On a class number relation of imaginary abelian fields

By Aichi Kudo

(Received March 5, 1974)

§ 1. Introduction.

Let k_0 be the cyclotomic field $Q(\zeta_p)$ generated by a primitive p-th root of unity ζ_p over the rationals Q, where p is a prime number >3. Let k_0^+ be the maximal real subfield of k_0 . Recently, Metsänkylä [7], [8] gave a relation between the class number h_0^+ of k_0^+ and the relative class number h_0^- of k_0/k_0^+ in the form

$$(1) h_0^- \equiv Gh_0^+ \pmod{p},$$

where G is an explicitly given integer.

In this paper we shall generalize this relation (1) to the class number factors $h_{\overline{K}}$ and $h_{\overline{K}}^{+}$ of certain imaginary abelian number field K over Q (Theorems 1, 2, § 3), by means of continuity of p-adic L-functions [4], [5] and the p-adic formulas for $h_{\overline{K}}^{+}$ [6] and $h_{\overline{K}}^{-}$. For this purpose, we use some results connected with p-adic L-functions which are derived by Fresnel [2] and simplified by Shiratani [10].

Denote by q a square-free integer >1 and by d=3q the discriminant of a real quadratic number field. Consider the real field $Q(\sqrt{3q})$ and the imaginary field $Q(\sqrt{-q})$. As an application of our Theorems 1, 2, we shall obtain a classical result ((21), § 4) of Ankeny-Artin-Chowla [1], which states a congruence relation modulo 3 between the class numbers of $Q(\sqrt{3q})$ and $Q(\sqrt{-q})$ for $q\equiv 1\pmod 3$. Furthermore in § 4 we shall give some similar results other than (21).

§ 2. Relations between $L_p(0, \chi)$ and $L_p(1, \chi)$.

Let p be an arbitrarily fixed prime number, Q_p the field of rational p-adic numbers and Z_p the ring of rational p-adic integers. Let χ be an even Dirichlet character and $L_p(s,\chi)$ the p-adic L-function for χ . The function $L_p(s,\chi)$ is a continuous function of $s \in Z_p$ $(s \ne 1)$, and if χ is not the principal character, then $L_p(s,\chi)$ is continuous at s=1 [4], [5]. A Dirichlet character

 χ is called a character of the second kind (with respect to p) if it is an even character whose conductor f_{χ} and order n_{χ} are both some powers of p. We may suppose that the values of Dirichlet character χ are contained in an algebraic closure Q_p of Q_p , and we set $\chi(x)=0$ if x is not prime to the conductor f_{χ} .

Now let \mathfrak{X} be a finite abelian group of order g of even Dirichlet characters, p^m the number of characters of the second kind in \mathfrak{X} , $(m \ge 0)$, and \mathfrak{X}^0 the principal character. Then we have the following Propositions 1, 2.

PROPOSITION 1. For $p \neq 2$, we have the congruence of rational p-adic integers:

(2)
$$p^{m+1} \prod_{\chi \in \mathfrak{X}} L_p(0, \chi) \equiv p^m \prod_{\chi \in \mathfrak{X} - \{\chi^0\}} L_p(1, \chi) \pmod{p}.$$

PROOF. Let \mathfrak{X}_1 denote the cyclic group of order p^m consisting of all characters of the second kind in \mathfrak{X} . By the definition of p-adic L-functions [2], [10] and Theorems 1, 2, 3, 4, 5 of [10], it holds that

(3)
$$L_p(0, \chi) \equiv L_p(1, \chi) \pmod{p}$$
 for $\chi \in \mathfrak{X}, \chi \in \mathfrak{X}_1$,

(4)
$$L_p(0, \chi) \equiv L_p(1, \chi) \pmod{p(1-\chi(1+p))^{-2}} \quad \text{for } \chi \in \mathfrak{X}_1, \chi \neq \chi^0,$$

(5)
$$pL_p(0, \chi) \equiv 1 \pmod{p} \quad \text{for } \chi = \chi^0.$$

By Theorem 5 of [10], we know that $L_p(0, \chi)$, $\chi \in \mathfrak{X}$, is not an integer in $Q_p(\chi)$ only if $\chi \in \mathfrak{X}_1$, and for every $\chi \in \mathfrak{X}_1$, $\chi \neq \chi^0$, $(1-\chi(1+p))L_p(0, \chi)$ is an integer in $Q_p(\chi)$.

Since
$$\prod_{\chi \in \mathbb{X}_1 - \{\chi^0\}} (1 - \chi(1+p)) = p^m$$
, it follows from (4) that

$$p^m\prod_{\mathbf{x}\in\mathfrak{X}_1-\{\mathbf{x}^0\}}L_p(0,\,\mathbf{x})\equiv p^m\prod_{\mathbf{x}\in\mathfrak{X}_1-\{\mathbf{x}^0\}}L_p(1,\,\mathbf{x})\qquad (\mathrm{mod}\ p(1-\zeta_p)^{-1})\,.$$

Here ζ_p means a primitive p-th root of unity in Ω_p . This congruence holds for modulo p since both sides are rational p-adic numbers. Therefore we immediately have the congruence with which we are concerned.

PROPOSITION 2. For p=2, we have the congruence of rational 2-adic integers:

(6)
$$2^{m-g+2} \prod_{\chi \in \mathfrak{X}} L_2(0, \chi) \equiv 2^{m-g+1} \prod_{\chi \in \mathfrak{X} - \{\chi^0\}} L_2(1, \chi) \pmod{2} .$$

Furthermore, if \mathfrak{X} contains no character of the second kind except for \mathfrak{X}^0 , then the congruence (6) holds for modulo 4.

PROOF. Let \mathfrak{X}_1 be the cyclic group of order 2^m consisting of all characters of the second kind in \mathfrak{X} as in the proof of Proposition 1. In this case where p=2, we obtain [2], [10] that

(7)
$$L_2(0, \chi) \equiv L_2(1, \chi) \pmod{2^3}$$
 for $\chi \in \mathfrak{X}, \chi \in \mathfrak{X}_1$,

(8)
$$L_2(0, \chi) \equiv L_2(1, \chi) \pmod{2^3(1-\chi(5))^{-2}}$$
 for $\chi \in \mathfrak{X}_1, \chi \neq \chi^0$,

(9)
$$L_2(0, \chi) \equiv \frac{1}{2} \pmod{2} \quad \text{for } \chi = \chi^0,$$

where $\frac{1}{2}L_2(0, \chi)$ for $\chi \in \mathfrak{X}$, $\chi \in \mathfrak{X}_1$ and $\frac{1-\chi(5)}{2}L_2(0, \chi)$ for $\chi \in \mathfrak{X}_1$, $\chi \neq \chi^0$ are integers in $Q_2(\chi)$.

Since
$$\prod_{\chi \in \mathbf{x}_1 - \{\chi^0\}} (1 - \chi(5)) = 2^m$$
, it follows from (8) that

$$2^{m-2^m+1} \prod_{\chi \in \mathfrak{X}_1 - \{\chi^0\}} L_2(0,\,\chi) \equiv 2^{m-2^m+1} \prod_{\chi \in \mathfrak{X}_1 - \{\chi^0\}} L_2(1,\,\chi) \qquad (\bmod \ 2) \ .$$

On the other hand, it follows from (7) and (9) that

$$2^{2^{m-g}}\prod_{\chi\in\mathfrak{X}-\mathfrak{X}_1}L_2(0,\,\chi)\equiv 2^{2^{m-g}}\prod_{\chi\in\mathfrak{X}-\mathfrak{X}_1}L_2(1,\,\chi)\qquad (\bmod\ 4)$$

and

$$2L_2(0, \chi^0) \equiv 1 \pmod{4}$$
.

Therefore we obtain the desired congruence.

§ 3. Relation between h_K^- and h_K^+ .

In this section we shall prove our main theorems. Let K be an imaginary abelian number field of degree 2g over Q and $\mathfrak X$ the character group of K. Then $\mathfrak X$ is understood as an abelian group of Dirichlet characters in ordinary way. By $\mathfrak X^+$, $\mathfrak X^-$ we denote the two cosets of even and odd characters in $\mathfrak X$ respectively. The class number h_K of K can be written in the form $h_K = h_K^- h_K^+$ where h_K^+ is the class number of the maximal real subfield K^+ of K, and h_K^- is the relative class number of K/K^+ .

The value of h_K^+ as a p-adic integer is given by the Leopoldt's p-adic class number formula [4], [6] of real abelian number field K^+ in the form

(10)
$$\frac{2^{g-1}h_{\underline{K}}^{+}R_{p}}{\sqrt{d}} \prod_{\chi \in \mathbf{X}^{+} - \{\chi^{0}\}} (1 - \chi(p)p^{-1}) = \prod_{\chi \in \mathbf{X}^{+} - \{\chi^{0}\}} L_{p}(1, \chi),$$

where R_p , d are the p-adic regulator and the discriminant of K^+ respectively. On the other hand, p-adic value of h_K^- is given by rewriting the analytic formula [3] for the relative class number of K/K^+ p-adically (Proposition 2, [9]; (26), (27), [10]), in the form

(11)
$$h_{K}^{-} \prod_{\gamma \in \mathfrak{X}^{-}} (1 - \chi(p)) = Q_{K} w_{K} 2^{-g} \prod_{\gamma \in \mathfrak{X}^{-}} L_{p}(0, \chi_{\omega}),$$

where Q_K is the unit-index of K/K^+ , w_K the number of roots of unity in K, and ω the Dirichlet character uniquely determined by $\omega(x) = \lim_{\rho \to \infty} x^{p^{\rho}}$ in Q_p for all p-adic units $x \in Z_p$ when $p \neq 2$ and $\omega(x) = \pm 1$ corresponding to that $x \equiv \pm 1 \pmod{4}$ when p = 2. This formula (11) can be regarded as the p-adic relative class number formula for K/K^+ .

In the following we assume that

(12)
$$\left\{ \begin{array}{ll} K \text{ contains a primitive } p\text{-th root of unity if } p \neq 2 \\ K \text{ contains a primitive 4-th root of unity if } p = 2 \end{array} \right\}.$$

This condition is equivalent to that \mathfrak{X} contains the character ω , in other words, the preceding decomposition of \mathfrak{X} into two cosets is expressed as $\mathfrak{X} = \mathfrak{X}^+ + \mathfrak{X}^+ \omega$. On the other hand, in this situation, the number w_K of roots of unity in K can be written as $w_K = p^{m+1}w_K'$, $m \ge 0$, $(w_K', p) = 1$ if $p \ne 2$ and $w_K = 2^{m+2}w_K'$, $m \ge 0$, $(w_K', 2) = 1$ if p = 2. Then, \mathfrak{X}^+ is an abelian group of order g of even characters with the cyclic subgroup of order p^m which consists of all characters of the second kind in \mathfrak{X}^+ .

Since

(13)
$$\prod_{\chi \in \mathfrak{X}^{-}} L_{p}(0, \chi \boldsymbol{\omega}) = \prod_{\chi \in \mathfrak{X}^{+}} L_{p}(0, \chi)$$

under the assumption (12), combining this fact with the formulas (10), (11) and Proposition 1, we have the following

THEOREM 1. If K contains a primitive p-th root of unity for $p \neq 2$, and we put $w_K = p^{m+1}w_K'$, $m \geq 0$, $(w_K', p) = 1$, then it holds that

$$(14) \qquad \frac{2h_{K}^{-}}{Q_{K}w_{K}'} \prod_{\chi \in \mathfrak{X}^{-}} (1 - \chi(p)) \equiv \frac{p^{m}R_{p}h_{K}^{+}}{\sqrt{d}} \prod_{\chi \in \mathfrak{X}^{+} - \{\chi^{0}\}} (1 - \chi(p)p^{-1}) \qquad (\text{mod } p),$$

where R_p and d mean the p-adic regulator and the discriminant of K^+ respectively.

For p=2, combining the relation (13) with (10), (11) and Proposition 2, we also obtain the following

THEOREM 2. If K contains a primitive 4-th root of unity, and we put $w_K = 2^{m+2}w_K'$, $m \ge 0$, $(w_K', 2) = 1$, then it holds that

$$(15) \qquad \frac{h_{K}^{-}}{Q_{K}w_{K}'} \prod_{\chi \in \mathfrak{X}^{-}} (1 - \chi(2)) \equiv \frac{2^{m}R_{2}h_{K}^{+}}{\sqrt{d}} \prod_{\chi \in \mathfrak{X}^{+} - (\chi^{0})} (1 - \chi(2)2^{-1}) \qquad (\text{mod } 2) ,$$

where R_2 and d are the 2-adic regulator and the discriminant of K^+ respectively, and in particular, if m=0 i.e., $w_K=4w_K'$, $(w_K',2)=1$, then the congruence (15) is valid for modulo 4.

REMARK. We can easily see, in the formula (14), that the quantity of the left hand side is a p-adic integer, since by the definition, Q_K , which is known to be always 1 or 2, and w'_K are p-adic units. Similarly, it follows that the left hand side in (15) is a 2-adic integer, because (15) is a congruence of 2-adic integers as we know in the proof of our Theorem 2.

Finally, we consider a special case where K is a cyclotomic field $k_0 = Q(\zeta_p)$ generated by a primitive p-th root of unity ζ_p over Q, and p > 3. Now let

 R_p , d and h_0^+ denote the p-adic regulator, the discriminant and the class number of the maximal real subfield k_0^+ of k_0 , and k_0^- the relative class number of k_0/k_0^+ respectively. Then, by Theorem 1 it immediately follows that

(16)
$$h_0^- \equiv \frac{R_p}{\sqrt{d}} h_0^+ \pmod{p}.$$

The p-adic regulator R_p for k_0^+ is the determinant of a matrix obtained by replacing the analytic logarithm of absolute values in regulator matrix of k_0^+ by the p-adic logarithm, which is defined over the multiplicative group Ω_p^\times of all invertible elements in Ω_p [4]. It is well-determined up to a factor ± 1 . For the field k_0^+ , we know that $\frac{R_p}{\sqrt{d}} \left(d = p^{m-1}, \ m = \frac{p-1}{2} \right)$ is a p-adic integer [4], hence the formula (16) yields the result (1) of Metsänkylä [7], [8]. Let L be the closure of k_0^+ in the topological field Ω_p and Δ^2 the local discriminant of L/Q_p . A simple computation of a p-adic unit $\frac{\Delta}{\sqrt{p}^{m-1}}$ with a suitable basis for L/Q_p gives the explicit expression (mod p) of the constant factor G in (1):

$$\frac{\pm \underline{J}}{\sqrt{p}^{m-1}} \equiv 2^{1-m} D^{-1} \prod_{k=1}^{m-1} (-(2k)!) \pmod{p},$$

where $D = \det(r^{2(i-1)k})$ $(i, k=1, \dots, m-1)$, r a primitive root modulo p.

§ 4. Application to quadratic fields.

In this section we shall apply Theorems 1, 2 to a relation of class numbers between real and imaginary quadratic fields.

1. Let q be a square-free integer $\neq 0$, ± 1 , ± 3 , and $K = Q(\sqrt{q}, \sqrt{-3q})$ and imaginary biquadratic field over Q containing cubic cyclotomic field $k_0 = Q(\sqrt{-3})$. In $Q(\sqrt{q})$ and $Q(\sqrt{-3q})$ let k denote the real one and k' the imaginary one, and k, k' be the class numbers of k, k' respectively. Since k_0 has the class number one, we have [3]

$$(17) h_K = \frac{1}{2} Q_K h h'.$$

Let ψ and ψ' be the generating characters belonging to quadratic fields k and k'. Since the imaginary biquadratic field K fulfils the condition (12) in §3 for p=3, we obtain by Theorem 1

THEOREM 1'. Let q be a square-free integer $\neq 0, \pm 1, \pm 3$. For the quadratic fields $Q(\sqrt{q})$ and $Q(\sqrt{-3q})$ we denote by h the class number of the real one and by h' the class number of the imaginary one. Then it holds that

(18)
$$\frac{h'}{2}(1-\phi'(3)) \equiv \frac{h \log \varepsilon}{\sqrt{d}}(1-\phi(3)3^{-1}) \pmod{3},$$

where d is the discriminant of k, the real one between $Q(\sqrt{q})$ and $Q(\sqrt{-3q})$, and $\varepsilon > 1$ the fundamental unit of k.

In the above assertion, the 3-adic regulator R_3 for the real quadratic field k is normalized so that $R_3 = \log \varepsilon$, $\varepsilon > 1$, where "log" means the 3-adic logarithm mentioned in the end of § 3. The character factors in (18) are given as follows.

If $d \equiv 0 \pmod{3}$,

(19)
$$1-\psi'(3) = \begin{cases} 2 & \text{if } \frac{d}{3} \equiv 1 \pmod{3}, \\ 0 & \text{if } \frac{d}{3} \equiv -1 \pmod{3}, \end{cases}$$

$$1-\psi(3)3^{-1} = 1,$$

and if $d \not\equiv 0 \pmod{3}$,

(20)
$$1-\psi'(3)=1, \qquad 1-\psi(3)3^{-1}=\begin{cases} \frac{2}{3} & \text{if } d\equiv 1 \pmod{3},\\ \frac{4}{3} & \text{if } d\equiv -1 \pmod{3}. \end{cases}$$

Hence, in order to reduce the relation (18) to the form containing the coefficients of the fundamental unit ε of k, it is sufficient to approximate the 3-adic number $\log \varepsilon$ for modulo 3 (or for modulo 9).

I. The case $d\equiv 0\pmod 3$. This corresponds to the case $k=Q(\sqrt{3q})$ and $k'=Q(\sqrt{-q})$, where q is a square-free integer >1 and (q,3)=1. Let $\varepsilon=T+U\sqrt{d}>1$ $(T,U\in Q)$ be a fundamental unit of $k=Q\sqrt{3q}$). Here the rational numbers T and U are regarded as 3-adic integers in Z_3 . In this case where the discriminant d contains the prime factor 3, it is easy to see that $3 \not\mid T$ and $N(\varepsilon)=T^2-U^2d=+1$.

If
$$\frac{d}{3} \equiv q \equiv 1 \pmod{3}$$
, we have

$$\log \varepsilon = \frac{1}{2} \log (T^2 + 2TU\sqrt{d} + U^2 d)$$

$$= \frac{1}{2} \log (1 + 2TU\sqrt{d} + 2U^2 d)$$

$$= \frac{1}{2} \left\{ 2TU\sqrt{d} + (2TU)^3 \frac{d}{3} \sqrt{d} \right\} \pmod{3}$$

$$= -TU\sqrt{d} \pmod{3}.$$

Since $T^2 \equiv 1 \pmod{3}$, we obtain from Theorem 1' and (19) that

$$(21) h' \equiv -\frac{U}{T}h \pmod{3}$$

to the case where $\frac{d}{3} \equiv q \equiv 1 \pmod{3}$. This concludes a well-known result of Ankeny-Artin-Chowla [1].

II. The case $d \not\equiv 0 \pmod 3$. This corresponds to the case $k = Q(\sqrt{q})$ and $k' = Q(\sqrt{-3q})$, where q is a square-free integer > 1 and (q,3) = 1. Let $\varepsilon = T + U\sqrt{d} > 1$ be a fundamental unit of $k = Q(\sqrt{q})$. If $d \equiv q \equiv 1 \pmod 3$, it occurs that $3 \not\mid T$, $3 \mid U$ or $3 \mid T$, $3 \not\mid U$ corresponding to that $N(\varepsilon) = +1$ or $N(\varepsilon) = -1$. Calculating $\log \varepsilon$ for modulo 9, we obtain in the same manner as in I

$$(22) h' \equiv \frac{1}{3} TUh \pmod{3}.$$

If $d\equiv q\equiv -1\pmod 3$ we put $\varepsilon^4=\overline T+\bar U\,\sqrt d$, where $\overline T$ and $\bar U$ are rational numbers, and $3\,|\,\bar U$. Then it follows that

(23)
$$h' \equiv -\frac{1}{3} \overline{T} \overline{U} h \pmod{3}.$$

2. Let q be a square-free integer > 3, and put $K = Q(\sqrt{-1}, \sqrt{q})$, $k_0 = Q(\sqrt{-1})$, $k = Q(\sqrt{q})$ and $k' = Q(\sqrt{-q})$. As in 1, we denote by h and h' the class numbers of real quadratic field k and imaginary quadratic field k' respectively. Since k_0 has the class number one, it follows [3] that

$$(24) h_K = \frac{1}{2} Q_K h h'.$$

Let ψ and ψ' be the generating characters belonging to k and k'. In the following we denote by "log" the 2-adic logarithm. Since the imaginary biquadratic fields K fulfils the condition (12) in § 3 for p=2, and since $w_K=4$ i. e., m=0, $w_K'=1$ in Theorem 2, we obtain

Theorem 2'. Let q be a square-free integer > 3, h and h' the class numbers of quadratic fields $Q(\sqrt{q})$ and $Q(\sqrt{-q})$ respectively. Then it holds that

(25)
$$\frac{h'}{2}(1-\psi'(2)) \equiv \frac{h\log\varepsilon}{\sqrt{d}} \left(1-\frac{\psi(2)}{2}\right) \pmod{4},$$

where d and $\varepsilon > 1$ are the discriminant and a fundamental unit of $Q(\sqrt{q})$. The character factors in (25) are given as follows.

$$(26) \quad 1 - \psi'(2) = \begin{cases} 1 & \text{if } q \equiv 1 \text{ or } 2 \pmod{4}, \\ 2 & \text{if } q \equiv 3 \pmod{8}, \end{cases} \quad 1 - \frac{\psi(2)}{2} = \begin{cases} 1 & \text{if } q \equiv 2 \text{ or } 3 \pmod{4}, \\ \frac{1}{2} & \text{if } q \equiv 1 \pmod{8}, \\ \frac{3}{2} & \text{if } q \equiv 5 \pmod{8}. \end{cases}$$

We notice that (25) is a congruence of rational 2-adic integers. So we can immediately conclude from (25), (26) that the class number of an im-

aginary quadratic field $Q(\sqrt{-q})$ is even, if q is a square-free integer >3 and $q \not\equiv -1 \pmod{4}$.

Considering the 2-adic value $\log \varepsilon$ for modulo 8, we have the following various consequences.

I. The case $q\equiv 1\pmod 8$. It is easy to see that ε can be written in the form $\varepsilon=t+u\sqrt{q}$ where t and u are rational integers and necessarily $2\not\mid t$, $4\mid u$ or $4\mid t$, $2\not\mid u$. As the former corresponds to that $N(\varepsilon)=+1$ and the latter corresponds to that $N(\varepsilon)=-1$, we have

$$\log \varepsilon = \frac{1}{2} \log (t^2 + 2tu \sqrt{q} + u^2 q)$$

$$\equiv \frac{1}{2} \log (1 + 2tu \sqrt{q}) \pmod{8}$$

$$\equiv tu \sqrt{q} \pmod{8}.$$

Hence we obtain from (25), (26)

(27)
$$\frac{1}{2}h' \equiv \frac{1}{2}tuh \pmod{4}.$$

In particular, $h \equiv 0 \pmod{2^{\rho}}$ implies $h' \equiv 0 \pmod{2^{\rho+2}}$ for $\rho = 0, 1$.

II. The case $q \equiv 5 \pmod 8$. We put $\varepsilon^3 = \overline{t} + \overline{u} \sqrt{q}$. Then \overline{t} and \overline{u} are rational integers and $2 \not\mid \overline{t}$, $4 \mid \overline{u}$ or $2 \mid\mid \overline{t}$, $2 \not\mid \overline{u}$, corresponding to that $N(\varepsilon) = +1$ or -1. Hence it follows that if $N(\varepsilon) = +1$,

$$\log \varepsilon = \frac{1}{6} \log \left(\bar{t}^2 + 2\bar{t}\,\bar{u}\,\sqrt{q} + \bar{u}^2 q \right)$$

$$\equiv \frac{1}{6} \log \left(1 + 2\bar{t}\,\bar{u}\,\sqrt{q} \right) \equiv \frac{1}{3}\,\bar{t}\,\bar{u}\,\sqrt{q} \quad (\text{mod } 8) ,$$

and if $N(\varepsilon) = -1$.

$$\begin{split} \log \, \varepsilon &= \frac{1}{6} \log \, (\bar{t}^{\,2} + 2\bar{t}\,\bar{u}\,\sqrt{q} + \bar{u}^{\,2}q) = \frac{1}{6} \log \, (1 + 2\bar{t}\,\bar{u}\,\sqrt{q} + 2\bar{t}^{\,2}) \\ &\equiv \frac{1}{6} \{ 2\bar{t}\,\bar{u}\,\sqrt{q} + 2\bar{t}^{\,2} - 2(\bar{t}\,\bar{u}\,\sqrt{q} + \bar{t}^{\,2})^2 \} \qquad (\text{mod } 8) \\ &\equiv \frac{1}{3} (\bar{t}\,\bar{u}\,\sqrt{q} + \bar{t}^{\,2} - \bar{t}^{\,2}\bar{u}^{\,2}q) \equiv \frac{1}{3}\,\bar{t}\,\bar{u}\,\sqrt{q} \qquad (\text{mod } 8) \; . \end{split}$$

Therefore we obtain from (25), (26)

(28)
$$\frac{1}{2}h' \equiv \frac{1}{2}\bar{t}\bar{u}h \pmod{4}.$$

In particular, if $N(\varepsilon) = +1$, $h \equiv 0 \pmod{2^{\rho}}$ implies $h' \equiv 0 \pmod{2^{\rho+2}}$ for $\rho = 0, 1$, and if $N(\varepsilon) = -1$, $h \equiv 0 \pmod{2^{\rho}}$ implies $h' \equiv 0 \pmod{2^{\rho+1}}$ for $\rho = 0, 1, 2$.

III. The case $q \equiv 2 \pmod{4}$. The number ε is written as $\varepsilon = t + u \sqrt{q}$ where

t and u are rational integers. Then t is always odd, and u is even or odd corresponding to that $N(\varepsilon) = +1$ or -1.

If $N(\varepsilon)=+1$, we obtain $\frac{1}{2}h'\equiv \frac{1}{2}tuh\pmod 4$ in the same manner as in the case I of 2. On the other hand if $N(\varepsilon)=-1$, we put $\varepsilon^2=\bar t+\bar u\sqrt q$. Then $\bar t$ and $\bar u$ are rational integers and $2\|\bar u$. Hence

$$\log \varepsilon = \frac{1}{4} \log (\bar{t}^2 + 2\bar{t}\,\bar{u}\,\sqrt{q} + \bar{u}^2q) = \frac{1}{4} \log (1 + 2\bar{t}\,\bar{u}\,\sqrt{q} + 2\bar{u}^2q)$$

$$\equiv \frac{1}{4} \{ 2\bar{t}\,\bar{u}\,\sqrt{q} + 2\bar{u}^2q - 2(\bar{t}\,\bar{u}\,\sqrt{q} + \bar{u}^2q)^2 \} \pmod{8}$$

$$\equiv \frac{1}{2} \bar{t}\,\bar{u}\,\sqrt{q} \equiv tu(1+q)\,\sqrt{q} \pmod{8},$$

and we have

$$\frac{\log \varepsilon}{\sqrt{d}} \equiv \frac{1}{2} t u (1+q) \pmod{4\sqrt{q}^{-1}}.$$

Since $\frac{\log \varepsilon}{\sqrt{d}}$ is a rational 2-adic number, it follows from (25), (26) that

$$\frac{1}{2}h' \equiv \frac{1}{2}tu(1+q)h \pmod{4}.$$

Now the right hand side of the above congruence is a 2-adic integer, so in this case where $q \equiv 2 \pmod{4}$, q > 3 and $N(\varepsilon) = -1$, we see that the class number h of $Q(\sqrt{q})$ must be even. Therefore we obtain

(29)
$$\frac{1}{2}h' \equiv \pm \frac{1}{2}tuh \pmod{4}.$$

Here the factor ± 1 is corresponding to that $N(\varepsilon) = \pm 1$. In particular, if $N(\varepsilon) = +1$, $h \equiv 0 \pmod{2^{\rho}}$ implies $h' \equiv 0 \pmod{2^{\rho+1}}$ for $\rho = 0$, 1, 2. On the other hand if $N(\varepsilon) = -1$, $2^{\rho} \| h$ is equivalent to $2^{\rho} \| h'$ for $\rho = 1$, 2, and in this case, h is even as well as h'.

IV. The case $q \equiv 3 \pmod 8$. We put $\varepsilon = t + u \sqrt{q}$ with rational integers t and u. Then $2 \parallel t$, $2 \nmid u$ or $2 \nmid t$, $4 \mid u$ and in this case we know that always $N(\varepsilon) = +1$. So we have

$$\log \varepsilon = \frac{1}{2} \log (t^2 + 2tu \sqrt{q} + u^2 q) = \frac{1}{2} \log (1 - 2tu \sqrt{q} - 2t^2)$$

$$\equiv -\frac{1}{2} \{ 2tu \sqrt{q} + 2t^2 + 2(tu \sqrt{q} + t^2)^2 \} \pmod{8}$$

$$\equiv -tu \sqrt{q} \pmod{8}$$

for $2 \| t$, $2 \ u$. And for $2 \ t$, 4 | u, we have $\log \varepsilon \equiv tu \sqrt{q} \equiv -tu \sqrt{q} \pmod 8$ too. Hence it follows from (25), (26) that

(30)
$$h' \equiv -\frac{1}{2}tuh \pmod{4}.$$

In particular, if $4|u, h \equiv 0 \pmod{2^{\rho}}$ implies $h' \equiv 0 \pmod{2^{\rho+1}}$ for $\rho = 0$, 1, namely we see that h' is even. On the contrary, if $2 \nmid u$, h' is even if and only if h is even.

V. The case $q \equiv 7 \pmod 8$. We put $\varepsilon = t + u \sqrt{q}$ with rational integers t and u. Then $4 \mid t$, $2 \nmid u$ or $2 \nmid t$, $4 \mid u$, and in this case, we know that always $N(\varepsilon) = +1$. Hence it follows that

$$\log \varepsilon = \frac{1}{2} \log (t^2 + 2tu \sqrt{q} + u^2 q)$$

$$\equiv \frac{1}{2} \log (1 \pm 2tu \sqrt{q}) \equiv tu \sqrt{q} \pmod{8}.$$

Then we have from (25), (26), for the class number h of $Q(\sqrt{q})$,

$$(31) tuh \equiv 0 \pmod{8}.$$

References

- [1] N.C. Ankeny, E. Artin and S. Chowla, The class-number of real quadratic number fields, Ann. of Math., 56 (1952), 479-493.
- [2] J. Fresnel, Nombres de Bernoulli et fonctions L p-adiques, Ann. Inst. Fourier, 17 (2) (1967), 281-333.
- [3] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Berlin, 1952.
- [4] K. Iwasawa, Lectures on p-adic L-functions, Princeton Univ., 1972.
- [5] T. Kubota and H. W. Leopoldt, Eine p-adische Theorie der Zetawerte, I, J. Reine Angew. Math., 214/215 (1964), 328-339.
- [6] H.W. Leopoldt, Zur Arithmetik in abelschen Zahlkörpern, J. Reine Angew. Math., 206 (1962), 54-71.
- [7] T. Metsänkylä, A congruence for the class number of a cyclic field, Ann. Acad, Sci. Fenn. Ser. A I, 472 (1970), 1-11.
- [8] T. Metsänkylä, A class number congruence for cyclotomic fields and their subfields, Acta Arith., 23 (1973), 107-116.
- [9] K. Shiratani, A generalization of Vandiver's congruence, Mem. Fac. Sci. Kyushu Univ., 25 (1971), 144-151.
- [10] K. Shiratani, Kummer's congruence for generalized Bernoulli numbers and its application, Mem. Fac. Sci. Kyushu Univ., 26 (1972), 119-138.

Aichi Kudo

Department of Mathematics Faculty of Science Kyushu University Hakozaki-cho, Fukuoka Japan