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§0. Introduction.

We have shown in [2I], that there is a codimension one foliation on each
(4k+3)-dimensional sphere, which is foliated cobordant to zero. The main
purpose of the present paper is to prove the following theorem:

THEOREM. On each (4k-+1)-dimensional homotopy sphere, there exists a
codimension one foliation which is not foliated cobordant to zero but twice of
which is foliated cobordant to zero.

We shall prove this in Section 3 (Theorem 2).

Most of the codimension one foliations of spheres so far known, are ones
which are constructed from spinnable structures of spheres [4], [9], [16].**
Thus nice extensions of spinnable structures mean foliated cobordisms of
foliations of spheres. In fact, we can construct null-cobordisms of codimension
one foliations of S* and S7 in this way [21]. From this view point, it is an
interesting problem to ask when two spinnable structures are “spinnable co-
bordant”. Concerning this problem, we shall prove “Relative Spinnable Struc-
ture [Theorem’ in the Appendix, which is a generalization of Tamura and
Winkelnkemper [24].

In Section 1, we shall state some basic definitions and notations.

In Section 2, we shall construct a spinnable structure of S***! (n=2) with
axis S* 'S which is slightly different from Tamura’s construction [16].

In Section 4, we obtain a codimension one foliation of S°® with a single
compact leaf which is diffeomorphic to T?X S? This leads us to new foliations
of higher dimensional spheres and highly connected manifolds.

Throughout the paper, foliations will be smooth, of codimension one and
transversely orientable unless otherwise stated.

I wish to thank Y. Matsumoto, S. Fukuhara, K. Sakamoto, T. Kawasaki,
M. Kato, especially my advisor I. Tamura for many helpful conversations.

*) Supported partially by the Sakkokai Foundation.
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§1. Definitions and notations.

Let R*={(x,, %,, -+, X,) € RX --- X R} be an n-dimensional Euclidean space
with standard codimension one foliation whose leaves are defined by x,=
constant. Given a smooth manifold M™ without boundary, a codimension one
foliation of M™ is defined to be a maximal set of charts

{(U, hy), U, is open in M", h;: U,—R", 2 A}

of M™ such that
hiohit: h (U U)— k(U U,)

preserves the leaves of foliations which are induced on h,(U,N\U,) and h(U;NU )
from that of R". Similarly, if M has a boundary, a codimension one foliation
of M tangent to the boundary is defined by using a half space H"={(x,, x,,
-, X,) € R", x,=0} with a standard foliation whose leaves are defined by x,=
constant. Also, a codimension one foliation of M transverse to the boundary is
defined by uisng H" with a standard foliation whose leaves are defined by
X,-,=constant. More generally, we shall consider foliations of a manifold
with corner. In this case, a codimension one foliation of M is defined to be a
maximal set of charts of M modelled on a quadrant

Qn: {(xlr Xoy s Xp-1, xn) S Rn: xn—1_>toy Xng()}

with a standard foliation defined by x,_,=constant, such that the coordinate
transformations preserve the leaves of this foliation of Q.

If M is a foliated manifold, we denote by (M, F) the oriented diffeomor-
phism class of a foliation of M. & stands for the set of all the leaves of the
foliation of M. Thus, two foliations (M, F,) and (M,, &F,) are identified if and
only if there exists an orientation preserving diffeomorphism h: M,— M,, which
maps each leaf of &, into a leaf of F,. By —(M, F), we mean the same
foliation as (M, F) such that only the orientation of the underlying manifold is
reversed, i.e., —(M, F)=(—M, F).

DEFINITION 1. Two foliations of closed manifolds (M,, F,) and (M,, &,)
are called foliated cobordant if there exists a foliation of a compact manifold
(W, #) which is transverse to the boundary such that oW =M,J —M, and
F\M=F,, F|—M,=F,, in short, (W, F)=(M,, F,)—M,, F,).

A spinnable structure of a closed manifold was defined in Tamura [17]
and Winkelnkemper [24]. We extend the definition to a manifold with boun-
dary.

DEFINITION 2. A smooth manifold W is said to have a spinnable structure
if,

(1) There exists a codimension two submanifold A of W, having the trivial
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normal bundle, which we call the axis.
(2) Let AXD® denote the tubular neighbourhood of A, then W—AXInt D?
has a structure of a smooth fibre bundle over the circle. We call this bundle

the spinning bundle and the fibre of this bundle the generator of the spinnable
structure.

(3) The following diagram commutes :

W—AXInt D? AXS'=Ax0oD?

b pr,
St

where ¢ is an inclusion map, pr, is a projection onto the second factor and p
is the bundle projection of the spinning bundle.

This definition is equivalent to the following:

Let (F, A) be a pair of manifolds such that A is a submanifold of dF of
the same dimension. Then a spinnable structure is a pair {4, (F, A)} where
h is a diffeomorphism of the pair A: (F, A)—(F, A) such that h|A=1id,.

To obtain W from {h, (F, A)}, one has only to consider the mapping torus
M(h) of h and define W=M(h)\UAXD?* where the identification is an obvious
one.

The following lemma is useful for construction of codimension one foliations.

LEMMA 1. Let {h, (F, A)} be a spinnable structure and let Q and Q' be the
mapping tori of h and h|A respectively. We consider Q is a manifold having
corners along 0Q’. Then Q has a codimension one foliation which satisfies

(1) Q' is a union of leaves of the foliation.

(2) The other leaves of the foliation are transverse to 0Q—Q’ and they are
diffeomorphic to Q—Q’.

Proor. Consider a (relative) collar neighbourhood of Q' and identify Q
with QU Q' X[0, 1] where Q'@ and Q’X{0} are identified. On S'Xx[0, 1],
there exists a foliation <V which satisfies: (a) the leaves of €V are the tra-
jectories of a vectorfield. (b) S'X {1} is aleaf. (c) the leaves of <V intersect
normally with S*x{0}.

Let p: Q—S! be the bundle projection map, then the fibres of p and the
pull-back of <V under the projection, p|o Xid: Q'x[0, 1]—S*X[0, 1] define a
foliation of Q\JQ’'X[0,1]1=@Q. It is easily verified that this foliation satisfies
the conditions (1), (2) of Lemma 1l
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§2. A construction of a spinnable structure of S‘"*' (n=2)
with axis S" !X S™.

I. Tamura constructed a spinnable structure of S***! (n=2) with axis
S™ 1 S™ and used it to prove that every odd dimensional sphere has a folia-
tion. In this section, we shall construct such a spinnable structure of S***!,
whose generator is a simpler manifold.

First, we review briefly Tamura’s construction.

Decompose S***! ag follows:

S =(Si X DIl - S X DY) (DP X St - HDE X SH),

where the linking numbers LE(S#X(0), (0)xS#*)=1 for i=1, ---, 17, and other
linking numbers of S7*X(0)’s and (0)x S7"s are all zero. ((0) denotes the center
of D2n+1.)

Let N(4;) denote a tubular neighbourhood of the diagonal of S¥XxoDi*
and N(4;) denote a tubular neighbourhood of ‘anti-diagonal’ of S2*x0D%**! that
is, N(4,) is a tubular neighbourhood of S¥* # (—oD¥*) in S¥x 0D, The self-
intersection number of 4, (resp. 4;) is equal to 2 (resp. —2).

Denote by E, the tree manifold which is obtained by making plumbings
of N(4,), -, N(4,) according to the diagram;

and denote by —E; the tree manifold which is obtained from N(4,,), ---, N(d,,),
in the same way, according to the diagram ;

Performing all these plumbings in the boundary of S{*X D"l --- S X Dip+,
we may consider EH(—F;) is a submanifold of 0(S¥x D+l -.- Sk X Dt
=o(Di"™* X Si*h --- UDRH X SI).

The inclusion maps;

E N (—Ey) — Si"X Dty - g S X D!
E Y (—Eg) — D" XSy -+ § D™ X Sif
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are verified to be homotopy equivalences. Therefore, by (relative) h-cobordism

theorem [15], we have,
ST =(Ey N (—Eg)) X I\J(Es U (—Eg)) X1,

and consequently, we obtain a spinnable structure of S*"*! with E,Y(—E,) as
generator. The axis or the boundary of E,N(—E;) is proved to be diffeomor-
phic to S™!xS™.

This is what Tamura constructed. See for more details.

On the other hand, M. Kato proved ; to a unimodular integral matrix,
there corresponds a spinnable structure of S?**! (n=3). He called this matrix
“Seifert matrix” of the spinnable structure. See also K. Sakamoto [14].

If we use his theorem, we have a very simple spinnable structure of S***!
1—-10

with axis S?*"!'x S?", Namely, we take (O 0 1) as a Seifert matrix. Accord-
0—-1 0

ing to Kato, the rank of H,,(F, Z) of the generator F of the corresponding
spinnable structure is equal to 3 and the intersection matrix of F is

2-10
~1 0 0).
0 0 0

To prove 0F =S*"'X S*" we re-construct such a spinnable structure more

geometrically.
Let S™*'=W,UW,,

WOZS%"XD%HH h SE}"XDETL_H h S%’nngn-ﬂ
W, = Di**1x St iy D' X S Y D+ X SP

be a decomposition of S***!, which satisfies, LE(S{*x(0), S§*x(0)) =1, LE(S7 < (0),
Sx(0))=0 for (¢, 1) # (1, 2), (2, 1) and LE(S#Xx(0), (0)XS)=24,; for 1,7=1,2, 3.

Instead of E 0 (—E,) in Tamura’s construction, we take a submanifold F,
of oW,=0W, as follows.

Let A; denote the sphere Si*X(*) in W,, where (*) stands for a point in
oD™* and let N(A;) be its tubular neighbourhood in oW,

Define

Fy=N(A)Y N(A,) v N(4,),

where we have taken A, and A, so that they link once each other in S***',
XV Y is a plumbing of disk bundles X and Y, and 4, stands for a diagonal
sphere in S x D¥**' ag before.

Again performing connected sum and plumbing in 0W,=0W,, we may
consider F, is a submanifold of oW,=dW, (Fig. 1).

It is easily verified that F; is simply connected and the homomorphisms,
Hy(F;, Z)—H«(W,, Z) and Hy(F,;, Z)— H«(W,, Z) which are induced by inclu-
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sion maps are isomorphisms. Since n=2, by h-cobordism theorem,
We=F,xI and W,=F,xI.

From these, we have a spinnable structure of S***!, whose generator is
F,. Clearly,

0F, =0(N(A,)) £ 0(N(A,) v N(4,)) =0N(A,) g S 1=S"x 51,

This finishes our construction.

Fig. 1.

For n=1, the above argument can not be used since we can not use #h-
cobordism theorem. We shall prove however, the theorem in case n=1 in the

next section.
010

For (4n+3)-dimensional spheres, the matrix (1 0 O> available and by the
011

same method as above, we can construct a spinnable structure of S**** whose
axis is S?"xS**! for each n=1. For n=0, the assertion is obvious. Thus
we have,

THEOREM 1 (Tamura [16, 197). S®"*! has a spinnable structure with S**x S™
as axis (n=0). Further, for n=1, we can choose a generator to be diffeomorphic
to S"XD"PS*"X D" tp(S™), where t(S™) denotes a tangent disk bundle of S™.

COROLLARY. S*" !X D?* (n=1) has a spinnable structure with axis S" *xS"®
which is an extension of the obvious spinnable structure of S*™ 1X0D?* i.e. the
bundle S 'xoD*—0D*=S".

ProOF. Let h be the diffeomorphism of S*XD"HRS*"X D"V r,(S™ which
defines the spinnable structure of S*"*'. We can assume & is an identity on
a small disk D*" which is contained Int(S"XD"H S"X D"V r,(S™). Deleting
the subbundle S'X D** from the mapping torus of 4, we obtain a desired spin-
nable structure.
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§3. Main Theorem.

In this section, we shall prove our main theorem.

THEOREM 2. On every (4n-t+1)-dimensional homotopy sphere (n=0), there
exists a codimension one foliation which is not foliated cobovdant to zero but
twice of which is foliated cobordant to zero.

For n=0, the theorem is easily proved and so from now on we always
assume n=1.

First we remark that no foliations on a (4n-+1)-dimensional homotopy
sphere are foliated cobordant to zero. In fact, suppose that a codimension
one foliation on S***! extended to one of W*"**(@W =S***!). Then the Euler
number of W***% should vanish. The Euler number of the closed (PL-) mani-
fold W***\UD**? should be equal to one. This is a contradiction because
Euler numbers of (4n-+2)-dimensional closed (PL-) manifolds are all even.

Now, we will discuss a certain kind of diffeomorphisms of S**XxS*",

Let S be the set of all diffeomorphisms that satisfy the following two
conditions (1) and (2).

(1) Let S*!pe a (2n—1)-dimensional sphere which is imbedded in a small
disk Di* CS*"x S**. Then each element f< S is an identity map on a tubular
neighbourhood of S*"~!,

(2) Let S* !XInt D*"*! be the tubular neighbourhood of S***' on which f
is an identity and let F be the deleted manifold S** X S**—S?**~1XInt D*"*!,
Then F is diffeomorphic to S*X Di*v S X D Y S x D¥*. We denote the homo-
logy classes [S*x(0)], [S#x(0)] and [S¥xX(0)] by @, b and c respectively.
The second condition is that the restriction f of each f&S to F gives homo-
logy isomorphism such that fu(a)=b-c, fx(b)=a and fix(c)=c.

Let / be an element of S and f be a diffeomorphism of F defined above,
then we have the following lemma.

LEMMA 2. f:(F,0F)—(F,0F) gives a spinnable structure of a (4n-+1)-
dimensional homotopy sphere.

PrROOF. Let M(f) be the mapping torus of f and put X =M(f)US*"x
S*-1x D? where the attaching map is “identity map”, this means we glue the
two manifolds so that the product structure of d(M(f))=S>"x S?""1x S* extends
to S¥x S*-ix D2,

We have only to prove 2 is a homotopy sphere. It is easily seen by Van-
Kampen’s theorem that 2 is simply connected including the case when k=1.

Further, from Wang sequence we have,

i} Z for i=0,1,2n and 2n+1
H{(M(f))=

0 otherwise.
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The generator of H,,(M(f)) is the image of a under the inclusion map F—M(f)
and the generator of H,,,.(M(f)) is identified with [S*]Xc¢ where [S'] is the
generator of H,(M(f)). Applying Mayer-Vietoris exact sequence to the triple
(X, M(f), S*xS**x D), we can see H;(X)=0 for all i, i#0, 4n+1 and Hy2)
=H,.(2)=Z Thus Y is a homotopy sphere. This completes the proof.

The following lemma shows S is a non-empty set.

, LEMMA 3. Let T:S*™xS*™—S?"xS* denote the involution defined by
T(x, y)=(y, x), (x,y)€ S*™XS*™, Then T is isotopic to a diffeomorphism f be-
longing to S.

PrOOF. There exists a diffeomorphism p, of S**XS** which is isotopic to
the identity such that p,o7T is the identity on a disk D{" C S**xS*. Take a
(2n—1)-dimensional sphere imbedded in D{" and denote it by S3*'. Let S
X D¥*(e) be a closed tubular neighbourhood of S#*~! (¢ denotes the radius of
the disk for some metric). We take ¢ so small that S X Di*™(¢) is contained
in Int D§". By an ambient isotopy, there exists a diffeomorphism p, such that
020 P10 T(ST*X(*)) =(*) X ST" § 0DF"**(¢), where S (S%") denotes the sphere of
S % S?" in the first (second) factor, 0D{*!(e) denotes a 2n-dimensional sphere
which is the boundary of a fibre of S¥* !X D{**(¢) and (*) stands for a fixed
point in S (or S%3*). Take a regular neighbourhood K of Si*x(*)V (¥)XS3".
If K is sufficiently small, S§* ' X D§**!(¢/2) is outside p,cp,o T(K). Thus, both
S and p,0p,0 T(SP™) are in a disk Di® which is contained in S**XS*"—
p:0 0.0 T(K)=1Int D**. Since S and p,op,o T(S¥") are isotopic in Di*, there
exists a diffeomorphism p; of S* X S** which is isotopic to the identity such
that the restriction p;0p0,0p0,0T|S{"! is an identity map. Let f=p;0p0,0p0,07.
To prove f satisfies the Condition (1), we have to check the trivializations of
the tubular neighbourhoods f(S3* X D) and S ' X D¥ will coincide. This
can be done as follows. Let g, (v,) be an isotopy between p, (p;) and the
identity map of S*"XS**. pu, and v, define the imbeddings:

p.10 T(S§* ) X[0, 11— S*"xS**x[0,1] given by (x, t)—(p(x), 1)
and
0:0 0,0 T(SF)X[0, 1] — S*"xS*x[0,1] given by (¥, t)—(,(»), 1).

Since g, and v, (¢, and v,) define the same imbedding, these give an imbedding
S2n—1><Sl___>SZn><SZTL><Sl.

The normal bundle of this imbedding is trivial because both manifolds are
(stably) parallelizable and the normal bundle is (2k41)-dimensional. This means
there is no difference between the two trivializations in question. From this
we can see f satisfies Condition (1).

As for Condition (2), we can easily see, from the construction, f has the
desired homological property. Thus we have proved f belongs to S, complet-
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ing the proof. We are going to prove

PrROOF OF THEOREM 2. By [Lemma 3, there exists a diffeomorphism H of
S?"x S*x[0,1] such that H|S*xS*x {0} is the involution T and H|S**X
S®"x {1} is a diffeomorphism f belonging to S, which fixes a closed tubular
neighbourhood N(S®*"~!) of an imbedded S**~!. Let Q be the mapping torus of
H. By (Put F=S5%"xS5%"XTand A=S*"XxS*"X {0} U(N(S*" )X {1})),
@ has a codimension one foliations with properties, (a) the mapping torus of
H|S™xS*x {0} =T is a compact leaf, (b) the mapping torus of H|N(S**?)
is a compact leaf (with boundary), (c) other leaves are diffeomorphic to S**X
S (0, 1]—N(S*™ )% {1}.

On the other hand, there is a codimension one foliation of S**~*X D***!x D?
which is a pull-back of a foliation of S?*" !X D? whose boundary is a compact
leaf [16].

By identifying the mapping torus of H|N(S**) and S**~'Xx D***'XaD?, and
by smoothing the corners, we obtain a smooth foliated manifold W***=
QIS 'x D*™1x D* The boundary of W is a union of two disjoint closed
manifolds ; the mapping torus of 7 and a homotopy sphere 2 (see, Lemma 2).
The foliation of W is transverse to 2 and 2 is foliated by using the spinnable
structure which was described in Lemma 2.

To complete the proof of [Theorem 2, we need the following two lemmas.

LEMMA 4. Given a homotopy sphere 3*"** we can modify W*™*? into Wan+e
so that

(1) W42 is a cobordism between the mapping torus of T and 3"+,

(2) W*+2 has a foliation which has the properties (a) and (b) described
above.

LEMMA 5. The mapping torus of T has an orientation reversing differenti-
able tnvolution.

Assume, for a moment, Lemma 4] and Lemma 5 Then we can prove
as follows. Given a homotopy sphere 3***! we take two copies of
W42 which is obtained by Glue them along the mapping torus of
T by the orientation reversing involution which is obtained by The
resulting foliated manifold is a desired foliated cobordism. This completes the
proof of [Theorem 2.

Now, we must prove Lemma 4 and Lemma 9.

ProoF OF LEMMA 4. Let g and & be diffeomorphisms of S**, which cor-
respond to Y*"*' and 3*"*! respectively. Then hog ! corresponds to the homo-
topy sphere —J3‘"+1# $4"*1 By a theorem of H. Winkelnkemper [23], hog~!
extends to a diffeomorphism G of a (4n-+1)-dimensional manifold V***! whose
boundary is S*". We can assume G is an identity on a small half disk D™
in V*"*', Consider the manifold; X=S**XS*XIH V***! where the boundary
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connected sum is made along D#' and a half disk in S*XS?*"x I, which is
disjoint from S**XS**x {0} \US*-*xInt D***'X {1} and where H is an identity
map. We can define a diffeomorphism HUG of X in an obvious fashion. Using
(HWG, X) instead of (H, S*»x S?*"xI) in the proof of we obtain a
desired foliated manifold W*™*?* as in the case of W4"*2,

PrOOF OF LEMMA 5. The mapping torus of 7 is the manifold obtained
from S*XS*"x[0, 1] by identifying (x, 0) and (T(x), 1) for x= S*"xX S, It is
easily verified that the reflection of the interval [0,1] defined by #(t)=1-—1,
t<[0,1] is compatible with the identification. From this follows.

§4. A remark on foliations of highly connected manifolds.

In this section, we shall consider the foliations of highly connected mani-
folds. In [19], Tamura proved that every (n—1)-connected (27n-1)-manifold
(n=3) has a codimension one foliation. A similar result for even dimensional
manifolds was obtained in [13]. We shall describe more explicitly the folia-
tions of these manifolds.

LEMMA 6. S°® has a spinnable structure whose axis is diffeomorphic to
St SE.

This is an immediate consequence of Lemma 2 and [Lemma 3 of Section 3.
It can be proved this spinnable structure can not be obtained as a Milnor
fibering of an isolated sigularity.

A smooth manifold is said to be specially spinnable if it admits a spinnable
structure whose axis is a sphere.

LEMMA 7. Let M*"* be a specially spinnable manifold then M*®*' has a
spinnable structure whose axis is diffeomorphic to a product of S* and even
dimensional spheres.

Proor. First we shall prove S® !X D? has a spinnable structure whose
axis is a product of S*' and even dimensional spheres and its restriction to
S*-1%x0D? is a trivial bundle over S'=0D? For n=1, this assertion is clearly
true. For n=2, means S?X D? has such a spinnable structure (see
Corollary| to [Theorem 1[). Suppose we have proved the assertion for S**'x D?,
1=k<n. By [Corollary| to [Theorem 1, S*"~*X D* has a spinnable structure with
axis S"'XS". But our hypothesis says S®"*X S" X D? has a spinnable structure
with desired axis, which is induced from the one of S™'XD? (S§"x D?) when
n is even (odd), by projections.

Gluing the spinning bundle of S** !X D?® and that of S* 'XS"XD*? along
S* 1% S*xaD? we have a new spinnable structure of S* !X D? whose axis is
a desired one. Thus the assertion is true for any S*""*XD? n=1.

Given a specially spinnable manifold M?®***', consider the spinning bundle
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M—S5*""*xInt D*—S*. Glue M—S**'XIntD* and the spinning bundle of
S#"=1x D*? just obtained, along the boundaries in an obvious way. Thus, M has
a new spinnable structure with a desired axis. This completes the proof.

In [13], we have proved that an (n—2)-connected 2n-manifold has a spin-
nable structure with axis which is diffeomorphic to S°ddxS°dd if n >3 and if
its Euler number and signature vanish. Therefore, by the same argument as
above, such an even dimensional manifold also has a spinnable structure whose
axis is diffeomorphic to a product of S' and higher dimensional spheres.

Applying to these spinnable structures we have the following
theorem.

THEOREM 3. Every (n—1)-connected (2n+1)-manifold and every (n—2)-con-
nected 2n-manifold with vanishing Euler number and signature (n=3), has a
Foliation with single compact leaf which is diffeomorphic to a product of T? and
higher dimensional spheres.

REMARK. There are only two kinds of non-compact leaves of the above
foliations: One is diffeomorphic to the interior of the generator of a spinnable
structure and the other is diffeomorphic to a product of R* and higher dimen-
sional spheres.

Appendix.

In this appendix, we shall prove the following “Relative Spinnable Structure
Theoreml’. Our proof is essentially a modification of those of [137], [17], [19],
to the relative case.

THEOREM. Let W™ be a compact, simply connected smooth manifold of
dimension n+1 (n=6). Suppose the boundary oW admits a spinnable structure
whose generator F is simply connected and 0F is connected. If n-+1=4k, sup-
pose further the signature of the intersection pairing

Hy (W, F; Z)/Tor @ Hy (W, F; Z)/Tor — Z

vanishes (Tor stands for the torsion subgroup). Then W™"*' has a spinnable
structure which is an extension of the given spinnable structure of oW,

Proor. (In this proof, we use only homology and cohomology groups with
integer coefficient.) Since W has a spinnable structure with generator F, oW
is decomposed into (F X1),\J(F XI), where (FxI); (1=0,1) is a copy of FXI
(round the corners if necessary) and the pasting map is one which is deter-
mined by the monodromy of the spinnable structure of oWV,

Using the relative Hurewicz theorem, we can proceed as Smale and
obtain a handle decomposition of W relative to (FxI), which is minimal with
respect to the homology structure of (W, (FXI),). Hereafter, we will fix one
of such a handle decomposition of W.
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We separate the proof into two cases.

CAseE 1. When n+1=2m+1 (m=3).

Let V, be the submanifold of W, which is obtained by attaching to (FX1I),
X[0, ¢] (a collar neighbourhood of (Fx1I),) all the handles of W whose indices
are less than m-+1 and put V,=W—-V,.

Since F and W are simply connected, V,, V, are also simply connected.
We will denote by 0,V, (resp. 9,V,) the manifold oV,—(FXIntI), (resp.
0V,—(FxIntI),). Clearly 9,V,=0,V,; in W and 0,V, is a manifold whose
boundary is the double of F (if F is closed, the disjoint union of two copies
of F). Since n=6 and F and V, are simply connected, d,V, is also verified
to be simply cennected by using the homotopy exact sequence of (V,, 9,V,).

We have the following homology exact sequence of the triple (V,, 0,V,, F)

—> H; 1 (Vy, 0,V) —> H(0,V, F) —> H(V,, F) — H{(Vy, 0,V,) —>.
By Poincaré-Lefschetz duality we have
Hi(VOy aoVo) :HzmH_i( Vo, (FX 1)0> .

But V, is a handlebody obtained from (FXI), by attaching the handles of
indices less than m+41, so

H = (V,, (FX1)g)=0  for i=m.

Therefore the inclusion map (0,V,, F)—(V,, FXxI),) induces homomorphisms
H,(0,V, FY—H(V,, (FxI),) which are bijective for 1<m, and surjective for
i=m. If we choose a handle decomposition of 9,V, relative to F, then we
have a submanifold G, of 0,V, which consists of the handles of indices less
than m-+1 such that the homomorphisms H,(G,, F)— H(V,, (FXI),) induced by
inclusion map are isomorphisms for i<m (use “handle addition theorem” for
m-handles of G,).

Consider the dual handle decomposition of W. V), is regarded as a handle-
body relative to (FXI); which is obtained by attaching the handles of indices
less than m—+1 to (FXI); and minimal with respect to the homology structure
of (W, (FxI),.

We have the following diagram where all the homomorphisms are bijective

for 1 <m.

Hy(Vo, (FX1),)

\Him, (FXI),)

Hy0V,, F) Hy(W, F)
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Also as before, we have a surjective homomorphism
H . (0,Vy, F)— Hp(Vy, (FXI),). (2)

Now, we are going to modify G, in order to obtain a generator of a spin-
nable structure of W.

Let p denote the rank of H,(G, F) (=rank H,(V,, (FxI),)=rank H,(V,,
(FxI))) and take a natural decomposition of S¥™*!;

S =(SPrX DPY - USTEX DY\ J (DR X STY - DRt STy .
Set
Vo=V, Srx Dty - g Spx Dpt

Vi=V.,h DpHxSp Q.- DntixS™,

Clearly, V,UV,=wgS=Ww.

Let a; (i=1, -+, p) denote the generators of H,(G, F)C H,0,V,, F) and
let 8; (i=1, -+, p) be the generators of H,(d,V,, F) which are mapped onto
the generators of H,(V, FXI);) under the homomorphism (2) above and let
a;, b; (i=1, -+, p) denote the homology classes of 8,V, =0,V ,£SmxaDp+1% ..
£SmxaD»* which are represented by SP*X(point) and (point)XdDy*' respec-
tively.

Define G to be the handlebody in 9, V, relative to F satisfying the following :

(1) The handles of indices less than m and the handles of index m which
generate the relations in Hm_l(CN}, F) are the same ones as those of G,.

(2) The handles of index m which are the generators of Hm(é, F), are the
handles representing the homology classes a;+0b;, f;+a; (1=1, -+, p) (we con-
sider a;, B; are naturally the elements of H,(0, Vo, F)). Such a handlebody is
obtained by virtue of handle addition theorem.

By the construction of G and the diagram (2) above, we can see the inclu-
sion maps 5—>I70 and 5%171 induce isomorphisms of homology groups and
hence they are homotopy equivalences.

By duality, we can also see that 5/=am—1m 5—>I70 and 5’—»171 are also
homotopy equivalences.

Thus (V,, CN;, 5’) and (V,, CN}, é—") are considered as relative A-cobordisms.
Therefore by relative h-cobordism theorem, we have W= V,U VI:(GNXI)U
(5><I ). This shows that W has a spinnable structure with G as generator.
This finishes the proof in Case [.

Casg II. When n+1=2m (m=4).

We will proceed in almost the same way as in Case I and will not repeat
the details which are stated in Case I.

Again we fix a handlebody decomposition of W relative to (FXI),, which
is minimal with respect to the homology structure of (W, (FXI)).
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Let V, be the submanifold of W which consists of the following handles:

(1) The handles of indices less than m.

(2) The handles of index m which represent the torsion generators of
H, (W, (FXI),).

(3) The handles of index m which represent free generators ¢; (i=1, ---, 7,
r=1/2rank H,(W, F)) in H, (W, (FXI),) where e;, f; i=1, ---, ) are the basis
of H,(W, (FxI),)/Tor whose intersections satisfy (e;, ¢;)=0, (e, f;)= %0,
(,j=1, ---,7) (such a basis do exist since the signature of the intersection
form is zero for m even).

Set V,=W—V, and 0,V,=0V,—(FxIntI,). As in case I, the homomor-
phisms induced by the inclusion map H(0,V,, F)— H(V,, (FXI),) are bijective
for i<m—1 and surjective for i=m—1. The homomorphism H,_.,(0,V,, F)—
H,_(V,, (FXI),) is also surjective as in case I.

We need the following lemma which we will prove later.

LEMMA. For i=m, rank H,(V,, (FXI),)=rank H,(V,, (FX I),) and the im-
ages of inclusion maps H(V,y, F)—H W, F) and H(V,, F)—H;W, F) coincide.
In particular, the intersection forms of H,(V, (FXI),) and H,(V (FXI),) are
zero.

From the last statement of this lemma, we have surjective homomorphisms

Hu(00Vo, F) = Hu(Vo, (FX Do), Hu(0oVy, F)— Hu(Vy, (FXI)).

Choose a minimal handlebody decomposition of 9,V, relative to F. From the
above observation, we have a handlebody G, in d,V, consisting of handles of
indices less than m-+1 such that the homomorphisms induced by the inclusion
map
H(G,, F)— H(V,, (FX 1))

are bijective for i<m—1 and surjective for :=m—1, m. (In order to attach
m-handles to (m—1)-skeleton, we use the simply-connectedness of W and F and
the condition m =4.)

Let p, and p, denote the rank of H,.,(V, F) and the rank of H,(V, F)
respectively and put p=max {p,, p.}.

Take a natural decom position

Stm=A,JA,, where
Ay=Sr' XD - SE*X Dy SpxDrh--- Y Sox D
A, =DrXSTH - U DX Sy DPH XSSPty .-y Dptix Snt,
Set Vo=V,HA4, and V,=V,H A,
Let a; (resp. B;) (1=1, -+, p,) be the homology classes of H,_,(0,V,, F)

=H,_,(0,V,, F) whose images by inclusion homomorphism H,_,(d,V,, F)—
H, (Vo (FXI)) (resp. Hp y(0,Vy, F)—Hp ((Vy, (FXI))) form a basis of
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Hy ((Vo, (FXI),) (resp. Hy_((Vy, (FXI),)). Similarly, let &; (resp. n;) (=1, -,
p.) be the homology class of H,(0,V,, F)=H,(9,V,, F) whose images by inclu-
sion homomorphism H,(0,V,, F)—H,(V,, (FXI),) (resp. H,0,V, F)—
H (V,, (FxI),)) form a basis of H,(V,, (FX1I),) (resp. H,(V,, (FxI),). Further,
let a; (resp. b)) (i=1, ---, p) be the homology classes of 9V, represented by
S71x (point) (resp. (point)XS™7') and denote by x; (resp. ¥;) (i=1, ---, p) the
homology classes represented by S7X(point) (resp. (point) X ST).

Now define the handlebody G relative to F as follows.

(1) (m—1)-handles of G are the handles corresponding to the homology
classes a;+b;, Bi+a; a;+b; (i=1, -, py, j=p,+1, -+, D).

(2) m-handles of G are the handles corresponding to the homology classes
etV et xy, x+y (R=1, <o, Py, [=pp+1, -, D).

(3) Other handles are the same as those of G,.

By the construction, the inclusion map (CN}, FY—(V,, (FXI),) (resp. (CN}, B
—>(T71, (Fx1I),)) induces an isomorphism of the homology groups, hence it is a
homotopy equivalence.

By the same argument as in Case I, we can conclude that W has a spin-
nable structure with G as generator, which is an extension of the given spin-
nable structure of oW.

To complete the proof, we must prove

PrROOF OF LEMMA. For i=<m-—1, the assertion is clear if we consider the
dual handlebody decomposition of W.

Consider the following diagram

Hy(Vo, F)
1)
11 jl
H,(Vy, F) Hn (W, F) H (W, Vy) -

where all the homomorphism are induced by inclusion maps.
By Poincaré-Lefschetz duality, we have

H (V, F)=H™W, V,)
and by the universal coefficient theorem
Tor H,(V,, F)=Tor H,_(W, V,)=0
rank H,(V,, F)=rank H,, (W, V,).

But from the homology exact sequence for the triple (W, V,, F), it is easily
seen rank H,(W, V,)=r-+the number of torsion generators (of H,_ (W, F)),
which is equal to rank H,(V,, F).

It is well-known that the map j,o1, is determined by the intersection matrix
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of H,(V,, F). But every element of H,(V,, F) is mapped to zero under j,oi,
because H,(V,, F) is generated by ¢ (i=1,--,7) and by ¢t} (j=1,-,s,
s=rank H,(V,, F)—r) such that i,(e})=e; and i,(t})’s are the torsion generators
in H,(W,F) and hence their intersections are all zero. Therefore, Im:i,C
Ker j,=Im1,.

Since H,(V,, F) is free abelian of rank r+s, H,(V,, F) contains the gen-
erators e/ (i=1,--,r) and t7 (j=1,--,s) such that i(ef)=e; and 1,(t}/)C
Tor H,(W, F).

From this we can see the intersection matrix of H,(V,, F) is zero. (Con-
sider the intersection matrix of (Vy, F) in (W, F)). Thus by the same argu-
ment as above, we have Imi,CIm1i, This completes the proof.
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Added in proof.

*%> W, Thurston has succeeded in constructing codimension one foliations of

arbitrary closed manifold with vanishing Euler number. His method does not use
the spinnable structures of manifolds.

**x) ] express my hearty thanks to the referee for many valuable comments.




	\S 0. Introduction.
	THEOREM. On ...

	\S 1. Definitions and ...
	\S 2. A construction of ...
	THEOREM 1 ...

	\S 3. Main Theorem.
	THEOREM 2. ...

	\S 4. A remark on foliations ...
	THEOREM 3. ...

	Appendix.
	THEOREM. Let ...

	References

