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\S 0. Introduction.

Let $SO(3)$ be the rotation group (see \S 1). In this paper, we shall study
smooth $SO(3)$ -actions on homotopy 7-spheres without fixed points. Our category
is the smooth category. In [5], we have studied some $SO(3)$ -actions on homo-
topy 7-spheres, mainly in the case with two or three orbit types. In that case,
the actions have fixed points (see [5]). Our present paper is concerned with
the case without fixed points.

Let $\alpha$ and $\beta$ be the real irreducible representations of $SO(3)$ of dimension
3 and 5 respectively (see \S 1). Then $\alpha\oplus\beta$ induces a linear action of $SO(3)$ on
the 7-sphere $S^{7}$ . A simple observation shows that this is the only linear action
on $S^{7}$ which has no fixed points. Let $(\Sigma^{7}, \varphi)$ be a smooth $SO(3)$ -action onahomo-
topy 7-sphere $\Sigma^{7}$ (here $\varphi;SO(3)\times\Sigma^{7}\rightarrow\Sigma^{7}$ is a smooth map defining the action).

For $g\in SO(3)$ and $x\in\Sigma^{7},$ $gx$ denotes $\varphi(g, x)$ . The isotropy subgroup of $x,$ $G_{x}$ ,

is defined by $G_{x}=\{g\in SO(3)|gx=x\}$ . Then the set of the conjugacy classes
$\{(G_{x})|x\in\Sigma^{7}\}$ is called as the isotropy subgroup type of $(\Sigma^{7}, \varphi)$ . Now we assume
that $(\Sigma^{7}, \varphi)$ is fixed point free, that is, for each $x\in\Sigma^{7},$ $G_{x}$ is a proper sub-
group of $SO(3)$ . Then we ask if the isotropy subgroup type of $(\Sigma^{7}, \varphi)$ coincides
with that of the linear action $\alpha\oplus\beta$ . The answer is given by the following
two theorems.

THEOREM I. Let $(\Sigma^{7}, \varphi)$ be a smooth $SO(3)$ -action on a homotoPy $7$ -sPhere
$\Sigma^{7}$ without fixed Points. Then the isotropy subgroup type of $(\Sigma^{7}, \varphi)$ is one of
the following two $tyPes$ ,

(a) $\{(e), (Z_{2}), (D_{2}), (SO(2)), (N)\}$ and
(b) $\{(e), (Z_{2}), (D_{2}), (SO(2)), (N), (Z_{2k+1}), (D_{2k+1})\}$ ( $k$ is a posifive integer),

(For the notations see \S 1).
The type (a) in the above theorem is that of the linear action $\alpha\oplus\beta$ (\S 2).

There is no linear action having (b) as its isotropy subgroup type.
THEOREM II. For each positive integer $k$ , there is a smooth $SO(3)$ -action on

the standard 7-sphere $S^{7}$ with isotropy subgroup $type(b)$ of Theorem I.
Theorem I will be proved in \S 3 and Theorem II in \S 4.
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It can be seen that if $(\Sigma^{7}, \varphi)$ has a fixed point, its isotropy subgroup type
coincides with one of those realized by linear $SO(3)$ -actions on $S^{7}$ ([5]). Hence
the two isotropy subgroup types of Theorem I together with those of linear
actions give a complete list of the isotropy subgroup types occurring in smooth
$SO(3)$ -actions on homotopy 7-spheres.

The author wishes to thank Prof. A. Hattori for his kind advices during
the preparation of manuscript.

\S 1. Notations and definitions.

A) $SO(3)$ and its closed subgroups.
Let $SO(3)$ be the group of those $3\times 3$ real matrices $\{g=(a_{ij})_{1\leqq i,j\leqq 3}\}$ such

that ${}^{t}gg$ is the identity matrix and $|g|=1$ where ${}^{t}g$ is the transpose of $g$ and
$|g|$ is the determinant of $g$ . We denote the identity matrix by $e$ . The closed
subgroups of $SO(3)$ are denoted as follows,

$SO(2)$ : the subgroup of the matrices of the form

$\left\{\begin{array}{lll}cos\theta & sin\theta & 0\\sin\theta & cos\theta & 0\\0 & 0 & 1\end{array}\right\}$ $ 0\leqq\theta<2\pi$ ,

-V: the subgroup generated by $SO(2)$ and

$c=\left\{\begin{array}{lll}1 & 0 & 0\\0 & -1 & 0\\0 & 0 & -1\end{array}\right\}$ ,

for a positive integer $k$ ,
$Z_{k}$ : the cyclic subgroup of $SO(2)$ of order $k$ ,
$D_{k}$ : the subgroup generated by $Z_{k}$ and $c$ ,
$T$ (the tetrahedral group): the subgroup of the matrices

$\{\left\{\begin{array}{lll}\epsilon_{1} & 0 & 0\\0 & \epsilon_{2} & 0\\0 & 0 & \epsilon_{3}\end{array}\right\},$ $\left\{\begin{array}{lll}0 & \epsilon_{1} & 0\\0 & 0 & \epsilon_{2}\\\epsilon_{3} & 0 & 0\end{array}\right\},$ $\left\{\begin{array}{lll}0 & 0 & \epsilon_{1}\\\epsilon_{2} & 0 & 0\\0 & \epsilon_{3} & 0\end{array}\right\}$ $\Pi\epsilon_{i}=1\epsilon_{i}=\pm 1\}$

$O$ (the octahedral group): the subgroup of the matrices
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$(\left\{\begin{array}{lll}\epsilon_{1} & 0 & 0\\0 & \epsilon_{2} & 0\\0 & 0 & \epsilon_{3}\end{array}\right\}$

$|0\epsilon_{3}0$ $00\epsilon_{1}$
$00\epsilon_{2}]$ $\left\{\begin{array}{lll}0 & 0 & \epsilon_{1}\\\epsilon_{2} & 0 & 0\\0 & \epsilon_{3} & 0\end{array}\right\}$

1 $\left\{\begin{array}{lll}0 & \epsilon_{1} & 0\\\epsilon_{2} & 0 & 0\\0 & 0 & -6_{3}\end{array}\right\}$ $\left\{\begin{array}{lll}0 & 0 & \epsilon_{1}\\0 & \epsilon_{2} & 0\\-\epsilon_{3} & 0 & 0\end{array}\right\}$ $\left\{\begin{array}{lll}\epsilon_{1} & 0 & 0\\0 & 0 & \epsilon_{2}\\0 & -\epsilon_{3} & 0\end{array}\right\}\Pi\epsilon_{i}=1,$

$\epsilon_{i}=\pm 1\}$ ,

$I$ : the icosahedral group.
We note that $N$ is the normalizer of $SO(2)$ in $SO(3)$ and isomorphic to 0(2),

the orthogonal group. Any closed subgroup of $SO(3)$ is conjugate to one of
those listed above (Wolf [6]).

B) Real irreducible representations of $SO(3),$ $\alpha$ and $\beta$ .
$\alpha$ ; Let $R_{\alpha}^{3}$ be the 3-dimensional real vector space consisting of vectors

{ $v=(v_{1},$ $v_{2},$ $v_{3}),$
$v_{i}$ : real number}. For $v=(v_{t})\in R_{\alpha}^{3}$ and $g=(a_{ij})\in SO(3)$ , we

dePne $gv\in R_{\alpha}^{3}$ by

$gv=[t(a_{if})$ $v_{1}\wedge\vee v_{3}v_{2}]$ (matrix multiplication).

This is a 3-dimensional real irreducible representation of $SO(3)$ and denoted by
$\alpha$ . We define the norm of $v=(v_{i})$ by $\Vert v\Vert^{2}=\sum v_{i}^{2}$ .

$\beta$ : Let $R_{\beta}^{5}$ be the 5-dimensional real vector space consisting of those $3\times 3$

real symmetric matrices $\{s=(s_{ij})\}$ such that the trace of $s=\sum s_{ii}=0$ . For
$s\in R_{\beta}^{5}$ and $g\in SO(3),$ $gs\in R_{\beta}^{5}$ is defined by $gs=gsg^{-1}$ (matrix multiplication).

This is a 5-dimensional real irreducible representation of $SO(3)$ and denoted by
$\beta$ . The norm of $s\in R_{\beta}^{5}$ is defined by $\Vert s\Vert^{2}=trace$ of $ss$ . This norm is $SO(3)-$

invariant.

\S 2. Linear action $\alpha\oplus\beta$ .
Let $R_{\alpha}^{3}$ and $R_{\beta}^{5}$ be as in \S 1. Let $S_{\alpha}$ and $S_{\beta}$ be the unit sphere in $R_{\alpha}^{3}$ and

$R_{\beta}^{5}$ respectively. Then $S_{\alpha}$ and $S_{\beta}$ are $SO(3)$ -manifolds. The isotropy subgroup
type of $S_{\alpha}$ is $\{(SO(2))\}$ and that of $S_{\beta}$ is $\{(D_{2}), (N)\}$ ([2] p. 43). The orbit
space $S_{a}/SO(3)$ is a point and $S_{\beta}/SO(3)$ is an arc whose end points correspond
to the orbits of type $(SO(3)/N)$ .

Now let $R_{\alpha\oplus\beta}^{8}$ be the direct sum of $R_{a}^{3}$ and $R_{\beta}^{5},$ $R_{\alpha\oplus\beta}^{8}=R_{\alpha}^{3}\oplus R_{\beta}^{5}$ . Let $x=x_{1}+x_{2}$

be a point of $R_{\alpha\oplus\beta}^{8}$ (here $x_{1}\in R_{\alpha}^{3}$ and $x_{2}\in R_{\beta}^{5}$). The action of $SO(3)$ on $R_{\alpha\oplus\beta}^{8}$ is
defined as $gx=gx_{1}+gx_{2}$ for $g\in SO(3)$ . The norm of $x,$

$\Vert x\Vert$ is defined by $\Vert x\Vert^{2}$

$=\Vert x_{1}\Vert^{2}+\Vert x_{2}\Vert^{2}$ . Let $S^{7}$ be the unit sphere of $R_{\alpha\oplus\beta}^{8}$ . $SO(3)$ acts on $S^{7}$ and this
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is the linear action $\alpha\oplus\beta$ .
LEMMA 2.1. The isotropy subgroup structure of the linear action $\alpha\oplus\beta$ is

type (a) of Theorem $I$.
PROOF. $S^{7}$ is equivalent to the equivariant join $S_{\alpha}*S_{\beta}$ as $SO(3)$ -spaces. A

simple calculation gives the result. Q. E. D.

\S 3. Isotropy subgroup type.

In this section, we shall prove Theorem I (see \S $0$).

Let $(\Sigma^{7}, \varphi)$ be a smooth $SO(3)$ -action on a homotopy 7-sphere without fixed
points. For a closed subgroup $H$ of $SO(3),$ $F(H)$ denotes the subset of $\Sigma^{7}$

pointwisely fixed by $H;F(H)=\{x\in\Sigma^{7}|H\subset G_{x}\}$ . It is well known that each
connected component of $F(H)$ is a smooth submanifold of $\Sigma^{7}$ . If $H$ and $K$ are
two closed subgroups such that $H\subset K$, then $F(K)\subset F(H)$ .

First we note that $D_{2}$ is isomorphic to $Z_{2}\times Z_{2}$ and the all elements of order
2 in $SO(3)$ are mutually conjugate. Hence by a theorem of A. Borel concern-
ing elementary-abelian-group actions on spheres ([1] XIII) we have

7–dim $F(D_{2})=3$ dim $F(Z_{2})-3$ dim $F(D_{2})$ .

It follows that $\dim F(Z_{2})=5$ and dim $F(D_{2})=4$ or dim $F(Z_{2})=3$ and $\dim F(D_{2})$

$=1$ . Now we have shown in [5] that the action has fixed points if dim $F(Z_{2})$

$=5$ or if $\dim F(Z_{2})=3$ and $F(Z_{2})=F(SO(2))$ (Theorem III [5]). Therefore if
$(\Sigma^{7}, \varphi)$ has no fixed point we have $\dim F(Z_{2})=3,$ $\dim F(D_{2})=1$ and $ F(Z_{2})\neq$

$F(SO(2))$ . By P. A. Smith’s theorem ([1] III), $F(D_{2})$ is a $Z_{2}$ -homology sphere,
hence a circle.

Now $SO(2)$ acts on $F(Z_{2})$ and its fixed point set is $F(SO(2))$ . By the dimen-
sion parity, dim $F(SO(2))=1$ or $-1$ . But $F(SO(2))$ is not empty by Theorem 4
of [4] (this theorem is proved for actions on the standard 7-sphere in [4].

But as the proof uses only the differentiability and the homology properties,
it holds also for actions on homotopy 7-spheres). Hence dim $F(SO(2))=1$ . By
P. A. Smith’s theorem, $F(SO(2))$ is a Z-homology sphere. Therefore $F(SO(2))$

is a circle.
Let $Y$ be the orbit space $F(Z_{2})/SO(2)$ . $Y$ is an orientable 2-manifold with

boundary $\partial Y=F(SO(2))$ . Let $p;F(Z_{2})\rightarrow Y$ be the projection. Then $p_{*};$

$H_{1}(F(Z_{2});Z_{2})\rightarrow H_{1}(Y;Z_{2})$ is onto. As $F(Z_{2})$ is a $Z_{2}$ -homology 3-sphere,
$H_{1}(F(Z_{2});Z_{2})=0$ . Hence $H_{1}(Y;Z_{2})=0$ . It follows that $Y$ is the 2-disc $D^{2}$ .

The quotient group $N/SO(2)=Z_{2}$ acts on $Y$ and its fixed point set is
$P(F(D_{2}))$ . It is l-dimensional. By P. A. Smith’s theorem, it is $Z_{2}$ -acyclic (note

that $Y=D^{2}$ is $Z_{2}$ -acyclic). Therefore $p(F(D_{2}))$ is an arc with two endpoints
in $\partial Y$ . It follows that $F(SO(2))\cap F(D_{2})=F(N)$ consists of 2 points.
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Now the octahedral group $0$ (see \S 1) is the normalizer of $D_{2}$ . The quotient
group $O/D_{2}$ acts on $F(D_{2})$ . $O/D_{2}$ is isomorphic to the symmetric group of 3
letters. The subgroup of $O/D_{2}$ generated by the class of

$d=\left\{\begin{array}{lll}0 & 1 & 0\\0 & 0 & 1\\1 & 0 & 0\end{array}\right\}$

is a

cyclic group of order 3. As $F(D_{2})$ is a circle, this subgroup acts on $F(D_{2})$

freely or trivially. If it acts on $F(D_{2})$ trivially, then for $x\in F(N),$ $G_{x}$ contains
$N$ and $d$ . But as $N$ is maximal in $SO(3),$ $G_{x}$ must be $SO(3)$ and $x$ is a fixed
point. This is a contradiction. Hence the above group acts on $F(D_{2})$ freely,
that is, it acts by the rotation of $2\pi k/3$ angles $(k=1,2,3)$ . This group is the
only normal subgroup of $O/D_{2}$ , hence $O/D_{2}$ acts on $F(D_{2})$ effectively. The
class of

$\left\{\begin{array}{ll}0 & 1 0\\1 & 0 0\\0 & 0-1\end{array}\right\}$

in $O/D_{2}$ is of order 2 and leaves $F(N)$ pointwisely Pxed,

and acts on $F(D_{2})$ by the reflection through the diameter whose endpoints are
$F(N)$ .

We put $N_{1}=dNd^{-1}$ and $N_{2}=d^{2}Nd^{-2}$ . $N_{1}$ and $N_{a}$ contain $D_{2}$ . $F(N_{1})=dF(N)$

and $F(N_{2})=d^{2}F(N)$ . They are contained in $F(D_{2})$ and consist of two points.
Now the $SO(2)$ -action on $F(Z_{2})$ induces naturally an action of $SO(2)/Z_{2}$ on

$F(Z_{2})$ .
LEMMA 3.1. $SO(2)/Z_{2}$ acts on $F(Z_{2})$ semifreely, and its fixed point set is

$F(SO(2))$ .
PROOF. Since $F(SO(2))$ is not empty and $\pi_{1}(D^{2})$ is trivial, $\pi_{1}(F(Z_{2}))$ is

trivial. $F(Z_{2})$ is a simply connected 3-manifold. Hence it is a Z-homology 3-
sphere. Now let $p^{r}$ be a power of a prime $p$ such that $p^{r}\geqq 3$ . $Z_{pr}$ acts on
$F(Z_{2})$ orientation preservingly. As $F(Z_{2})$ is a Z-homology 3-sphere, $ F(Z_{pr})\cap$

$F(Z_{2})$ (this is the fixed point set of the above $Z_{p^{r}}$ -action on $F(Z_{2})$ ) is a $Z_{p^{-}}$

homology sphere. By the dimension parity, the dimension of it is 1 or 3 (note

that $F(Z_{p^{r}})\cap F(Z_{2})\supset F(SO(2))$ is not empty). Hence it is connected. If $F(Z_{p^{r}})$

$\cap F(Z_{2})$ is 3-dimensional, then it coincides with $F(Z_{2})$ and for $x\in F(N_{1})$

$(\subset F(Z_{2})),$ $G_{x}$ contains $N_{1}$ and $Z_{p^{\gamma}}$ . As $N_{1}$ is maximal in SO(3), $G_{x}$ must be
$SO(3)$ . This is a contradiction. Therefore $F(Z_{p^{r}})\cap F(Z_{2})$ is l-dimensional,
hence coincides with $F(SO(2))$ . It follows that the quotient group $SO(2)/Z_{2}$

acts on $F(Z_{2})$ semifreely with Pxed point set $F(SO(2))$ . Q. E. D.
LEMMA 3.2. If $x\in F(D_{2})$ , then $G_{x}=D_{2}$ or $N$ or $N_{1}$ or $N_{g}$ .
PROOF. Since $N,$ $N_{1}$ and $N_{2}$ are maximal in SO(3), for $x\in F(N)\cup F(N_{1})$

$\cup F(N_{2}),$ $G_{x}$ is $N$ or $N_{1}$ or $N_{2}$ . Now $N,$ $N_{1}$ and $N_{2}$ are the all of the proper
infinite subgroups which contain $D_{2}$ . Hence for $ x\in F(D_{2})-(F(N)\cup F(N_{1})\cup$

$F(N_{2})),$ $G_{x}$ is a finite subgroup containing $D_{2}$ . By the argument before Lemma
3.1, $O/D_{2}$ acts on $F(D_{2})$ effectively and $G_{x}\cap O=D_{2}$ if $x\not\in F(N)\cup F(N_{1})\cup F(N_{2})$ .
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Hence $G_{x}$ must be $D_{2k}$ for some positive integer $k$ . If $k\geqq 2$ , then $G_{x}=D_{2k}$

contains a cyclic subgroup $Z_{p^{r}}$ for some positive prime power $p^{r}\geqq 3$ . By
Lemma 3.1 $F(Z_{pr})\cap F(Z_{2})=F(SO(2))$ . Hence $x\in F(SO(2))\cap F(D_{2})=F(N)$ . This
is a contradiction. It follows that $k=1$ . Q. E. D.

LEMMA 3.3. Let $S_{\beta}$ be the unit sphere in $R_{\beta}^{\delta}$ as in \S 1. The orbit of $F(D_{2})$ ,
$SO(3)F(D_{2})$ , is a smooth $SO(3)$ -manifold and is equivariantly diffeomorphic to $S_{\beta}$ .

PROOF. First we show that if $g\not\in O$ and $ gF(D_{2})\cap F(D_{2})\neq\emptyset$ , then $gF(D_{2})$

$\cap F(D_{2})=F(N)$ or $F(N_{1})$ or $F(N_{2})$ . Let $x$ be a point of $F(D_{2})-(F(N)\cup F(N_{1})$

$\cup F(N_{2}))$ . Then $G_{x}$ is $D_{2}$ by Lemma 3.2. If $gx\in F(D_{2})$ , then $gG_{x}g^{-1}=gD_{2}g^{-1}$

$=D_{2}$ , hence $g\in O$ . Consequently if $g\not\in O$ , then $ gF(D_{2})\cap F(D_{2})=\emptyset$ or $F(N)$ or
$F(N_{1})$ or $F(N_{2})$ . Now the two points of $F(N)$ are not in a same orbit. $F(N)$ ,
$F(N_{1})$ and $F(N_{2})$ are translated onto one another by the action of $0$ . There-
fore we have $SO(3)F(D_{2})/SO(3)=F(D_{2})/O$ . Hence $SO(3)F(D_{2})/SO(3)$ is an arc.
The interior points of the arc are the image of the orbits of type $(SO(3)/D_{2})$

and the two endpoints are the image of the orbits of type $(SO(3)/N)$ . Since
the projection $(SO(3)/D_{2}\rightarrow SO(3)/N)$ is a circle bundle, $SO(3)F(D_{2})$ is a smooth
$SO(3)$ -manifold. Now there are just two equivariant diffeomorphism classes of
such $SO(3)$ -manifolds, and the fixed point set of $D_{2}$ of the class of $S_{\beta}$ is a
circle and that of the other class is disconnected (see [2] and Lemma 2.1 in
\S 2 of [5]). The Lemma follows. Q. E. D.

LEMMA 3.4. Let $x$ be a p0int of $F(SO(2))$ . For a positive integer $i$ , let $t^{i}$

be the 2-dimensional real representati0n of $SO(2),$ $t^{i}$ ; $SO(2)\rightarrow SO(2)$ with kern $el$

$Z_{i}$ . Then the tangential representation of $SO(2)$ at $x$ is $t^{2k+1}+t^{2}+t+1$ , where
1 denotes the l-dimensional trivial representation and $k$ is a positive integer.

PROOF. Since $F(SO(2))$ is connected, the representations of $SO(2)$ at $x$ and
$y$ are equivalent for any two points $x$ and $y\in F(SO(2))$ . Hence we may take
as $x$ a point of $F(N)\subset F(SO(2))$ . Now $F(N)\subset F(D_{2})\subset S_{\beta}$ . The tangent space
at $x$ is decomposed as $V_{0}+V_{1}+V_{2}$ , where $V_{0}$ is the normal subspace to $S_{\beta},$ $V_{1}$

is the tangent space of the orbit $SO(3)x$ ( $=P^{2}$ the real projective plane), and
$V_{2}$ is the normal subspace to $SO(3)x$ in $S_{\beta}$ . The dimensions of $V_{0},$ $V_{1}$ and $V_{2}$

are 3, 2 and 2 respectively. $V_{0},$ $V_{1}$ and $V_{2}$ are all N-invariant. $N$ acts on $V_{1}$

by the homomorphism $N\rightarrow 0(2)$ with trivial kernel, and acts on $V_{2}$ by the
homomorphism $N\rightarrow 0(2)$ with kernel $Z_{2}(\subset SO(2))$ . Since dim $F(Z_{2})=3$ and
dim $F(SO(2))=1$ , the representation of $N$ in $V_{0}$ is given by the homomorphism
$N\rightarrow N/Z_{2k+1}=N\subset SO(3)$ for some integer $k\geqq 0$ (the Prst map is the quotient
map). Now the representation of $SO(2)$ at $x$ is $(t^{2k+1}+1)$ in $V_{0},$ $t$ in $V_{1}$ and $t^{2}$

in $V_{2}$ . Hence the tangential representation of $SO(2)$ at $x$ is $t^{2k+1}+t^{2}+t+1$ .
Q. E. D.

PROOF OF THEOREM I. By Lemma 3.2, $(D_{2})$ and $(N)$ appear as isotropy sub-
group types. $Forapointx\in F(SO(2))-F(N),$ $G_{x}isSO(2)$ . Thus we have shown
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that $(D_{2}),$ $(SO(2))$ and $(N)$ appear as isotropy subgroup types. Now let $x$ be
a point of $\Sigma^{7}$ such that $G_{x}$ is a finite nontrivial subgroup. Let $H\subset G_{x}$ be a
nontrivial cyclic subgroup of $G_{x}$ . There is an element $g\in SO(3)$ such that
gHg $\in SO(2)$ . Let $P^{r}\geqq 2$ be a prime power such that $Z_{pr}\subset gHg^{-1}$ . Then
$F(Z_{p^{r}})$ is a $Z_{p}$ -homology sphere and $F(Z_{pr})\supset F(SO(2))$ . By Lemma 3.4, $p^{r}$

divides 2 or $2k+1$ . First, we assume that $k=0$ . In this case, the only possi-
bility of $p^{r}$ is 2. Hence, all the nontrivial cyclic subgroup of $G_{x}$ must be of
order 2. $G_{x}$ is conjugate to $Z_{2}$ or $D_{2}$ . Therefore if $x\in F(Z_{2})-SO(3)F(D_{2})$

$(\neq\emptyset)$ , then $G_{x}=Z_{2}$ . Thus $(Z_{2})$ aPpears as an isotropy subgroup type. By the
above argument, it can be seen that for each point $x\in\Sigma^{7}-SO(3)F(Z_{2}),$ $G_{x}$ is
the trivial group (e) (note that $\dim F(Z_{2})=3$ and $\dim SO(3)F(Z_{2})=5$). We
obtain type(a) of Theorem I in this case.

Nextly, we assume that $k\geqq 1$ . As $F(I),$ $F(O)$ and $F(T)$ are contained in
$F(D_{2}),$ $F(I),$ $F(O)$ and $F(T)$ are empty by Lemma 3.2. Hence (I), (0) and $(T)$

cannot occur. For a prime power $p^{\tau}$ such that $p^{r}|2k+1$ we have $ F(Z_{pr})\supset$

$F(Z_{2k+1})$ . By Lemma 3.4, the dimensions of $F(Z_{pr})$ and $F(Z_{2k+1})$ are both 3.
Since $F(Z_{pr})$ is a $Z_{p}$ -homology sphere, it is connected. It follows that $F(Z_{p^{r}})$

$=F(Z_{2k+1})$ . Hence if $x\in\Sigma^{7}$ and $G_{x}$ is a nontrivial finite groups, then each
maximal cyclic subgroup of $G_{x}$ is of order 2 or $2k+1$ . Therefore $G_{x}$ is con-
jugate to $Z_{2}$ or $D_{2}$ or $Z_{2k+1}$ or $O_{2k+1}$ . Now if $\chi\in F(Z_{2})-(SO(3)F(D_{2})\cup$

$SO(3)F(Z_{2k+1}))$ , then $G_{x}=Z_{2}$ . Thus $(Z_{2})$ appear as an isotroPy subgrouP type.
By the proof of Lemma 3.4, it can be seen that $(Z_{2k+1})$ and $(D_{2k+1})$ appear as
isotropy subgroup types. If $x\in\Sigma^{7}-(SO(3)F(Z_{2})\cup SO(3)F(Z_{2k+1}))$ , then $G_{x}$ must
be the trivial group (e). Hence we obtain type (b) of Theorem I in this case.

\S 4. Actions with exotic isotropy subgroup type.

In this section, we shall prove Theorem II (see \S $0$).

Let $R_{\alpha\oplus\beta}^{8}$ be the direct sum of $R_{a}^{3}$ and $R_{\beta}^{5}$ as in \S 2. In this section, $S^{7}$

denotes the 7-sphere with the linear $SO(3)$ -action $\alpha\oplus\beta$ , that is, the unit sphere

in $R_{\alpha\oplus\beta}^{8}$ .
Let $v_{1},$ $v_{2}$ and $v_{3}(\in R_{a}^{3})$ be as follows; $v_{1}=(1,0,0),$ $v_{2}=(0,1,0),$ $v_{3}=(0,0,1)$ .

Let $y_{1},$ $y_{2}$ and $y_{3}(\in R_{\beta}^{5})$ be as follows;

$y_{1}=\left\{\begin{array}{lll}0 & 0 & 0\\0 & 0 & 1\\0 & 1 & 0\end{array}\right\}$ , $y_{2}=\left\{\begin{array}{lll}0 & 0 & -1\\0 & 0 & 0\\-1 & 0 & 0\end{array}\right\}$ , $y_{3}=\left\{\begin{array}{lll}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & -2\end{array}\right\}$ .

Now we put
$w_{1}=v_{3}$ , $w_{2}=v_{1}+y_{1}$ , $w_{3}=v_{2}+y_{2}$ and $w_{4}=y_{3}$

considered as elements of $R_{a\oplus\beta}^{8}$ .



$SO(3)$ -actions on homotopy 7-spheres 439

LEMMA 4.1. The isotropy subgroups of $w_{i}$ are as follows;

$G_{w_{1}}=SO(2)$ , $G_{w_{4}}=N$ ,

$G_{w_{2}}=(e,$ $[100$ $-100$ $-100\rfloor\}$ , $G_{w_{3}}=\{e,$ $\left\{\begin{array}{lll}-1 & 0 & 0\\0 & 1 & 0\\0 & 0 & -1\end{array}\right\}\}$ .

PROOF. We note that if $x_{1}\in R_{\alpha}^{3},$ $x_{2}\in R_{\beta}^{5}$ and $x=x_{1}+x_{2}\in R_{\alpha\oplus\beta}^{8}$ , then $G_{x}=$

$G_{x_{1}}\cap G_{x_{2}}$ . A simple calculation gives the result. Q. E. D.
Let $W$ be the 4-dimensional subspace of $R_{a\oplus\beta}^{8}$ spanned by $\{w_{i}\}_{i=1,2,3,4}$ . Let

$S$ be the unit sphere in $W$ . Then $S\subset S^{7}$ .
LEMMA 4.2. For $g\in SO(3),$ $S\cap gS$ is not empty if and only if $g\in N$.
PROOF. First, we prove the following two sublemmas.
SUBLEMMA 1. Let $U$ be the 2-dimensional subspace of $ R\#$ spanned by $y_{1},$ $y_{3}$ .

Let $g=(a_{ij})$ be an element of $SO(3)$ . If $gY\in U$ for some $Y(\neq 0)\in U$ , then $g$

belongs to $N$ or has the form
$\left\{\begin{array}{llll}* & 0 & & 0\\00 & & \star & \end{array}\right\}$

PROOF. Put $Y=ty_{1}+ry_{3}$ , where $t,$ $r$ are real numbers. As $gY\in U$ , the
$(1, 2)$ and $(1, 3)$ components of the matrix $gY=gYg^{-1}$ is $0$ and the $(1, 1)$ com-
ponent is equal to the $(2, 2)$ component. Hence we have the following equations

$t(a_{13}a_{22}+a_{12}a_{23})+r(-3a_{13}a_{23})=0$

$t(a_{13}a_{32}+a_{12}a_{33})+r(-3a_{13}a_{33})=0$

$t(2a_{13}a_{12}-2a_{22}a_{28})+r(3a_{23}^{2}-3a_{13}^{2})=0$

As $(t, r)\neq(O, 0)$ , we have
1) $a_{13}(a_{22}a_{33}-a_{23}a_{32})=0$

2) $(a_{13}^{2}+a_{23}^{2})(a_{12}a_{23}-a_{13}a_{22})=0$

and if $a_{22}=a_{23}=0$ , then
3) $a_{13}(a_{12}a_{33}-a_{13}a_{32})=0$ .

The equations 1), 2) and 3) shows that $a_{13}=a_{23}=0$ or $a_{12}=a_{13}=0$ . Q. E. D.
SUBLEMMA 2. Let $W_{0}$ be the 3-dimensional subspace of $R_{a\oplus\beta}^{8}$ spanned by

$\{w_{1}, w_{2}, w_{4}\}$ . Let $g$ be an element of $SO(3)$ . If $gZ\in W_{0}$ for some $Z(\neq 0)\in W_{0}$ ,
then $g\in N$.

PROOF. Put $Z=tw_{1}+rw_{2}+sw_{4}$ , where $t,$ $r$ and $s$ are real numbers. Now
$Z=(tv_{3}+rv_{1})+(ry_{1}+sy_{3})$ . If $(r, s)=(O, 0)$ , then $Z=tv_{3}$ and $gZ$ must be $\pm tv_{3}$ .
Hence $g\in N$. We assume that $(r, s)\neq(O, 0)$ . Let $Y=ry_{1}+sy_{3}$ . Then $Y\in U$ .
As $gZ\in W_{0},$ $gY\in U$ . By Sublemma 1, $g\in N$ or $g$ can be written as

$\left\{\begin{array}{lll}\epsilon & 0 & 0\\0 & \epsilon a & \epsilon b\\0 & -b & a\end{array}\right\}$
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where $\epsilon=\pm 1$ and $a^{2}+b^{2}=1$ . In the latter case $gv_{1}=\epsilon v_{1},$ $gv_{3}=\epsilon bv_{2}+av_{3}$ and
the $(1, 1)$ component of the matrix $gy_{3}=gy_{3}g^{-1}$ is +1. As $gZ\in W_{0}$ , we see
that $g(rw_{2}+sw_{4})=r\epsilon w_{2}+sw_{4}$ . Hence $gY=g(ry_{1}+sy_{3})=r\epsilon y_{1}+sy_{3}$ . Calculating
$(2, 2)$ and $(2, 3)$ component of the matrix $gY$ , we obtain the following two
equations, $r(a^{2}-b^{2})+s(-3ab)=r$ and $r(2ab)+s(a^{2}-2b^{2})=s$ . From these equa-
tions, $b=0$ follows. Hence $g\in N$. Q. E. D.

Now we proceed to the proof of Lemma 4.2. Put $S_{0}=S\cap W_{0}$ . Then $S=$

$NS_{0}$ and $S$ is N-invariant. Let $g\in SO(3)$ be such an element as $ S\cap gS\neq\emptyset$.
Then $Y=gX$ for some $X,$ $Y\in S$ . Since $S=NS_{0},$ $Y=n_{1}Y_{0}$ and $X=n_{2}X_{0}$ for
some $X_{0},$ $Y_{0}\in S_{0}$ and $n_{1},$ $n_{2}\in N$. Now $Y_{0}=(n_{1}^{-1}gn_{2})X_{0}$ . By Sublemma 2, $n_{1}^{-1}gn_{2}$

$\in N$, hence $g\in N$. Q. E. D.
Now by Lemma 4.2, $SO(3)S$ is equivariantly diffeomorphic to $SO(3)\times NS$ .

Let $\nu$ be the equivariant normal bundle of $SO(3)S$ in $S^{7}$ . Let $\nu_{0}$ be the restric-
tion $\nu|S$ . Then $\nu_{0}$ is N-equivariant bundle over $S$ and $\nu$ is equivalent to
$SO(3)X_{N}\nu_{0}$ . Let $R_{\delta_{i}}^{2}$ be the 2-dimensional real vector space on which $N$ acts
by the homomorphism $\delta_{i}$ : $N\rightarrow 0(2)$ with kernel $Z_{i}(Z_{1}=\{e\})$ . Then as an $N$

space, $R_{a\oplus\beta}^{8}=W+R3_{1}+R_{\delta_{2}}^{2}$ . Hence the normal bundle of $S$ in $S^{7}$ is N-equivalent
to $S\times(R\S_{1}+R_{\delta_{2}}^{2})$ . Let $p;SO(3)\times_{N}S\rightarrow SO(3)/N=P^{2}$ be the projection. Let $\chi$ be
the point of $P^{2}$ such that $G_{x}=N$. Then the normal bundle of $S,\overline{\nu}$ , in $SO(3)\times_{N}S$

is N-equivalent to $(p|S)^{*}TP_{x}^{2}=S\times TP_{x}^{2}$ , where $p|S$ is the restriction of $p$ to $S$

and $TP_{x}^{2}$ denotes the tangent space of $P^{2}$ at $x$ . Now $N$ acts on $TP_{x}^{2}$ by the
homomorphism $\delta_{1}$ : $N\rightarrow 0(2)$ with trivial kernel. Hence $\overline{\nu}$ is N-equivalent to
$s\times R_{\delta_{1}}^{2}$ . Therefore $\nu_{0}$ is N-equivalent to $s\times R\S_{2}$ and $\nu$ is equivalent to $SO(3)\times_{N}$

$(S\times R_{\delta_{2}}^{2})$ .
Let $D^{2}$ be the unit disk in $R3_{2}$ . Then by the above argument, there is an

equivariant embedding $\mu:SO(3)\times_{N}(S\times D^{2})\rightarrow S^{7}$ such that $\mu(SO(3)\times N(S\times\{0\}))$

$=SO(3)S$ .
Let $W_{k}$ be the 4-dimensional real vector space on which $N$ acts by the

homomorphism $\psi_{k}$ : $N\rightarrow N/Z_{2k+1}=N\rightarrow SO(3)\rightarrow SO(4)$ , where the first map is the
quotient map, and the second and the last are the canonical inclusion. Let $S_{k}$

be the unit spher $e$ in $W_{k}$ . Then $N$ acts on $S_{k}$ with isotropy subgroup type
$\{(Z_{2k+1}), (D_{2k+1}), (SO(2)), (N)\}$ . Now let $S^{1}$ be the unit sphere in $R\S_{2}$ , that is
$\partial D^{2}=S^{1}$ .

LEMMA 4.3. There is an N-equivariant diffeomorphism $\tilde{H}:W\times S^{1}\rightarrow W_{k}\times S^{1}$ .
PROOF. Let $R^{1}$ and $R_{\tau}^{1}$ be the l-dimensional real vector spaces on which

$N$ acts trivially and by the homomorphism $\tau$ : $N\rightarrow O(1)$ with kernel $SO(2)$

respectively. Then as an N-space, $W$ is decomposed as $R_{\delta_{1}}^{2}+R_{\tau}^{1}+R^{1}$ . Similarly,
$W_{k}$ is decomposed as $R_{\delta_{2k+1}}^{2}+R_{\tau}^{1}+R^{1}$ .

We identify SO(2) with the complex numbers $\{z;|z|=1\}$ . Put $c=$
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$\left\{\begin{array}{l}1 00\\0-1 0\\0 0-1\end{array}\right\}$

Then, by choosing a suitable complex structure on $R\S_{1}$ and $R_{\delta_{2k+1}}^{2}$ ,

we can write down the actions of $N$ on them as follows; for $z\in SO(2)$ and
$w\in R\S_{i},$ $z$ acts on $w$ by the complex multiplication by $z^{i}(i=1,2k+1)$ and $c$

acts on $w$ by the complex conjugation, that is $cw=\overline{w}$ . Similarly, by identify-
ing $S^{1}$ suitably with the complex numbers $\{w;|w|=1\}$ , we can write down
the action of $N$ on $S^{1}$ as follows; for $z\in SO(2)$ and $w\in S^{1},$ $z$ acts on $w$ by the
complex multiplication by $z^{2}$ and $cw=\overline{w}$ .

Now we define $\tilde{H}:W\times S^{1}\rightarrow W_{k}\times S^{1}$ by $\tilde{H}(w+x+y, w_{0})=(w_{0}^{k}w+x+y, w_{0})$

where $w\in R_{\delta_{1}}^{2},$ $x\in R_{\tau}^{1},$ $y\in R^{1}$ and $w_{0}\in S^{1}$ and $w_{0}^{k}w$ denotes the complex multi-
plication (considered as an element of $R_{\delta_{2k+1}}^{2}$ ). $\tilde{H}$ is a diffeomorphism. We
show that $\tilde{H}$ is an N-equivariant map. For $z\in SO(2)\subset N,\tilde{H}(z(w+x+y, w_{0}))$

and $z\tilde{H}(w+x+y, w_{0})$ are both equal to $(z^{2k+1}w_{0}^{k}w+x+y, z^{2}w_{0})$ . For $c$ ,
$\tilde{H}(c(w+x+y, w_{0}))$ and $c\tilde{H}(w+x+y, w_{0})$ are both equal to $(\overline{w}_{0}^{k}\overline{w}+(-x)+y,\overline{w}_{0})$ .
Hence $\tilde{H}$ is an N-equivariant map. Q. E. D.

If we restrict the above map to $S\times S^{1}\subset W\times S^{1}$ , we obtain an N-equivariant
diffeomorphism $\tilde{H}:S\times S^{1}\rightarrow S_{k}\times S^{1}$ . Hence we obtain an $SO(3)$ equivariant
diffeomorphism

$H=1\times{}_{N}\tilde{H}:SO(3)\times_{N}(S\times S^{1})\rightarrow SO(3)\times_{N}(S_{h}\times S^{1})$ .

Now as before, let $\mu:SO(3)\times_{N}(S\times D^{2})\rightarrow S^{7}$ be an equivariant embedding.
Let $ D^{2}\circ$ be the interior of $D^{2}$ . Put

$G=H\circ\mu^{-1}$ : $\mu(SO(3)\times_{N}(S\times S^{1}))\rightarrow SO(3)\times_{N}(S_{k}\times S^{1})$ .
Let

$\Sigma_{k}^{7}=(S^{7}-\mu(SO(3)\times_{N}(S\times\mathring{D}^{2})))\bigcup_{G}SO(3)\times_{N}(S_{k}\times D^{2})$

be the manifold obtained from the disjoint union $ S^{7}-\mu(SO(3)\times_{N}(S\times\mathring{D}^{2}))\cup$

$SO(3)\times_{N}(S_{k}\times D^{2})$ by identifying their boundaries by $G$ . This manifold is a dif-
ferentiable $SO(3)$ -manifold with isotropy subgroup type $\{(e),$ $(Z_{2}),$ $(D_{2}),$ $(SO(2))$ ,
$(N),$ $(Z_{2k+1}),$ $(D_{2k+1})$ }.

LEMMA 4.4. $\Sigma_{k}7$ is a homotopy $sPhere$ .
PROOF. Put $L_{0}=S^{7}-\mu(SO(3)x_{N}(S\times D^{2}))$ . $L_{0}$ is an $SO(3)$ -manifold with

boundary $\partial L_{0}=\mu(SO(3)x_{N}(S\times S^{1}))$ . Then,

$\pi_{1}(\Sigma_{k}^{\tau})=\pi_{1}(L_{0})*\pi_{1}(SO(3)\times_{N}(S_{k}\times D^{2}))/\pi_{1}(SO(3)\times_{N}(S\times S^{1}))$

where $*denotes$ the amalgamated product and the two inclusions of $\pi_{1}(SO(3\rangle$

$\times_{N}(S\times S^{1}))$ into the two factors are induced by $\mu$ and $H$ respectively. Now
$\pi_{1}(SO(3)\times N(S_{k}\times D^{2}))=Z_{2}=\pi_{1}(SO(3)\times_{N}(S\times D^{2}))$ , and the diagram



442 T. YOSHIDA

( $j$ is the inclusion)

is commutative. Hence, $\pi_{1}(\Sigma_{k}7)=\pi_{1}(S^{7})=1$ . Now $H_{*}(SO(3)\times_{N}(S_{k}\times D^{2});Z)$ and
$H_{*}(SO(3)\times_{N}(S\times D^{2});Z)$ are both isomorphic to $H_{*}(P^{2} ; Z)\otimes H_{*}(S^{3} ; Z)$ , where
$P^{2}$ denotes the real projective plane. The diagram

is commutative. Therefore, the Mayer-Vietoris sequence for the triple ( $\Sigma$ ‘, $L_{0}$ ,
$SO(3)\times_{N}(S_{k}\times D^{2}))$ shows that $H_{*}(\Sigma_{k}7 ; Z)$ is isomorphic to $H_{*}(S^{7} ; Z)$ . Con-
sequently $\Sigma_{k}^{7}$ is a homotopy sphere. Q. E. D.

LEMMA 4.5. $\Sigma_{k}^{7}$ is diffeomorphic to the standard 7-sphere.
PROOF. Let $D$ and $D_{k}$ be the unit 4-discs in $W$ and $W_{k}$ respectively.

Then $\partial D=S$ and $\partial D_{k}=S_{k}$ . Let $D^{8}$ be the unit disc in $R_{a\oplus\beta}^{8}$ . Then $\partial D^{8}=S^{7}$ .
Let $X=D^{8}\cup SO(3)\times_{N}(D\times D^{2})$ be the disjoint union, where $D^{2}$ is the unit disc
in $R\S_{2}$ as before. $Let\sim be$ an equivalence relation on $X$ such that for $x,$ $y\in X$ ,
$x\sim y$ if and only if $x=y$ or $x\in SO(3)\times_{N}(S\times D^{2})$ and $y=\mu(x)\in S^{7}$ . Then, we
have a manifold $ K_{1}=X/\sim$ which has a differentiable structure by corner
rounding. Similarly, let $K_{2}$ be a manifold obtaining from the disjoint union
$\Sigma_{k}^{7}\times[0,1]\cup SO(3)\times_{N}(D_{k}\times D^{2})$ by identifying $x\in SO(3)\times_{N}(S_{k}\times D^{2})$ and the cor-
responding point $y\in SO(3)\times_{N}(S_{k}\times D^{2})\subset\Sigma_{k}^{r}\times\{1\}$ . Then we have

$\partial K_{1}=(S^{7}-\mu(SO(3)\times_{N}(S\times\mathring{D}^{2})))\bigcup_{\mu}SO(3)\times_{N}(D\times S^{1})$

where $\mu:SO(3)\times_{N}(S\times S^{1})\rightarrow\mu((SO(3)\times_{N}(D\times S^{1}))$ , and

$\partial K_{2}=(S^{7}-\mu(SO(3)\times_{N}(S\times\mathring{D}^{2})))\bigcup_{\mu\circ H^{-1}}SO(3)\times_{N}(D_{k}\times S^{1})$

$\cup disjoint$ union $\Sigma_{k}^{7}\times\{0\}$ ,

where $\mu\circ H^{-1}$ : $SO(3)\times_{N}(S_{k}\times S^{1})\rightarrow\mu(SO(3)\times_{N}(S\times S^{1}))$ . By Lemma 4.3, $H^{-1}$ can
be extended to a diffeomorphism $H^{-1}$ : $SO(3)\times_{N}(D_{k}\times S^{1})\rightarrow SO(3)\times_{N}(D\times S^{1})$ .
Hence we have a diffeomorphism, $F:\partial K_{1}\rightarrow(\partial K_{2}-\Sigma_{k}7\times\{0\})$ . Now we dePne a
manifold $K$ by $K=K_{1}\bigcup_{F}K_{2}$ . Then $\partial K$ is diffeomorphic to $\Sigma_{k}^{\tau}$ . Let $[\Sigma_{k}7]$ be
the orientation class of $\Sigma_{k}^{7}$ . We determine an orientation class of $K,$ $[K]$ by
$\partial[K]=[\Sigma_{k}^{\tau}]$ .

SUBLEMMA. The integral cohomology groups of $K,$ $H^{*}(K)$ , are as follows;
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$H^{0}=Z,$ $H^{3}=Z_{2},$ $H^{4}=Z+Z,$ $H^{6}=Z_{2}$ and $H^{j}=0,$ $j$ otherwise.
PROOF OF SUBLEMMA. $K_{1}$ is homotopically equivalent to the quotient space

$SO(3)\times_{N}D/SO(3)\times_{N}S$. Hence, $H^{*}(K_{1})$ are as follows; $H^{0}=H^{4}=Z,$ $H^{6}=Z_{2}$ and
$H^{j}=0,$ $i$ otherwise. As $CW$ complexes, $K_{1}=K_{2}\cup one8$-cell, and $H^{*}(K_{2})$ are
as follows; $H^{0}=H^{4}=H^{7}=Z,$ $H^{6}=Z_{2}$ and $H^{j}=0\circ’ j$ otherwise. Now let $L=$

$K_{1}\cap K_{2}$ . $L=L_{0}\cup L_{1}$ , where $L_{0}=S^{7}-\mu(SO(3)X_{N}(S\times D^{2}))$ and $L_{1}=SO(3)\times_{N}(D\times S^{1})$ .
Then $L_{0}\cap L_{1}=SO(3)\times_{N}(S\times S^{1})$ . By the Mayer-Vietoris sequence for the triple
$(L_{0}, L_{1}, L_{0}\cap L_{1})$ , we have $H^{*}(L)$ as follows; $H^{0}=H^{3}=H^{4}=H^{7}=Z,$ $H^{2}=H^{6}=Z_{2}$

and $H^{j}=0,$ $j$ otherwise. Now by the Mayer-Vietoris sequence for the triple
$(K_{1}, K_{2}, L)$ , we obtain the result. Q. E. D.

We continue the proof of Lemma 4.5. Let $SO$ denote the inductive limit
$\lim SO(n)$ . The homotopy groups $\pi_{*}(SO)$ are as follows; $\pi_{i}=Z_{2}$ if $i\equiv 1,0$

(mod8), $\pi_{i}=Z$ if $i\equiv 3,7$ (mod8), and $\pi_{i}=0$ otherwise. Hence by Sublemma,
the only obstruction for the parallelizability of $K$ lies in $H^{4}(K;Z)=Z+Z$.
Let $D^{4}$ be the 4-disc $\{e\}\times(D\times\{0\})\subset SO(3)\times_{N}(D\times D^{2})\subset K_{1}$ . Then $\partial D^{4}=S=$

$S^{7}\cap W$. As $S$ bounds the 4-disc $D^{8}\cap W$ , we obtain an embedded 4-sphere $S^{4}$

in $K_{1}$ . The normal bundle of $S^{4}$ is trivial. The 4-cycle $[S^{4}]$ and its dual 4-
cycle generate $H_{4}(K;Z)=Z+Z$. If we carry a surgery at $S^{4}$ , we obtain a
manifold $\tilde{K}$ such that $H^{4}(\tilde{K};Z)=0$ and $H^{j}(\tilde{K};Z)=H^{j}(K;Z)$ for $j\neq 4$ . Hence,
$\tilde{K}$ is parallelizable and its index is $0$ . As $\partial\tilde{K}=\Sigma_{k}7$ , $\Sigma_{k}^{7}$ is diffeomorphic to the
standard sphere ([3]). Q. E. D.

This completes the proof of Theorem II.
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