatha) +(45 @) }

= Ji(x, z; w)=2- Ju(x, z; w)+(S)

§3. Estimation of J,(x, z; w).
First we note that

2 glatkg)= ¥ p

h 3
rs-Z. (h,@)=1  kg=—a(mod h)
Tw

X
pgL
k= w

R (O8

and so classifying & according to the greatest common divisor d=(a, h), we

have
(12) 2 glatk=2 X p;m 2
ks-Z 1% (n%a)=1  ra=—%modn)
rs—Z-

= 0w
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-——6% 7,9, say.

In the sum T(4, ¢) we have (h, —g— =1, and we may use the expression

1
2 o o T

k= —~g(mod h)

Z#Xo(mod h)z(— >k< .T X(k(]>}
rs—E-
ks——au Sw

:Wl‘ﬁ {Py(3, )+P(@5, h; )},  say.

Thus we have

T, q)= X Lo (P35, h)+P(@, h;q)}
(n%a)=1 ¢(h)

(13)
=Ty0,q)+T.0,q9), say.
Here we use the well-known fact

Py(0, By =-E3 x4 0(d(h),

and we get
T, == X - +0(ogx)),
(nga)=1
since we have (4). Then by the definition (5) of Y{(q) we have
(14) B T3, q)= 3 Y(@)+0((log x)") .
Next as for T,(d, ¢) we note

B YOTGo= = i 2 PO 0YE)

P ORI G (R (O} SEP R O () 3

e

(h (l) 1 SD(h) *#Zo(mod h) b ;lil) ((1 a) 1
For the last factor we have from (5)
(16) S oY @=20 3 xg)=Y 3 9.
(@ a1 a1 oty

Further we have
IR OESS IR OO
(0,091 qu

PPIOLONPIE CF

W<yl

l l

Thus combining (15) with and (17), we get

(17)
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| 2 Y()Ty(0, q)]

WEGErw
(g,a)=1
d(6h)?
¢ GO s s w2 w9l
lla h=z22 1#Z¢(mod k) kg_é% JL‘qu§%w

since we have (4). Here we quote the well-known result of Pdlya-Vinogradov,
which states that for any non-principal character X (mod f) and for any real
numbers &; and &, we have

(18) |3 )< fElogf.

f1=n=éo

Applying this to the last two factors of the above expression we find

| 2 Y(@Ty(9, 9| < z*(log x)°,

WEGSrw
(g,)=1

which, with [12), (13) and [14), gives

(19) Jz(x,Z;w)z—,f; 2 Y(g)*+0{z'(log x)"+w(r—1)(log x)°} .

VEgSTW
¢

=q
g, a)=1

§4. Estimation of [,(x, z; w).
By the abreviations introduced in the preceding paragraph we have

K zw=3 S T, )T, 0
S3la ‘(G ar=1

:5§a wsém{To(an Q)T (0,5, Q)+To(0,, Q)T1(0,, q)
+T.(01, )T (02, ¢)+T1(04, ¢)T1(0,, q)}

dola (g,a)=1
=Ux, z; w)+ Uyx, z; w)+ Uylx, z; w)+U,(x, z; w), say.

(20)

From (14) we get easily

Ui, z;0)= % [ ST0,0))°
(g,a)=1

1)
=(£) 3 Y@r+Olr—Dx(og )
g, a)=

)=1

As for Uy(x, z; w) and Uy(x, z; w) we can treat them analogously as in
the case of /,(x, z; w). And we show here only the final result

(22) |Us(x, 25 w)l, | Us(x, z; w)| €~ - z%(log ).

Now for U x, z; w) we note that
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WEQsrw
(g, 0)=1

10y OT0u )= = sces X POy POy s 0).
g )) ¥ @t
hz—%—

Also we have

2P0y, hy; P (0, hs; q)

(qq,”h%%zéc[)u;l
(IR, B meH 3, e} 2, mrio)}

= 2 + X =Ryhy, hy; 0y, 0,)+Ri(hy, hy; 04, 0,), say.

X1X2=Xo X1X2:£X0

Thus U,(x, z; w) is divided into two parts

Ufx, z;w)= 2 palhl‘oozhz {Ro(hy, hy; 04, 05)+ R (hy, hy; 04, 0,)}
fita (hl )1 (h)e(hs)
2la
(r25; )
(23)
=UP(x, z; w)+UP(x, z; w),  say.

In the sum R,(Ay, h,; d,, 0,) X, X, can be considered as a non-principal
character (mod A,h,), and so by we have, using the device (17),

IRulls hes 6y )| < 2logx{ 3] Z 1 B, B, 2 (k)| }

which implies that

_d(h)y*

U9, 23 w)] < 22(log {3 2, -4 IECHY

F1o(mod 1) X
o k=5

This sum on % is
A\ & .
Az S B 2 e

8 X X \3 2f X \3 NS
< (log x) {h§z<h+—%> ow }2 <z ( w )2 (log x)
since we have assumed (9). Thus we get
(24) |UP(x, z; w)| € 2° =~ (log )"

Next in the sum R(hy, h,; 0y, 0,) the condition X, X,=X, implies X,=17,
(mod A.h,). And so naturally it must be that

XE=1

l\a*

hf=nh

XS

’

where ¥ (mod A¥) is the primitive character which induces ¥; (mod 4,), (i=
1, 2). Hence we have
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| Ro(hyy ho; 00, 0 w2 | 32 Xk | E (k)|
hi=himy (k1 ml)

! k1=-55 2550

h2=him2 (le 5

w 3 2o e B KR Z RACUP
2;21 xFrg(mod 1) (ky,m 1—

(hy=hmy, hy=hma) MS i §‘

BTE

And we have
[UP(x, z; w)
2 2 h 4
<uogaryy 3 dmidm) v B 5 | s a3 e
glla my, masz 1772 hsz 1Fxo(mod k) (kkl '”‘13; 1 kz 2—
1= 2S5 —

Sw Bzw

We denote this sum on 2 by H(d, m). Then using the device (17) we have

HG,my< » x40 LR MR D AR

2
lyimy h=22 h xFyo(mod h) rE—Z

lzlmz = oilw S lezw
=3 {3+ > b= z: AH0, m, D+H0,m, D}, say,
g::’lnﬂ; R=E E<h=:2 1

where E is to be determined later. To H,(d, m, ) we apply [18), and we get
easily
H,(0, m, 1)< E(log x)'" .

As for H,(0, m, ) we note

X2 k)l X (k)

2(mod k) xz . £
k1s liw LA dalaw

<{ 21 P S 1S akE
y(mod h) ms b‘?hu x(modh) kps— 62 e

< (b= )
This gives
Hy@, m, )< % {f+ o fah)’

< -1+ Jlog ).
Hence the optimal value of F is x/w (< z?), and we find
H(5, m) < d(ml)d(mz)—;— (log x)V".
Inserting this into (25) we get
(26) \UP(x, z; w)| € x(log x)*°.
Collecting (20), (21), [22), (23), and we obtain
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(27) Mz 0= () 3 Y@+0{Z-z +uw)log 1)}
(q a)-

§5. Proof of the Theorem.
Now from (11), and we have
ui(x, z; w) < —;“ (z°4+w)(log x)**,
which, with [10), gives

Vix, z; W)<< (26+W)(log x)3K+165+ (log X)),

Thus if we set
z=x"%(log x)"E+0
then we have

2
Vix,z; W)< —X*W~(logx)‘3".

By the definition of V(x, z; W) the result means that, save for at most W(log'x)¥
exceptional values of ¢, we have

nzagodq) (n)——g— ((DTO( W (log x)~ >

and hence from (6) and (7)

(x;q, 0)= o (1+0((log x)™%))

q) log z

i]) Iogx <1+ ( lngngQ;%L))'

This ends the proof of our theorem.

li/\

Added in proof: In the mean time Hooley (Proc. London Math. Soc., (3)
30 (1975), 114-128) obtained a result which supersedes our theorem, by applying
a simple variant of Linnik’s dispersion method. Both Hooley's and our argu-
ments give an interesting result on the least almost prime number in an arith-
metic progression. To this see our paper which will appear in Proc. Japan
Acad.
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