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This paper is the second part of a study of deformations of holomorphic
maps. In the first part [4], which will be referred to as Part I, we have
proved two fundamental theorems on deformations of non-degenerate holo-
morphic maps. In §4, we shall generalize these two theorems to the case
in which the holomorphic maps in consideration are not necessarily non-
degenerate.

In §§5, 6, we shall study deformations of holomorphic maps in the sense
iii) in the introduction of Part I. Namely, we fix a family ¢:Y—S of de-
formations of complex manifolds, and study deformations of holomorphic
maps into the family ¢: Y—S. We shall prove two fundamental theorems
and a theorem of stability.

Finally in §7, we shall study deformations of compositions of holomorphic
maps.

Some of the results were announced in [2] and [3].

An application was reported in [3]. Details will appear in [5].

We shall employ the notation of Part I

§4. Deformations of holomorphic maps (general case).

Let Y be a complex manifold. A family (¥, @, p, M) of holomorphic maps
into Y consists of a family p: X— M of compact complex manifolds and a
holomorphic map @ : X¥— Y XM such that pr,o®@=p, where pr, denotes the
projection onto the second factor (see Definition 1.1, in §1, Part I). Let 0
be a point on M, X=X, and let f=@,: X—Y be the holomorphic map
induced by @. Letting @y and Oy denote the sheaf of germs of holomorphic
vector fields on X and Y, respectively, we have a canonical homomorphism
F:0x— f*Oy.

Let U={U,} be a finite Stein covering of X. For any sheaf & on X,
we let ', F) and 24U, F) denote, respectively, the group of ¢-cochains
and the group of ¢-cocycles with coefficients in & with respect to the
covering 1. We define the coboundary map ¢:C'W|, F)— "', F) as usual
(see [1], II. 5.1, for example).
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DEFINITION 4.1. We set
Doy — {(z, p) eC°(W, f*O,) X Z' U, Oy) : 07 = Fp}
x {(Fg,08):g€C(ll, Oy)} ’

LEMMA 4.2. (1) Dy,y does not depend on the choice of the Stein covering.
(2) Dy is a finite dimensional vector space.
(3) We have two exact sequences:

F F
41) H(X, O@z) —> H(X, f¥Oy) —> Dy —> H'(X, O@x) —> HY(X, f*Oy),
(4-2> 0—> HI(X, @X/Y) —> Dyy —> HO(X, gX/Y) I HZ(X, @X/Y) ’

where O y,y denotes the sheaf of germs of relative vector fields on X over Y
and Ty denotes the cokernel of F: O y— f*Oy.

Proor. We define a homomorphism Dy,»— H'(X, O) by sending the
class of (z, p) in Dy, into the cohomology class of p. Similarly, we define
a homomorphism H%(X, f*@y)— Dx,» by sending 7€ H(X, f*0y) = 2'1l, f*Oy)
into the class of (z, 0). We can easily check that the sequence (4.1) is exact.

By the five lemma, it follows that Dy, does not depend on the choice
of the Stein covering. The second assertion also follows from the exact
sequence (4.1).

It remains to define the exact sequence (4.2). First note that we have
an exact sequence

J F P
0 Oxv Oy Oy —> T yy —> 0.

With any ¢ € 2'A1, O4,r) we associate the class of (0, J¢) in Dyy. This
defines the first homomorphism.

For any element of Dy, we take a representative (z, p), 7= {z;}. Then
the collection {Pr;} represents an element of H(X, Ix/;y). This correspond-
ence defines the second homomorphism.

Finally, any element of H°(X, T /y) is represented by =< C°(1l, f*Oy) such
that dz=Fp with some peC'(,Of). Since we have F(dp)=0(07)=0, dp
can be considered as a 2-cocycle with coefficients in @4,». This defines the
third homomorphism.

It is easy to check that (4.2) is exact. Q.E.D.

COROLLARY. (1) If f is non-degenerate, we have Dy, = HY X, T x/v).

(2) If f is smooth, we have Dyxy = H X, Ox/y).

Now we shall define a characteristic map 7: To(M)— Dy,y, where To(M)
denotes the tangent space of M at 0. Restricting M to a neighborhood of 0
if necessary, we may assume the following :

i) M is an open set in C" with coordinates t=(¢,, -, t,) and 0=(0, ---, 0)
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ii) X is covered by a finite number of Stein coordinate neighborhoods
U,. Each U, is covered by a system of coordinates (z;, t)=(z}, -+, 2%, t;, =, t.)
such that p(z;, t)=*.

iii) @(V;) is contained in some coordinate neighborhood V;xM. Each
V., is covered by a system of coordinates w,=(w}, ---, wP).

iv) @ is given by w,=0,(z, t).

v) (z, )€ U, coincides with (z;, ) €U, if and only if z;=¢;;(z; t).

vi) w;€V,; coincides with w; =V, if and only if w;=¢;;(w,).
Then we have

4.3 @z‘(qju(Z]‘, D, )= Sbij(@j(zja 1),
(4.4 ¢ij(¢jk(2k, D, )==¢ulz 1).

We let U;=XN\U; and let 1 denote the covering {U;} of X. For any
element %ETO(M), let

00# 0
Ti:%:‘a@t_"tzomer(lji,f*@ﬂ,
(4.5)
00% 0
Pij:%“g}]‘ o 027 e '(Uy;, Ox) .

From the equalities and (4.4), we infer that
Tj_Ti:Fpijv on U'L],
pjk_pik+pij:0 , on U'ijk .

Hence the pair of z={z;} €C'(Wl, f*Oy) and p={p;;} € Z'W, Oy) represents
an element of Dy». Thus we define a linear map z:T(M)—Dyxyp. 7 is
independent of the choice of the systems of coordinates. We shall call = the
characteristic map of the family at 0.

THEOREM 4.3. Let (X,®, p, M) be a family of holomorphic maps into Y,
0eM, X=X, and f=@,: X—Y. If the characteristic map 7:Ty(M)—Dyxy
s surjective, then the family is complete at 0. (See Definition 1.2 in Part I.)

THEOREM 4.4. Let f: X—Y be a holomorphic map of a compact complex
manifold X into a complex manifold Y. Assume that the canonical homo-
morphism F: 0O x— [*Oy satisfies the following conditions:

i) F:H'X, Oy)— HYX, f*Oy) is surjective,

i) F: H*X, Ox)— H*X, f*Oy) is injective.

Then there exist a family (X,®,p, M) of holomorphic maps into Y and a
point 0 M such that

1) X=p0) and @,: X—Y coincides with f: X—-Y,

2) t:Ty(M)—>Dyy is bijective.
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REMARK. [Theorem 4.3 and [Theorem 4.4 are generalizations of Theorem
2.1 and Theorem 3.1 in Part [, respectively. Moreover is an
improvement of Theorem 2’ which was stated in [2]. In fact, the vanishing
of HY(X, I x/v) and H* X, O,y) implies two conditions i) and ii) in

Proof of is similar to that of Theorem 2.1 in Part I. In fact,
it suffices to modify Lemma 2.2 as follows. Let (f,-,t,) be a system of
coordinates on M with center at 0. Using the previous notation, z(d/0t;) is
represented by a pair ({7}, {ox;}) € C'A, f*Oy) X Z'(11, Oy), where 7,; and pz;
are defined by (4.5) with the aid of 0/0t;, By hypothesis, the classes of
Uz}, {oa}), A=1,--,r, generate Dyy. In view of the equalities (2.7), (2.8),
(2.9) and (2.10), we replace Lemma 2.2 by the following trivial lemma :

LEMMA 4.5. Suppose that y={y;} €C°N, [*Oy) and ['={I";;} € 2’1, O)
satisfying oy=FI" are given. Then we can find t=(t;)=C” and g=1{g;}
C'W, O ) such that

Fij:gj—gri—;l‘;.pm, on Uy,
ri=Fgi+32 b, on U;.

Since the other part of the proof of Theorem 2.1 can be applied without
change, proves

Similarly, we can prove [Theorem 414 by a little modification of the proof
of Theorem 3.1 in Part I concerning the following two points:

1) Determination of the linear part.

2) Vanishing of obstructions (Lemma 3.2).

PROOF OF THEOREM 4.4. We may assume the following :

i) X is covered by a finite number of coordinate neighborhoods U; with

a system of coordinates z;=(z}, -+, 27) and U;={z,€C": |z;| <1}.
ii) f(U;) is contained in a coordinate neighborhood V; on Y. Each V;
is covered by a system of coordinates w;=(wi, ---, wh).

iii) f is given by w;=f;(z;) on U,.
iv) z;€U; and w,; €V, coincide with z;€ U, and w, €V, respectively,
if and only if z,=0,;(z;), w;,=g;;(w;).
Let r=dim Dy/y, and let M={teC": |t|<e} with a sufficiently small
£>0,
Our purpose is to construct
i) a differentiable vector (0, 1)-form ¢(¢) depending holomorphically on
t and
ii) vector valued differentiable functions @,(z;,t) on U;xM depending
holomorphically on ¢
which satisfy the following equalities :
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(4.6) #(0)=0,

4.7 0gp—(1/2)[p, $1=0,

(4.8) D (2, 0)=fi(z),

(4.9) 30— -0, =0,

(4.10) Db, ,(z,), D=g:,D(z;, 1) .

First we shall construct ¢(t) and @;(¢) as formal power series in t. Con-
stant terms are determined by and [4.8). The linear part of the equations

(4.7), [(4.9) and [[4.10) are given by
(4.11) 36.=0, 50,—Fg—=0, 0F,=%-2% 1 ps. .
5 owf

Here we introduce the following notation: A“%(@y) denotes the sheaf of
germs of differentiable (0, ¢)-forms with coefficients in @, and we set A»%(Oy)
=I"(X, A%%(Oy)). Similar notation will be employed for f*@y.

LEMMA 4.6. We have an isomorphism:

. (@, ¢) e A(f*Oy) X A% (Ox): 0 =F¢, 3¢ =0}
- {(FE, 08): £ A"(O )} '

Proor. Let (7, p)=C'(l}, f*Oy) X Z'(, Of) be a representative of an
element of Dy,y. Let 7= /{z;} and p={p;;}. Since p is a cocycle, we can find
n.e l'(U;, A°(@y)) such that —p,;=n,—1n, on U;;. We define ¢ = A*(Oy)
by the formulae:

DX/Y

¢:5771 ’ on Lri .

On the other hand, we have 7;—7;,=—F%;+Frp; on U;;. Hence, defining
@ = A%°(f*Oy) by the formulae:

O =Fy;+ry, on U,

we obtain the equality 0@ = F¢.

Moreover, if we replace 7; by 7;+¢& with £ A»(@y), then ¢ and @ are
replaced by ¢+d& and @+ F&, respectively. In a similar way, we conclude
that the class of (@, ¢) does not depend on the choice of the representative.

Conversely, if a pair (@, ¢) satisfying d@=F¢ and dp=0 is given, we
can find n,e I'(U;, A*°(O%)) such that ¢ =9y, on U;. We set p,;=—n;+7;
on U;; and 7,=—Fn;+® on U,. Then we have the equalities dp;;=0dz;=0,
and t,—7;=Fp,;;. Moreover, if we replace 7; by 5,—g; with g, I'(U,, Oy),
then p;; and z; are replaced by p;;-+g,—&; and 7;+Fg;, respectively.

These correspondences give an isomorphism as desired. Q.E.D.

In order to construct ¢, and @,;, which satisfy [4.11), we take a basis of
Dy, and represent it as
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{(D,, 1) € A%°(f*Oy) X A0 1)} 221,207 -

‘We write @, in the form @X:Za)@%ragg— on U;. Then ¢1=§‘_,¢12‘2 and @%,=
57,‘@3‘,- t; satisfy [(4.11).

If we determine ¢ and @; up to degree p—1, then we meet an obstruction
for extending ¢ and @; up to degree p. The vanishing of the obstruction
is assured by the following lemma (compare Lemma 3.2 in Part I).

LEMMA 4.7. Under the hypotheses of Theorem 4.4, suppose that

e AY(f*Oy), e A% (Oy)
satisfying

(4.12) 05’ =F¢, dE=0

are given (compare (3.21)). Then & is d-exact. Moreover, if we take an element
@' A% (Oy) satisfying o¢’=—E&, then we can find @' A%(f*@y) and
Xe A (@) such that

(4.13) ox=0, 0Q'+FX=E5'+F¢’

(cf. (3.24), (3.25)).

PrROOF. Let <£&) denote the cohomology class corresponding to & in
H* X, O4). Then, by (4.12), F({&))e H¥ X, f*@y) is zero. Hence, by hypo-
thesis ii), we obtain {£&>=0.

If ¢’ = A>(@y) satisfies the equality d¢’=—¢, then we have d(5'+F¢’)
=0. By hypothesis i), the cohomology class {(5'+F¢’> € H'(X, f*Oy) is the
image of an element <X) < H'(X, O). This implies the existence of @’ and
X which satisfy [(4.13).

From it follows that there exist formal power series ¢ and
@, in t which satisfy (4.6)-(4.10).

Moreover, the proof of convergence of Theorem 3.1 can be applied to the
present situation without any change. This completes the construction of
¢~ and}Q,.

As in the proof of Theorem 3.1, ¢ determines a family p:X—M of
deformations of X, and the collection {®;} determines a holomorphic map
QD X—YXM over M.

We may assume that X is covered by a finite number of coordinate
neighborhoods U,. Each U, is covered by a system of coordinates (7., t)=
(nk, -+, 92, 1, -+, t,). Identifying X with XXM as a differentiable manifold,
we may assume that each U, is contained in some U;XM. With each a we
associate an index ¢(a) such that U,CU.xn XM and, for simplicity let
Us=Uww, Za= Zuay, aDd Wo=1W.o». Moreover, we may assume that each 7J

is a differentiable function %g(z., t) of 2z, and ¢ depending holomorphically on
1 and 7§(z,, 0) = z2.
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Since 7nZ are holomorphic with respect to the complex structure X, we
have '

ang—¢-ng=0.
Moreover, we have
ne=0u(Me, 1),  on U,
where @7z are holomorphic functions of (7, ) on U, On the other hand,
@ is given by
Wi=T4®a 1), on U,

where ¥4 are holomorphic functions of (%4, f). Then we have
7735'(2“, t>: gﬁ(’?ﬁ('zﬁy t); t) ’ on CUaﬁ ’

@ft (Zd, t) = w‘f‘t (7705(205} t)y t) ’ on Cl]d .

Let (0/0t) e To(M) and let “°” denote the operation _887; . Moreover, let
=0
U¥=XNU, and W*={U%*}. With these notations, we have

= . 5 8 _ 7 %
(Ziegy,)=9. on U%,
(4.14) Sl = Dl B s on U¥
' 71 0zg TP 025 ST 628 ST
. . Y
A — A i g *
TOiguy =SVt F(Shigy),  on UL

By definition, r(—aaT) is represented by
(2¥i50r Ddt) € W, 10X W, 0)
3 @ awé y ~ af 322’, y Y ’ X/ -

Hence, from the isomorphism in we infer that z:T,(M)— Dy
is bijective. This completes the proof of

§5. Deformations of holomorphic maps into a family.

Let (4, q,S) be a fixed family of complex manifolds. Namely 4 and S
are complex manifolds and ¢: Y —S is a surjective smooth holomorphic map.

DEFINITION 5.1. By a family of holomorphic maps into (¥, ¢, S), we mean
a quintuplet (¢, @, p, M, s) of complex manifolds 2, M, and holomorphic maps
p:X—M @:%X—9, s: M—S with the following properties :

1) p is a surjective smooth proper holomorphic map,

2) sop=gqo@.
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Two families (2, @, p, M, s) and (X/, @', p’, M’, s’) are said to be equivalent
if there exist complex analytic isomorphisms

g X — X, h: M — M’
such that the diagram

x @ - A
\ /
D x/ q

) |

S

\h\l /s

A

M

commutes.

We define induced families and the concept of completeness in a similar
way as in §1, Part 1.

Let (¥,9,p,M,s) be a family of holomorphic maps into (%,¢,S), 0 M,
X=X, and let /: X— be the restriction of @ to X. Moreover, let 0*=s(0),
Y=Y,., and let f: X—Y be the holomorphic map induced by @. Let F.o,
—f*04 and F:6y— f*@y denote the canonical homomorphisms. We denote
by Dy the module defined by Definition 4.1. Namely, if W= {U,;} is a Stein
covering of X, then

(7, p) € CO, F*Oa) x S (I, O ) : 07 = Fo}
{(Fg,8g): g=C' (1. Oy)}

As in §4, we have a characteristic map 7 : T,(M)— D x/q.
We shall give another expression of Dyq.
We may assume the following :
i) S is an open set in C™ with a system of coordinates s=(s',---,s")
and 0*=(0, ---, 0).
ii) X is covered by a finite number of coordinate neighborhoods U;.

D yj=

Each U; is covered by a system of coordinates z;=(z}, -+, 2%).
iii) f(U;) is contained in a coordinate neighborhood ¢V; of 4. Each <V,
is covered by a system of coordinates (w;, s;) =(w}, -, wr, s}, =+, st) and q is

given by s=s,.

iv) fis given by w;=fi(2z).

v) z; €U, coincides with z;= U; if and only if z;=0b;;(z;).

vi) (w;, s;) €V, coincides with (w;, s;) € &V, if and only if w;=¢,;(w;, s;),
si=s;. We set gi;(w;)=¢;;(wy, 0).



Deformations of holomorphic maps 655

Let 7/: Tu(S)—HYY, ©y) be the infinitesimal deformation map of the

family (9, ¢, S) at 0*. Then each f*p’( aav

v) 1s represented by

~/ ~/ : ~/ a ¢
a l-cocycle g, ={pl;} with 6l;= ¢’ (fi(z), O awi :
LEMMA 5.1. Let U denote the covermg {U;}. Then we have an isomorphism

{(z, p, @) eC°W, S*Oy) X Z' W, Ox) X C™": dr=Fp—310"p,}

D xjop= {(Fg,0g,0): geC°(WL, Oy)}

Proor. Let (%, p)eC’(l, f*@q,)le(ll, ©x) be a representative of an
element of Dy. Let T={%;} and p={p;;}. We write each 7; explicitly
as follows:

=Sl a Lt 30; agy, on Us.

Note that we have

3 8yl @ 0 _ o 0 0
B0l = 2wt el oy 2 ast awl T e

on CVU .

Hence, from the cocycle condition for (%, p), we infer that

0 0 o~
F Gy ¥ pur PP B0, o0 Lo,
=0y, on U,; for each v=1,2, .-« 7",

Since X is compact, 8”°=6% is a constant. Moreover, letting z'i:%]z'f BZ)‘

e '(U,, f*0y), we obtain z={z;} €C°(1l, f*Oy). We can easily check that
above correspondence (%, p)—(z, p, (6%)) gives an isomorphism as desired.

COROLLARY. 1) We have a canonical homomorphism w: D yqq— H'(X, @)
such that mot: Ty(M)— HYX, @) gives the infinitesimal deformation map.

2) An element p= HY(X, Oy) is in the image of w if and only if Fpe
H'(X, f*Oy) is contained in the image of f*op’':Tw(S)— H' (X, f*Oy).

THEOREM 5.2. Let ((,0,p, M,s) be a family of holomorphic maps into a
family (4,q,5), 0e M, X=X,, and let f: X—Y be the restriction of @ to X.
If the characteristic map ©:To(M)— Dy is surjective, then the family is com-
plete at 0.

PRrOOF. Let (¥/,@’,p’, M’, s’) be another family of holomorphic maps into
(9,4q,S). Assume that there exists a point 0/’ = M’ such that the restriction
7 X—9 of @ to X, =(p)"X0") is equivalent to /. By [Theorem 4.3, we
have holomorphic maps g: X’'—% and 2: M'—M such that the diagram
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iM/ p / x ,&
h g Y

commutes (we replace M’ by an open neighborhood of 0/ if necessary).

It follows that schop’=s’ocp’. Since p’ is surjective, we conclude that
soh=s’, This proves the assertion.

In order to prove a theorem of existence, we need another expression of
Dy, For eachy, let ¢, € A%(f*@y) be a d-closed (0, 1)-form which represents

-
azy—) Then there exist {,; & 1'(U;, A% (f*Oy))

the cohomology class —-f*p/(
such that

—px’dij:Cuj_Cvi y SZUZSCDT: .
LEMMA 5.3. We have an isomorphism

D= {(@, ,(6") € A%(f*O) X A% (O )X C™' : 30 =Fp—36"F,, 3¢ =0}

{(Fg,3¢,0): £ A%(O )} '

ProOF. We may assume that Dy, is defined by the isomorphism in
[Lemma 5.1. Let (z, p,(6”)) be a representative of an element of Dy/. Then
we can find n; € ['(U;, A*°(Oy)) such that —p;;=%;—n; on U;;, We define
¢ A" (@y) by ¢=07n; on U;. On the other hand, we have

Tj—Ti:—F7]j+F7]z+Zy}0y<Cuj'“Cyi>, on Uij-

We define @< A»(f*0y) by O@=r7,+Fp,—20°C,; on U, Then we have
30 =Fp—36°3,. ’

As in this correspondence gives an isomorphism. Q.E.D.

THEOREM 5.4. Let (4,q,S) be a family of complex manifolds, 0*< S,
Y=Y, and let p':TW(S)—H (Y, Oy) be the infinitesimal deformation map.
Assume that

i) HYX, f*@y) is generated by the image of F:HY X, Oy)—H'(X, f*Oy)

and the image of f*op’: Tw(S)— H'(X, f*Oy),

ii) F:H¥X, Oy)— H¥X, f*Oy) is injective.
Then there exist a family (2€,®0,p, M, s) of holomorphic maps into (Y, q,S) and
a point 0 M such that

1) s(0)=0* X=p"*0) and @, coincides with f,

2) ©:To(M)—>Dyq is bijective.

REMARK. If f is non-degenerate, then the above conditions i) and ii) are
reduced to the following: The composition Pof*op’: Tu(S)—H'(X, T xv) is
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surjective.
PrROOF. We take systems of coordinates on X and on 4 as introduced
before Lemma 5.1. Moreover we assume that U;={z;€C": | z]| <1}.
Let r=dim Dy, and M={t=C":|t|<e} with a sufficiently small ¢>0.
We shall construct
i) a differentiable vector (0, 1)-form ¢(?) depending holomorphically on ¢,
ii) differentiable functions @,: U, XxM—C™ depending holomorphically
on t, and
iii) a holomorphic map h: M—C",
which satisfy

(5.0) h(0)=0,

(5.1) $(0)=0,

(5.2) 0p—(1/2)L ¢, $1=0,

(5.3 Di(z;, 0)=fi(z),

(5.4) 00,—¢-0,=0,

(5.5) Di(bis(z)), D=1¢:;(P (25, 1), h(D)) .

I) Existence of formal solutions.

Using the notation of Part I, we shall construct formal power series ¢(%),
@,(t), and A(t) in ¢

In view of [5.0), and (5.3), we set

(5.6) =0,  Que=/filz),  he=0.

Clearly (5.2), and are equivalent to the following systems of
congruences :

B ag“—(1/2)[ ", ¢*] f 0,
(5.8)4 0Q4—*-Pu =0,
©
(5.9), D4(b;(25), ) = i (D425, 1), K1),
for u=1,2, ---.

We construct solutions of (5.0)-(5.5) by induction on g. We suppose that
¢#1, @41 and h*?, satisfying (5.7)p-1, (5.8)p-1 and (5.9).-,, have been already
determined.

We define homogeneous polynomials §,= A%*(@y) (by this we mean that
£, is a homogeneous polynomial of degree g with coefficients in A%*(Oy)),
Eups I'(Uy A (f*Oy)) and 'y, '(Usy AY(f*Oy)) by the following
congruences :
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(5.10) Ee= g (/209§

(511) _E“Ff(¢%_]—¢ﬂ_l‘@%—l)' alavl ’

612 Tisi= @1 = @5, B .
# (2

(For the notation, see the proof of Theorem 2.1 in Part I.)
Then we have the following equalities :

(5.13) 06,=0, in I'(X, A%%(Oy)),

(5.14) 35,,.=F¢,, in I'(Uy, A*(f*Oy)),
(5.15) Epp—E =0, in I'(Uy;, A%(f*0y)),
(5.16) Lppe—TinpTis,=0, in (Ui A(f*Oy)).

The proofs are similar to those of (3.13)-(3.16) in Part L
Our purpose is to determine

Pr=¢""+¢,, O4=04"'+Dy,, h*=h""+h,,

which satisfy (5.7),, (5.8), and (5.9),.
, (5.8), and (5.9), are equivalent to the following equalities:

(5.17) 0p,=—E&,,

(518) E“{l:g¢ﬂﬂ—-F¢# y

(5-19> Fij\fz:ijl/t—@ily"l_zl;h:eﬁ;ijy

where we denote by the same letter @, the section ;@é 83)4 of f*@y, and

. ol 0 ..
we set pLij=§) afj (fi(zp), O>W_' The proofs are similar to those of the
J q

corresponding assertions in § 3, Part 1.
LEMMA 55. Under the hypotheses of Theorem 5.4, we can find ¢, = A (Oy),
Q. '(U;y A(f*Oy)) and h,= (k%) e C™ which satisfy (5.17), (5.18) and (5.19).

PROOF. In virtue of the equality [5.16), we can find I';.I'(U;, A*°(f*Oy))
such that

(5.20) I'ijjpe=1,—T,.
From the equalities and (5.20), we infer that
(5.21) EL:Ein_aFily

determines a global section &/ e A (f*@y). From ([5.14), it follows that
&/, =F&, Hence by hypothesis ii), &, is d-exact. Take any ¢, < A" (@)
which satisfies
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(5'22) g¢:‘ = —Eﬂ .
Then it follows that
(5.23) (&, +F¢,)=0.

By hypothesis i), we can find 2, A%(@y), @), A"(f*Oy), and h,=
(k)€ C™ such that

(5.24) 0X,=0,

(5.25) B+ F¢, =Fl,+3 h4d,+a0),,

where each ¢, A%(f*@y) denotes a d-closed (0, 1)-form which represents
the cohomology class —f*p’( 82” ) We take {,; € I'(U;, A%°(f*@y)) such that

—ﬁ{zij:Cuj_Cui, 917p=5Cw .

We set
(5.26) Pu= =X,
‘(5-27) ®i1y:@:4+rily+zy}hz Cm‘ .

Then follows from [5.26), (5.22) and (5.24). follows from ((5.27),

(5.25), and [5.21). Finally, follows from [5.27) and [5.20). This
proves
For #=1 we determine ¢,, @;, and h, as follows: Take

(@1, Pua, (0) € A(f¥O) X AM (O )XCT  (A=1L2,,71),

which represent a basis of Dy,q via the isomorphism in Then
we have 007,=F¢,,—205),. We set

¢1:§¢1ztz, @iu:?(@fﬁ“gﬁﬁcui)l}, hf‘—‘zl)ﬁﬁtz-

It is easy to check that ¢,, @;, and h,=(hY) satisfy (5.7),, (5.8), and (5.9),.
Once we have determined linear parts, we can extend them to formal
power series in t satisfying (5.0)-(5.5), as we have already seen.

II) Proof of convergence.

In a similar way as in the proof of Theorem 3.1 in Part I, we can show
that the solution ¢(t), @,(t) and A(t) of (5.0)-(5.5) can be chosen so that ¢(?)
and @.(t) converge in the norm | |.:a (£: an integer=2, 0<a <1) and that
h(t) converges absolutely for sufficiently small |¢].

III) Final step.
By the same argument as in the proof of Theorem 3.1 in Part I, we obtain
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1) a family p: X— M of deformations of X=JX,,

2) holomorphic maps @: X—% and s: M—S such that go@=sop.

By construction, we have s(0)=0* and @ induces f on X.

It remains to show that = is bijective. For this purpose, we take systems
of holomorphic coordinates {U,, (74, ©)} on X as in the last part of the proof
of We have 7,=@.s(73, 1), and @ is given by wa=¥ 4(74, 1),
s=h(t). Moreover, we have three equalities [4.14).

On the other hand, 7(3/dt) is given by the class of (%, p) € C'(l¥, f*Oq)
X Z'(U*, @) with

i .3 8 Cd
—_ A v J— [
fa=2Vhm rtEN 75—, Pp=Xuy 5 -

By the isomorphisms in Lemmas and B3, (%, p) corresponds to (@, 551),
where @{:21@1113. This proves that z is bijective.

§ 6. Stability of manifolds over Y.

In this section, we shall prove the following theorem.

THEOREM 6.1. Let f: X—Y be a holomorphic map of a compact complex
manifold X into a complex manifold Y. Assume that

i) F:HYX, Ox)— H'(X, f*Oy) is surjective,

ii) F:HYX, Ox)— HYX, f*@y) is injective.
Then for any family q:Y—M of complex manifolds such that Y=q7'(0) for
some point 0 M, there exist

1) an open neighborhood N of 0,

2) a family p: X— N of deformations of X=p"%(0),

3) a holomorphic map @ : X —Y|y over N which induces f over 0 & N.

REMARKS. 1) If f is non-degenerate, then two conditions i) and ii) are
reduced to the vanishing of HY(X, L xv).

2) In the case where f is an embedding, has been proved
by Kodaira (see [6] Theorem 1).

ProorF. We shall copy the proof of

We may assume that M={t=()=C": |{| <e} with a sufficiently small
e>0. Our purpose is to find a solution ¢, @; of (5.1)-(5.5) with A(?)=t.

Using the notation of the proof of we identify s and ¢t. For
each v=1,2,---,7, let §,€ A% (f*Oy) be a d-closed form which represents the

cohomology class of —{g,;;} where ﬁﬁijZZaTglziL(fj(Zj), 0)—3%;. Then we can
« A T
find (e I'(U;, AY(f*BOy)) such that
—ﬁﬁij:Czj—Cu, 931-:3@1 .
By hypothesis i), we can find @7, A*°(f*Oy) and ¢, € A>(O%) such that
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5@;2: F¢12—Szl .
Then ¢1=22)¢11t1, @111:;(@{‘}‘&“)2‘1 and h’ll'—‘—"t,z satisfy (57)1, (58)1 and (59)1.

For ¢=2, we can solve [(5.17), and with h),=0, by virtue of
the stronger hypothesis i) of [[heorem 6.1. This completes the proof of

§7. Deformation of compositions of holomorphic maps.

In this section, we shall prove two propositions on deformations of com-
positions of holomorphic maps.

PROPOSITION 7.1. Let f: X—Y, g:Y—Z and h=gof be holomorphic maps
of complex manifolds. We assume that

i) X and Y are compact,

ii) g is non-degenerate and the canonical homomorphism f*G: f*Oy— h*6 ,
1s injective, where G denotes the homomorphism : Oy — g*@ 4,

iii) there exist a family (Y, ¥,q, N) of holomorphic maps into Z and a
point 0/ € N such that Y=¢q*(0’) and such that ¥ induces g on Y,

iv) the composition f*or: Ty (N)—H'(X, f*Ty,z) 1is surjective, where
7: To(N)— HYY, Ty,z) is the characteristic map of (Y, ¥, q, N) at O/, and
f*:HNY, 9y2)—> H(X, f*9y,z) is the pull-back homomorphism.

Let (,7,p, M) be a family of holomorphic maps into Z and let O be a
point on M such that X=p"*0) and that Y induces h on X. Then there exist

1) an open neighborhood M’ of 0,

2) a holomorphic map s: M’ — N,

3) a holomorphic map @ : X\ —Y,
such that s(0)=0’, @ induces f on X, and the diagram

:X‘IM {J[' Zx N
\ T
Pl K oy
] q
M S N
\ 1 id
N

commautes,
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PROOF. We may assume the following :

i) M={teC": |t|<e}, 0=, -,0, N={seC": |s|<1}, and 0=
(0, ---, 0), where ¢ denotes a sufficiently small positive number.

ii) X (or 9) is covered by a finite number of coordinate neighborhoods
U, (iel) (or V; (i€])) and each U; (or ;) is covered by a system of
coordinates (z;, t) (or (w; s)) such that p(z;, )=t (or q(w;, s)=s). Moreover,
each U, is a polydisc {(z;, 1): |z| <1, |t|<e}. We set U;=U;\X and
Vi=v;NY.

iii) I is a subset of J and f(U,) is contained in V,; for each iel. fis
given by w;= fy(z;) on U,.

iv) For each i€/, there exists a coordinate neighborhood W; on Z such
that 2 (U;) C W;XM for i€l and ¥(<v,)C W;XN for i ].

v) Each W, is covered by a system of coordinates y;.

vi) 7 and ¥ are, respectively, given by y;,=71(z;, ) and y,=¥ ;(w;, $).

vii) (z;,t) € U, and (w;, s) € &V, coincide with (z;, ) € U; and (w;, s) € V,,
respectively, if and only if z;=¢;;(z;, 1) and w,=¢;(w;, s).

viii) y;< W, coincides with y; & W, if and only if y,=e;;(y;).

We set gi(w) =¥ (w;, 0), hi(z)=7 (2, 0), bij(z;)=¢i;(z;,0) and c¢;;(w;)=
Pis(wy, 0).

Now we shall construct holomorphic functions

s=():M—C", @;:U,—>C™ (el

such that

(7.0) s(0)=0, Oz, 0)=7ri(2), on U; (iel),
(1.1 Qi(pii(z, 1), ) =, (D (z; 1), s(B)), on U;; (,yel),
(7.2) Yi(z;, )=T (Di(2 1), s(D)), on U; (iel).

First we prove the existence of solutions s and @; as formal power series
in 2.

Let (7.1), and (7.2), denote the congruences mod #*' derived from [7.1)
and (7.2) by replacing s and @; by s# and @4, respectively.

We set s,=0, @;,=7ri(2;). We shall construct s# and @#% by induction

on u. Suppose that we have already determined s#' and @4 which satisfy’

(7.1)p-1 and (7.2)p-;.
We define homogeneous polynomials I’ ;. €' (Uyj, f*Oy), rip€ I'(U;, h*O )
-of degree ¢ by the following congruences:

7.3) Tiu= @4 (g, D—is (@57, S”_1>>727,- ’

_ -1 0
(7.4) Tilﬂf(rz‘_wi(@‘i 1, s ))W .

[
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Then we have
(7.5) g1 ipp+135,=0,
(7.6) T Tup=*C) .

PROOF. is proved in Lemma 2. (7.6) can be proved as follows:
For simplicity, we omit the indices p—1.

Tﬁy(ziy 1)) E T'?I,u(qsij(ij £, t)
zl,u(¢wy t) w“(@z(géw, t) S)
fe?j(rj, t) wa<¢u(@19 +F1]I;zy S)

fezs(w,-(@j, 75— VEG(0s, ), 9= ot - (Fol

aei‘ a g
ayﬁj (h])rﬂ,u g (fl)rljlu Q.E.D.
— agsz 0 ove 0
We set pli;= E ol Fw el'(Vy;, 0y) and t);= Z RN —c I'(V,,

g*0,). Then we have

(1.7) =Ty =Gpn;, on V.

We can easily show that (7.1), and (7.2), are equivalent to the following :
(7.83) me:@jw——@uy-i—iv‘ﬁ;f*pﬁzj,

7.9 Fow=(FOD i frels,

where @, denote Z@W aa

LEMMA 7.2. Under the hypotheses of Proposition 7.1, we can find @; €
I'(U,, *0y) and s,=(s4) C™ which satisfy (7.8) and (7.9).

Proor. We have an exact sequence

f+G
0 —> [*Oy —> hW*O; —> [*Ty,; —> 0,

by hypotheis ii).

By the equality the collection {r;,.} represents an element of
H(X, f*Ty,z). Hence, by hypothe31s iv), we can find s,=(s%) such that {y;}
and {Es#rw} represent the same element in H°(X, f*9y,z). This implies the

existence of @;, which satisfy [7.9). By hypothesis ii), follows from
and [7.7). This proves

completes the inductive construction of @4 and s”.

By a similar argument as in the proof of Theorem 2.1 in Part I, we can
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show that @; and s converge absolutely and uniformly for sufficiently small

|2], if we choose solutions ®@;;, and s, of and properly in each step
of the above construction. Q.E.D.

PROPOSITION 7.3. Let f: XY, g: Y—Z and h=gof be holomorphic maps
of complex manifolds. Let p:X—M, q:Y—M and n:Z—M be families of
complex manifolds such that X=»"%0), Y=¢"%0) and Z=="*(0) for some point
0=M. Moreover, let @:%¥—Y and 1V : ¥ —F be holomorphic maps over M
which induces f and h over 0 € M, respectively. Assume that

0) p and q are proper,

i) f*: HYY, g*@z)— H(X, h*@,) is surjective,

i) f*: HW(Y, g*@z)— HY (X, h*@,) is injective.

Then there exist an open mneighborhood N of 0, and a holomorphic map
U:qy|y—2|y over N such that 1|y =To(D|y).

ProOF. We may assume the following :

i) M={teC": |t|<e}, with a sufficiently small ¢>0, and 0=(0, ---, 0).

ii) & (or ) is covered by a finite number of coordinate neighborhoods
U, tel) (or V; (i<])) and each U; (or &V;) is covered by a system of
coordinates (z; t) (or (w;, t)) such that p(z;, t)=1t (or q(w;, £)=1t). Moreover,
each <V, is a polydisc {(w;, t): |w;| <1, |t|<e}. We set U;=U;nX and
Vi=a,NY.

iii) I is a subset of J and @(U,) is contained in <; for each i€ l. @ is
given by w;=®(z;, 1) and we set fi(z;)=0(z;, 0).

iv) For each i< ], there exists a coordinate neighborhood %; on 2 such
that @(U,)C W, for iel and g(Vy)CW,NZ for i1 ].

v) Each %, is covered by a system of coordinates (¥; ) such that
n(y;, t)=t.

vi) 1 and g are given, respectively, by ¥,=1(z;, t) and y,=g;(w;). We
set hy(z)=1"(z; 0).

vil) (25, e U;, (w, ) eV, and (¥, 1) EW; coincide with (z;, t)e U,
(w;, ) e<V; and (¥, t) €W, respectively, if and only if z,=¢(z; 1), w;=
¢ij(w;, ) and ¥;=0;;(3, 1). We set e;;(¥,)=0:,(y; 0).

Now we shall construct holomorphic functions ¥;:V;—C* (I=dim Z)
such that

(710) wl<w1, 0) :gl(ZJ on Vl y for 1el ,
(7.11) wi(¢ijy )= 6ij(wjy t) on <V, for i,7&/,
(7.12) T',;(Zi, t) == w‘i(@i, t:) on CL]Z y for 1el .

First we prove the existence of functions ¥; as formal power series in f,
Let (7.11), and (7.12), denote, respectively, the congruence mod ##*
derived from [7.11) and [7.12) by replacing ¥; by ¥4, for each p=1,2, .
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We set ¥';,=4gi(z). We construct ¥4 by induction on g Suppose that
we have already determined ¥%4™" which satisty (7.11),-; and (7.12),-,.

We define homogeneous polynomials [y, (V,;, g*0z) (i,j=]) and
Tipe<s (U, h*0y) (i) of degree p by the following congruences:

(7.13) Topp= W (e, =00, (W5, 1)
P 0y;
(7.14) Tip=Q =040, 1) '—aaf‘ .
# Vi
Then we have
(7.15) L= iept1i5.=0 on Vi, for i,5,ke],
(7.16) Tip—Tup=J*"i, on U, for i,jel.

Proor. [7.15) has been proved in Lemma 2. can be proved as

follows: For simplicity, we omit the indices ¢—1. We have
Tiuz, 1) = il Biszs 1), 1)
‘Z#"T%x(@"z'j» H—¥HDi(ij, 1), 1)
= 05 5, =T H s (D, 1), 1) .

Moreover, ,
VH(¢is(@j 1), 1) fﬁgj(w‘j(@j’ 0, )+ 1575
=051 3, D= 5% ()t Tl 1)
" ii\L g 7 08 i igie\J i)«
This proves (7.16). Q.E.D.
. We can easily show that (7.11), and (7.12), are equivalent to the following :
(7.17) U'ijip=V;,~Vin on Vi, for 1,5/,
(718) Ti|#:f*wilft on U; , for 1=l ,

where ¥, denote ;Wﬁ#?%g—ef(%, g*e 5).

LEMMA 7.4. Under the hypothesis of Proposition 7.3, we can find ¥,
I'(V,, g*0 ) which satisfy (7.17) and (7.18).

PrOOF. From (7.16) and the hypothesis ii), the l-cocycle {I'y;,} is co-
homologous to 0. Hence, we can find ¥}, I'(V,;, g*0 ;) such that
(719) Fijl,u: W}W—JFZW on V'ij .

Then {y;.—f*¥7 .} represents a homogeneous polynomial with coefficients in
H'(X, h*@;). Hence, by hypothesis i), we can find %, H'(Y, g¥0,) such that

(7.20) Tioa— = 1*4, on U;, for iel.
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We set ¥;,=¥ .+, From[7.19) and [7.20), we infer that ¥, satisfy
and [7.18). This proves

[Lemma 714 completes the inductive construction of 7%,

By a similar argument as in the proof of Theorem 2.1 in Part I, we can
show that ¥'; converge absolutely and uniformly for sufficiently small |?| if
we choose solutions ¥, of [7.17) and [7.18) properly in each step of the above
construction.

The following lemma gives a sufficient condition for f: X—Y to satisfy
the hypotheses of [Proposition 7.3

LEMMA 7.5. Let f: X—=Y be a holomorphic map of compact complex mani-
folds. Let Oy and Oy denote the structure sheaves, respectively, on X and Y.
Moreover let E be a locally free sheaf on Y and let

J¢: H(Y, E) — HYX, f*E)

denote the canonical homomorphism for each ¢=0,1, ---.
Assume that

fxO0x =0y, R'f40x=0.
Then f¥ 1is byjective for q=0,1, and is injective for g=2. If moreover f
satisfies
FxOx =0y, Rf0x=0  for ¢>0,
then f¥ is bijective for any ¢=0,1,2, -,
PrOOF. From hypotheses, we infer that
fe[*E=E and R'f(f*E)=0.

The assertion for ¢=0 follows immediately.

From the spectral sequence
(7.21) Epe=H?(Y, R f(f*E)) = H"(X, [*E),
we obtain an exact sequence

0—> HY(Y, E) — H'(X, f*E) —> H(Y, R'f«(f*E))
—> HXY, E) — H*X, f*E)

(see [1], I. 4.5.1). Hence, the assertions for ¢=1, 2 follow from the vanishing
of RUfx(f*E).

If moreover f satisfies R/ 0, =0, for ¢ >0, then we have R/ (f*E)=0

for ¢>0. Hence the spectral sequence (7.21) degenerates (see [1], 1. 4.4).
This implies that f¥ is bijective for any ¢=0,1,2, ---. Q.E.D.
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