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§1. Introduction.

Let %, be the cyclotomic field Q({,) generated by a primitive p-th root
of unity {, over the rationals Q, where p is a prime number >3. Let &f be
the maximal real subfield of 4, Recently, Metsdnkyld [7], gave a rela-
tion between the class number At of kf and the relative class number h; of
ky/k§ in the form

(1) hi =Ghi  (modp),

where G is an explicitly given integer.

In this paper we shall generalize this relation (1) to the class number
factors hx and hf of certain imaginary abelian number field K over @ (Theo-
rems 1, 2, §3), by means of continuity of p-adic L-functions [4], and the
p-adic formulas for 2% [6] and Az For this purpose, we use some results
connected with p-adic L-functions which are derived by Fresnel and
simplified by Shiratani [10].

Denote by ¢ a square-free integer >1 and by d =3¢ the discriminant of
a real quadratic number field. Consider the real field Q(4/3¢) and the im-
aginary field Q(~/—¢). As an application of our Theorems 1, 2, we shall
obtain a classical result ((21), §4) of Ankeny-Artin-Chowla [1], which states
a congruence relation modulo 3 between the class numbers of Q(+/3¢) and
Q(~V—¢q) for ¢g=1 (mod 3). Furthermore in §4 we shall give some similar
results other than (21).

§2. Relations between L,(0, X) and L,(1, X).

Let p be an arbitrarily fixed prime number, Q, the field of rational p-adic
numbers and Z, the ring of rational p-adic integers. Let X be an even
Dirichlet character and L,(s, X) the p-adic L-function for X. The function
Ly(s, X) is a continuous function of s Z, (s#1), and if X is not the principal
character, then L,(s, X) is continuous at s=1 [4], [5]. A Dirichlet character
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X is called a character of the second kind (with respect to p) if it is an even
character whose conductor f5 and order ny are both some powers of p. We
may suppose that the values of Dirichlet character X are contained in an
algebraic closure £, of Q,, and we set X(x)=0 if x is not prime to the con-
ductor fy.

Now let X be a finite abelian group of order g of even Dirichlet charac-
ters, p™ the number of characters of the second kind in ¥, (m=0), and X°
the principal character. Then we have the following Propositions 1, 2.

PrROPOSITION 1. For p+2, we have the congruence of rational p-adic
integers:

2) PPILL,0, X)=p™ TI L,(1,%)  (modp).
1EX xEX—{x0
Proor. Let X, denote the cyclic group of order p™ consisting of all

characters of the second kind in ¥. By the definition of p-adic L-functions
[2], [10] and Theorems 1, 2, 3, 4, 5 of [10], it holds that

(3) L0, X0)=L,1,7) (modp) for Xe¥, XX,
(4) L0, )=L,(1, %) (modp(1—X(1+p)2  for XX, L+1°,
(5) pL,(0,X)=1 (modp) for X=2X".

By Theorem 5 of [10], we know that L,(0, X), X ¥, is not an integer in Q,(X)
only if X=¥%,, and for every Xe¥,, X#X° (1—X(1+2))L,(0, X) is an integer
in Q,(X).

Since I (1A—Xx({1+p))=p™ it follows from (4) that

1E¥1— {30}

I DO =P T L0 (mod p1—5)™).

1E¥1—{x0}

Here {, means a primitive p-th root of unity in £,. This congruence holds

for modulo p since both sides are rational p-adic numbers. Therefore we

immediately have the congruence with which we are concerned.
PROPOSITION 2. For p=2, we have the congruence of rational 2-adic integers:

(6) 2m-8+2 T L,(0, X)=2m"4*1 TI L,1,X) (mod 2).
YEX rEX—{39}
Furthermore, if X contains no character of the second kind except for X°, then
the congruence (6) holds for modulo 4.
PRrROOF. Let X, be the cyclic group of order 2™ consisting of all characters

of the second kind in X as in the proof of Proposition 1. In this case where
p=2, we obtain [2], [10] that

@) L0, X)=Ly(1, X) (mod 2% for X=X, XX, ,
(8) L0, 1)=Ly(1, %) (mod 22(1—X(B))?)  for X=X, X=X°,
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9) L0, 1) = %— (mod2)  for 1=1°,

where —12-—L2(0, X) for XX, XX, and -1;726—(—5)—142(0, X) for X%, X+X° are

integers in Q,(X).
Since  II (@1—X())=2™ it follows from (8) that
Te¥—{x0)

et 1 L0, 1)=20"0 T Lo(1,%)  (mod2).

1 EX1—{x0 x=X1—{x0%
On the other hand, it follows from (7) and (9) that
2m-g TT L0, X)=2"""¢ TI L,1,2X) (mod 4)
1EX—¥ 1=¥-%1

and
2L,00, 2 =1 (mod 4).

Therefore we obtain the desired congruence.

§ 3. Relation between A; and hj.

In this section we shall prove our main theorems. Let K be an imaginary
abelian number field of degree 2g over Q and ¥ the character group of K.
Then ¥ is understood as an abelian group of Dirichlet characters in ordinary
way. By X*, X~ we denote the two cosets of even and odd characters in X
respectively. The class number hx of K can be written in the form hx=
hzh where hit is the class number of the maximal real subfield K* of K,
and hx is the relative class number of K/K™.

The value of A% as a p-adic integer is given by the Leopoldt’s p-adic
class number formula [4], [6] of real abelian number field K* in the form

257'hiER
10 KL 1-% = L,(1, X
10) e I A== I 10,7,

where R,, d are the p-adic regulator and the discriminant of K* respectively.
On the other hand, p-adic value of Az is given by rewriting the analytic

formula for the relative class number of K/K* p-adically
[9]; [26), (27), [10]), in the form

(11) hkxgﬁ(l—x@)) = QKwKZ’gﬁI%IA Ly0, Xo),

where Qx is the unit-index of K/K™*, wg the number of roots of unity in K,

and @ the Dirichlet character uniquely determined by w(x)=1lim x?” in Q, for
poo

all p-adic units x= Z, when p+2 and w(x)= =1 corresponding to that x=+1

(mod4) when p=2. This formula can be regarded as the p-adic relative

class number formula for K/K*.
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In the following we assume that

12 K contains a primitive p-th root of unity if p+#2
K contains a primitive 4-th root of unity if p=2 '

This condition is equivalent to that X contains the character o, in other
words, the preceding decomposition of ¥ into two cosets is expressed as
X=%¥"+X'w. On the other hand, in this situation, the number wy of roots
of unity in K can be written as wx=p""wk, m=0, (wk, p)=1 if p#2 and
Wy =2""wk, m=0, (wk, 2)=1 if p=2. Then, X" is an abelian group of order
g of even characters with the cyclic subgroup of order p™ which consists

of all characters of the second kind in ¥*.
Since

(13) 1L L,(0, Zo)= 11 L,(0, 7)
rEX LEXT

under the assumption [12), combining this fact with the formulas [10),
and [Proposition I, we have the following
THEOREM 1. If K contains a primitive p-th root of unity for p+2, and we
put wr=7p" " wy, m=0, (Wk, p)=1, then it holds that
e Q-2 =L200 11 -uep) (mod p),
b

4
QWi 1EX™ L IET {40

(14)

where R, and d mean the p-adic regulator and the discriminant of K* respec-
tively.

For p=2, combining the relation with [10, and
we also obtain the following

THEOREM 2. If K contains a primitive 4-th root of unity, and we put
Wg=2""wy, m=0, (wk, 2)=1, then it holds that
15 gl ma-r)=ERE 1 -2 (mod?),
where R, and d are the 2-adic regulator and the discriminant of KT respectively,
and in particular, if m=0 i.e., wy=4wy, (Wk, 2)=1, then the congruence (15)
is valid for modulo 4.

REMARK. We can easily see, in the formula (14), that the quantity of
the left hand side is a p-adic integer, since by the definition, @, which is
known to be always 1 or 2, and wk are p-adic units. Similarly, it follows
that the left hand side in (15) is a 2-adic integer, because (15) is a congruence
of 2-adic integers as we know in the proof of our

Finally, we consider a special case where K is a cyclotomic field £,=Q({,)
generated by a primitive p-th root of unity {, over @, and p>3. Now let
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Ry, d and hf denote the p-adic regulator, the discriminant and the class
number of the maximal real subfield 2§ of &,, and hy the relative class num-
ber of k,/ki respectively. Then, by it immediately follows that

_ _Ro .
(16) hy = i hg (mod p).

The p-adic regulator R, for ki is the determinant of a matrix obtained
by replacing the analytic logarithm of absolute values in regulator matrix
of kf by the p-adic logarithm, which is defined over the multiplicative group
25 of all invertible elements in £, [4]. It is well-determined up to a factor

+ Ry __ pm-1 _ p—1 . ad:
+1. For the field kf, we know that i (d_p ym=— ) is a p-adic

integer [4], hence the formula yields the result (1) of Metsdnkyld [7],
[8] Let L be the closure of ki in the topological field £, and 4® the local

discriminant of L/Q,. A simple computation of a p-adic unit 7}%71 with

a suitable basis for L/Q, gives the explicit expression (mod p) of the con-
stant factor G in (1):

4 oimp T
Vpmi =2 D IT(—(2k)Y)  (modp),

where D=det (r*¢~v*% (i, k=1, ---, m—1), r a primitive root modulo p.

§4. Application to quadratic fields.

In this section we shall apply Theorems 1, 2 to a relation of class num-
bers between real and imaginary quadratic fields.

1. Let ¢ be a square-free integer #0, +1, +3, and K=Q(+/q, +v—3¢) an
imaginary biquadratic field over @ containing cubic cyclotomic field k=
Q(+v=3). In Q(+4q) and Q(~—3q) let & denote the real one and #’ the im-
aginary one, and A, &’ be the class numbers of &, k&’ respectively. Since &,
has the class number one, we have [3]

17) = %—QKhh’ .

Let ¢ and ¢’ be the generating characters belonging to quadratic fields
k and k’. Since the imaginary biquadratic field K fulfils the condition (12)
in §3 for p=3, we obtain by Theorem 1

THEOREM 1’. Let q be a square-free integer +0, =1, 3. For the quadratic
fields Q(~/q) and Q(~/'—3q) we denote by h the class number of the real one and
by h’ the class number of the imaginary one. Then it holds that
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(18) - =18 g3z (moa3),
where d is the discriminant of k, the real one between Q(~/q) and Q(~/—39),
and €>1 the fundamental unit of k.

In the above assertion, the 3-adic regulator R, for the real quadratic
field & is normalized so that R;=loge, ¢>1, where “log” means the 3-adic
logarithm mentioned in the end of §3. The character factors in are
given as follows.

If d=0 (mod 3),

2 if ~§—zl (mod 3),
(19) 1—/(3) = 1—g(3)37 =1,
0 if %5—1 (mod 3) ,
and if d=0 (mod 3),
J% if d=1 (mod3),
(20) 1—¢/@)=1, 1-¢B3)3"=

—§~ if d=—1 (mod3).

Hence, in order to reduce the relation to the form containing the co-
efficients of the fundamental unit ¢ of k%, it is sufficient to approximate the
3-adic number loge for modulo 3 (or for modulo 9).

I. The case d=0 (mod3). This corresponds to the case k=Q(+/3¢) and
k'=Q(~/—q), where ¢ is a square-free integer >1 and (g,3)=1. Let e=
T+U~d>1 (T, U< Q) be a fundamental unit of k=Q +/3¢). Here the rational
numbers T and U are regarded as 3-adic integers in Z,. In this case where
the discriminant d contains the prime factor 3, it is easy to see that 3/ T
and N(e)=T*—-U?%d=+1.

If —g— =g=1 (mod 3), we have

log e=—+log (T*4-2TU A/d+U%)

log (14+2TU ~/d+2U%d)

(eTUva+@rUy-&-vd}  (mod3)

=—-TU~d (mod3).
Since T*=1 (mod 3), we obtain from [Theorem 1’ and that

1) = —TU—h (mod 3)
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to the case where —g— =¢g=1 (mod3). This concludes a well-known result of

Ankeny-Artin-Chowla [L].

II. The case d#0 (mod3). This corresponds to the case k=Q(+/q) and
B =Q(+/—3q¢), where ¢ is a square-free integer >1 and (¢,3)=1. Let e=
T+U~/d>1 be a fundamental unit of 2=Q(~/q). If d=¢=1 (mod3), it
occurs that 3/ 7T, 3|/U or 3|T, 3/ U corresponding to that N(¢)=-+1 or N(¢)
= —1. Calculating log ¢ for modulo 9, we obtain in the same manner as in [

(22) W= é-TUh (mod 3).

If d=¢q=—1 (mod3) we put e¢=T+U+/d, where T and U are rational
numbers, and 3{U. Then it follows that

(23) h = ——}_f TOh (mod 3).

2. Let ¢ be a square-free integer >3, and put K=Q(~—1, vq), k=
Q(v=1), k=Q(+/q) and #’=Q(~—¢q). As in 1, we denote by & and »’ the
class numbers of real quadratic field 2 and imaginary quadratic field %’
respectively. Since k, has the class number one, it follows that

(24) hy= -~§~QKhhf .

Let ¢ and ¢’ be the generating characters belonging to k2 and k. In
the following we denote by “log” the 2-adic logarithm. Since the imaginary
biquadratic fields K fulfils the conditionin § 3 for p=2, and since wx=4
i.e., m=0, wk=1 in we obtain

THEOREM 2'. Let g be a square-free integer >3, h and h’ the class numbers
of quadratic fields Q(~/q) and Q(~'—q) respectively. Then it holds that

25) Ba-gen="L182 (1- D) (moa s,

where d and ¢>1 are the discriminant and a fundamental unit of Q(~/q).
The character factors in (25) are given as follows.

[1 if ¢g=1or 2 (mod4), [1 if ¢=2 or 3 (mod 4),
. h(2 i I
(26) 1_9/)/(2): 2 if (]53 (mod 8), 1__5_)(7>__: 7 if C]El (mod 8),
0 if ¢=7 (mod8), S it g=5 (mod8).

We notice that (25) is a congruence of rational 2-adic integers. So we
can immediately conclude from (25), that the class number of an im-
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aginary quadratic field Q(+~/—¢) is even, if ¢ is a square-free integer >3 and
g% —1 (mod 4).

Considering the 2-adic value loge for modulo 8 we have the following
various consequences.

I. The case ¢=1 (mod8). It is easy to see that ¢ can be written in the
form e={+u+/q where t and u are rational integers and necessarily 2/ ¢,
4|u or 4|t, 2fu. As the former corresponds to that N(¢)=-+1 and the latter
corresponds to that N(e)=—1, we have

loge= —%— log (12 +2tu v/q+u’q)

= - log(1-2uv7)  (mod8)

=tu+q (mod8).
Hence we obtain from (25),

27) i B E%tuh (mod 4) .

In particular, A=0 (mod 2°) implies A’ =0 (mod 2°**) for p=0, 1.

[I. The case g=5 (mod8). We put ¢’=F-+#+/q. Thenf and # are rational
integers and 2 /%, 4|@ or 2|7, 2} @, corresponding to that N(g)=41 or —1.
Hence it follows that if N(¢)=+1,

log e:% log (F*-+2fit V/q+1%q)

=+ log (1+2favi)=—+Tavq (mod8),

and if N(e)=—1,

log e = —log (F*-+2fi \/c?+ft?q):%log (1+2f@ v/q+2F%)

(2Fi /g 202 —2(F it V/q--T%)} (mod 8)

(Fa~/g+T—Ttg) = —5-Tav/q  (mod8).

Il

i

Therefore we obtain from (25),

(28) —%«h/ - %;fml (mod 4) .

In particular, if N(¢)=+1, A=0 (mod 2°) implies 2’ =0 (mod 2°*?) for p=0, 1,
and if N(e)=—1, h=0 (mod 2) implies A’ =0 (mod 2°*") for p=0, 1, 2.
III. The case =2 (mod4). The number ¢ is written as e =!-+u+/g where
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t and u are rational integers. Then ¢ is always odd, and u# is even or odd
corresponding to that N(¢)=+1 or —1.

If N(¢)=+1, we obtain %h’z%z‘uh (mod 4) in the same manner as in
the case I of 2. On the other hand if N(¢)=—1, we put e=f+#+/g. Then
f and # are rational integers and 2||#. Hence

loge= % log (F>+2fit /q-+i2q) = % log (14-2Fit A/q+2i%q)
= —}1—{21% Viromq—20aNg+7%g)?}  (mod 8)
=l favi=tn(+9v  (mod8),
and we have
loge

doge —:‘—%~tu(l+q) (mod 4+ ™).

Since 12%5 is a rational 2-adic number, it follows from (25), that

b= tu(l+g)h  (mod4).
Now the right hand side of the above congruence is a 2-adic integer, so in
this case where ¢=2 (mod4), ¢>3 and N(¢)=-—1, we see that the class
number 2 of Q(+/q) must be even. Therefore we obtain
(29) SW=x-Ltuh  (mod4).
Here the factor +1 is corresponding to that N(¢)==1. In particular, if
N()=41, h=0 (mod 2°) implies »' =0 (mod 2°**) for p=0,1,2. On the other
hand if N(e)=—1, 2°||h is equivalent to 2°||2’ for p=1, 2, and in this case,
h is even as well as A’

IV. The case ¢=3 (mod 8). We put e=f{+u+/qg with rational integers ¢

and . Then 2||t, 2/ u or 2/t 4]u and in this case we know that always
N()=+1. So we have

loge= —%log (24 2tu vV/q+u?q) = —%— log (1—2tu +/q—21%

= —%{Ztu V2L 2Atu T2 (mod 8)

=—tu/qg (mod8)

for 2||t, 2/ u. And for 2/}, 4|u, we have log e =tuvq =— tuv/q (mod8) too.
Hence it follows from (25), that
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(30) = ———%—tuh (mod 4).

In particular, if 4|4, h=0 (mod 2°) implies »’ =0 (mod 2°**) for p=0, 1, namely
we see that A’ is even. On the contrary, if 2} u, /' is even if and only if
h is even.

V. The case ¢=7 (mod 8). We put e=t+u+/g with rational integers ¢
and u. Then 4|¢, 2/ u or 2}t 4|u, and in this case, we know that always
N(e)=+1. Hence it follows that

loge= —]é— log (£2+2tu v/q-+u?q)

E%log (1+2tu~/g)=tu~q  (mod8).

Then we have from (25), [26), for the class number h of Q(+/q),
31 tuh=0 (mod 8).
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