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1. It is the purpose of this paper to demonstrate a characterization
theorem for the simple groups $PSL(3,2^{n})^{1)}$ and $PSP(4,2^{n}),$ $n\geqq 2$ . Let $G$ denote
any one of these groups, then it is not difficult to verify that $G$ satisfies the
following hypothesis:

HYPOTHESIS A. $G$ is a finite group with $0(G)=1=O_{2}(G)$ in which each
maximal 2-1ocal subgroup $M$ which is not 2-closed satisfies the following
conditions:

(1) $C_{M}(O_{2}(M))\leqq O_{2}(M)$ ;
(2) $M/O_{2}(M)$ is a TI-grouP;
(3) every involution of $O_{2}(M)$ is contained in the center of some $S_{2}-$

subgroup of $M$.
Recall that a finite group is called a TI-group if any two distinct $S_{2}-$

subgroups have only the identity element in common. It is obvious that the
simple TI-groups $PSL(2,2^{n}),$ $Sz(2^{n})$ and PS $U(3,2^{n}),$ $n\geqq 2$ , satisfy Hypothesis A.
Indeed, every 2-1ocal subgroup of a TI-group is 2-closed. In addition, there
are simple groups which by accident satisfy Hypothesis $A$ ; that is, $PSL(2, q)$

with $q=2^{n}\pm 1>5,$ $PSL(3,3)$ and the Mathieu group $M_{11}$ .
Our objective is to prove the converse.
THEOREM A. Let $G$ be a non-identity grouP satisfying HyPothesis A. Then

$G$ contains a normal subgroup $K$ isomorphic to one of the simple groups on the
following list:

(1) PS$L(2, q)$ with $q=2^{n}\pm 1>5,$ $PSL(3,3),$ $M_{11}$ ;
(2) PS$L(2,2^{n}),$ $Sz(2^{n}),$ PS $U(3,2^{n}),$ $n\geqq 2$ ;
(3) $PSL(3,2^{n}),$ $PSp(4,2^{n}),$ $n\geqq 2$ .
Furthermore, we have $C_{G}(K)=1$ and therefore $G$ is isomorphic to a sub-

group of the automorphism group of $K$.
Though different in appearence, our theorem is quite similar in nature

to Suzuki’s classification of C-groups (finite groups in which the centralizer
of every involution is 2-closed) [14], and this paper may be considered to be

1) In general, we follow the notation and terminology of [6].
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a successful attempt to apply his method to characterizations of presently
known finite simple groups (in particular, the groups of Lie type defined
over the fields of characteristic 2) by the structure of their maximal 2-1ocal
subgroups. Also the classification is necessary for the proof of our theorem.
In addition, we require the following classification theorems:

(1) Suzuki’s classification of TI-groups [13];

(2) Bender’s classification of finite groups having a strongly embedded
subgroup [2];

(3) Goldschmidt’s work on finite groups whose $S_{2}$-subgroup contains a
strongly closed Abelian subgroup[5];

(4) Gorenstein and Walter’s classiPcation of finite groups with dihedral
$S_{2}$-subgroups [8];

(5) Alperin, Brauer and Gorenstein’s classification of finite groups with
semi-dihedral $S_{2}$-subgroups[1].

Of course, we use implicitly the fundamental theorem of Feit and Thomp-
son [4]. By virtue of these classification theorems, Theorem A will be proved,
once we establish the following result:

THEOREM B. Let $G$ be a group satisfying $HyPothesis$ A. Then one of the
following conditions holds:

(1) $O^{2}(G)\neq G$ ;
(2) $G$ has dihedral or semi-dihedral $S_{2}- subgroups$ ;
(3) $G$ is a $C$-gronp;
(4) $O^{2^{\prime}}(G)$ is isomorphic to $PSp(4,2^{n}),$ $n\geqq 2$ .
It is easily seen that Hypothesis A is inherited by subgroups of index 2,

so the case that $O^{2}(G)\neq G$ causes no difficulty. Thus the substantials of the
proof of Theorem A exist in constructing a normal subgroup of odd index
isomorphic to $PSP(4,2^{n})$ .

The organization of the Paper is as follows. In Section 2, we describe
some useful properties of the family of 2-subgroups defined by Suzuki [12].

Section 3 is devoted to the study of the groups satisfying a hypothesis weaker
than Hypothesis A. We collect there various technical lemmas. In Section 4,
we study the groups $G$ which satisfy Hypothesis A but not satisfy the con-
clusions (1)$-(3)$ of Theorem B. In particular, we restrict the structure of
$S_{2}$-subgroups and maximal 2-1ocal subgroups of $G$ considerably, and determine
the fusion of involutions and the way two distinct $S_{2}$ -subgroups intersect
non-trivially. That section contains the heart of the proof of our theorem.
In Section 5, we follow Suzuki’s C-group paper closely, and construct an
appropriate $(B, N)$ -pair in $G$ on the basis of Section 4. Then by using D. G.
Higman’s geometric characterization of $PSP(4, q)$ [ $10$ , Theorem 2], we identify
$G$ with an odd extension of $PSp(4,2^{n})$ , thereby proving Theorem B. The
final section contains some concluding remarks.
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We use the following terminology and notation:
$H\leqq G$ $H$ is contained in $G$ ;
$H<G$ $H\leqq G$ but $H\neq G$ ;
$N(H)$ the normalizer of $H$ in $G$ , in case there is no danger of

confusion;
$C(H)$ the centralizer of $H$ in $G$ , in case there is no danger of

confusion;
$O^{\prime}(G)=O^{2^{\prime}}(G)$ the subgroup of $G$ generated by the 2-elements of $G$ ;
$G^{2}$ the subgroup of $G$ generated by the squares of the ele-

ments of $G$ ;
$S(G)$ the set of the $S_{2}$-subgroups of $G$ ;
$S_{2}$-intersection an intersection of two distinct $S_{2}$-subgroups;
$m(G)$ the 2-rank of $G$ ;
$C^{*}(x)=C\delta(x)$ $\{y;y\in G, x^{y}=x^{\pm 1}\}$ ;
$Z_{2}$ a group of order 2;
$D_{8}$ a dihedral group of order 8.

All groups are assumed to be finite from now on.

2. Let $G$ be a finite group. As in [14], we define $\mathcal{H}$ to be the family of
2-subgroups $H$ of $G$ satisfying the following conditions:

(1) $H\neq 1$ ;
(2) $N(H)$ is not 2-closed;
(3) $H=O_{2}(N(H))$ .
The following properties of the family $\mathcal{H}$ are known and will be fre-

quently used henceforth. The proof of these statements will be found in
[12, pp. 437-438, a remark p. 442].

(1) Every maximal $S_{2}$-intersection $\neq 1$ of $G$ is contained in $\mathcal{H}$ .
(2) Let $N$ be a maximal 2-1ocal subgroup which is not 2-closed, then

$O_{2}(N)\in \mathcal{H}$ .
(3) If $H\in \mathcal{H}$ and $N(H)\leqq K\leqq G$ , then $H$ is the intersection of the $S_{2}-$

subgroups of $K$ containing $H$.
(4) If $D$ is a 2-subgroup $\neq 1$ and $N(D)$ is not 2-closed, then there is $H$

in $\mathcal{H}$ with $D\leqq H$ and $N(D)\leqq N(H)$ .
(5) $G$ is a TI-group if and only if $\mathcal{H}$ is empty.
The following result is of basic importance to this paper.
(2.1) Let $G$ be agroup with $0(G)=1=O_{2}(G)$ . If $H\in \mathcal{H}$ and $H\leqq P\in S(G)$ ,

then $N_{P}(H)$ contains an element $\neq H$ of $\mathcal{H}$ .
To prove this, we recall from [7, Theorem 3] that if $G$ is a group with

$O_{2}(G)=1$ and with only one conjugacy class of maximal 2-1ocal subgroups,
then $G$ has a strongly embedded subgroup. For a later use, we prove a
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generalization of this fact.
(2.2) Let $G$ be a group of even order and let $\{N_{1}, \cdots , N_{k}\}$ be a complete set

of representatives of the conjugacy classes of maximal 2-local subgroups of $G$ .
Set $ M=\langle N_{1}, \cdots , N_{k}\rangle$ . If $M\neq G$ , then $M$ is a strongly embedded subgroup of $G$ .

PROOF. It is obvious that $M$ has even order. Suppose, by way of con-
tradiction, that $|M\cap M^{x}|$ is even for some $x$ in $G-M$, and take $x$ so that
$|M\cap M^{x}|_{2}$ is maximal. Let $P\in S(M\cap M^{x})$ , then $N(P)\leqq M^{y}$ for somey in $G$ .
Let $P\leqq Q\in S(M)$ and suppose that $P\neq Q$ , then $P<N_{Q}(P)\leqq M\cap M^{y}$ , and so
$y\in M$ by the maximality of $|M\cap M^{x}|_{2}$ . But then if $P\leqq R\in S(M^{x})$ , we have
$P<N_{R}(P)\leqq M\cap M^{x}$ , contrary to the fact that $P\in S(M\cap M^{x})$ . Therefore $P$

is an $S_{2}$-subgroup of $M$. Since $M$ contains the normalizer of an $S_{2}$-subgroup

of $G$ , we conclude that $N(P)\leqq M$. Since $P^{x^{-1}}\leqq M$, we have $P^{m}=P^{x^{-1}}$ for
some $m$ in $M$, whence $x\in M\cdot N(P)=M$. This contradiction completes the
proof.,

We now prove (2.1). If $N_{P}(H)\neq P$, then for every $x$ in $N_{P}(N_{P}(H))-N_{P}(H)$

we have $H\neq H^{x}\in \mathcal{H}$ and $H^{x}\leqq N_{P}(H)$ . Hence we can assume that $H$ is
normal in $P$. Suppose then that $H$ is the only element of $\mathcal{H}$ that is contained
in $P=N_{P}(H)$ . Then $N(P)<N(H)$ , and so every maximal 2-1ocal subgroup of
$G$ is conjugate to $N(H)$ . Since $O_{2}(G)=1,$ $N(H)$ is strongly embedded in $G$

by (2.2). In addition, we have $m(P)\geqq 2$ by the transfer theorem of Burnside
or the theorem of Brauer and Suzuki [3]. Since $O(G)=1$ , it follows from
the theorem of Bender [2] that $G$ is a TI-group, whence $\mathcal{H}$ is empty. This
contradiction completes the proof.

The following result is of use in studying intersections of $S_{2}$-subgroups

of $G$ when we have enough information on the family $\mathcal{H}$ .
(2.3) Let $P,$ $Q$ be distinct $S_{2}$ -subgroups of $G$ such that $P\cap Q\neq 1$ , then there

is a sequence $P_{0}=P,$ $P_{1},$ $\cdots$ , $P_{n}=Q$ of $S_{2}$ -subgroups of $G$ satisfying the follow-
ing conditions:

(1) $H_{i}=P_{i-1}\cap P_{i}$ is a tame intersection of $P_{i-}$ , and $P_{i},$ $1\leqq i\leqq n$ ;
(2) $H_{i}\in \mathcal{H},$ $1\leqq i\leqq n$ ;
(3) $N(H_{i})/H_{i}$ has a strongly embedded subgroup, $1\leqq i\leqq n$ ;
(4) $P\cap Q=H_{1}\cap\cdots\cap H_{n}$ .
PROOF. Set $H=P\cap Q$ . If $H$ is a maximal $S_{2}$-intersection, the sequence

$P,$ $Q$ satisfies the requirements. Hence we can proceed by induction on
$|P:H|$ . Take $S_{2}$ -subgroups $R,$ $S$ of $G$ so that $N_{P}(H)\leqq N_{R}(H)\in S(N(H))$ and
$N_{Q}(H)\leqq N_{S}(H)\in S(N(H))$ . Note that $|H|<|P\cap R|$ and $|H|<|S\cap Q|$ . If
$R=S$, then $P\neq R\neq Q$ and we can apply the induction hypothesis. If $R\neq S$,

then by an obvious induction argument we can assume that $R\cap S=H$, in
which case $H$ is a tame intersection of $R$ and $S$, and $H\in \mathcal{H}$ . If $N(H)/H$ has
no strongly embedded subgroups, there is a sequence $R_{0}=R,$ $R_{1},$ $\cdots$ , $R_{k}=S$ of
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$S_{2}$ -subgroups of $G$ such that $R_{i-1}\neq R_{i}$ and $H<R_{i- 1}\cap R_{i},$ $1\leqq i\leqq k$ . Hence we
can again apply the induction hypothesis. The proof is complete.

(2.4) Let $P,$ $Q$ be as in (2.3), then there are a sequence $P_{0}=P,$ $P_{1},$ $\cdots$ , $P_{n}=Q$

of $S_{2}$ -subgroups of $G$ and a sequence $H_{1},$ $\cdots$ , $H_{n}$ of elements of $\mathcal{H}$ satisfying the
following conditions:

(1) $P_{i-1}\neq P_{i},$ $1\leqq i\leqq n$ ;
(2) $H_{i}\not\leqq H_{i+1}$ and $H_{i+1}\underline{f}H_{i},$ $1\leqq i\leqq n-1$ ;
(3) $H_{i}\leqq P_{i- 1}\cap P_{i},$ $1\leqq i\leqq n$ ;
(4) $N(H_{i})/H_{i}$ has a strongly embedded subgroup $1\leqq i\leqq n$ ;
(5) $P\cap Q=H_{1}\cap\cdots\cap H_{n}$ .
PROOF. By the preceding lemma, there are a sequence $P_{0}=P,$ $P_{1},$ $\cdots$ , $P_{n}$

$=Q$ of $S_{2}$ -subgroups of $G$ and a sequence $H_{1},$ $\cdots$ , $H_{n}$ of elements of $\mathcal{H}$ satis-
fying (1), (3), (4) and (5). Suppose for instance that $H_{\iota}\geqq H_{i+1}$ . If $P_{i- 1}\neq P_{i+1}$ ,
delete $P_{i}$ and $H_{i}$ . If $P_{\iota- 1}=P_{i+1}$ , delete $P_{t},$ $P_{i+1},$ $H_{i}$ and $H_{i+1}$ . In either case,
remaining sequences satisfy the requirements.

We remark here that (2.4) can be used to prove the following refinement
of (2.1).

(2.5) Let $G$ be a group with $O(G)=1=O_{2}(G)$ , and let $\mathcal{H}_{0}$ be the subset of
$\mathcal{H}$ consisting of all $H$ in $\mathcal{H}$ such that $N(H)/H$ has a strongly embedded sub-
group. Then either $\mathcal{H}_{0}$ is empty, in which case $G$ is a TI-group, or else each
$S_{2}$ -subgroup of $G$ contains at least two elements of $\mathcal{H}_{0}$ .

3. In this section, we continue the study of the family $\mathcal{H}$ defined in the
preceding section in the case that $G$ is a group satisfying the following
hypothesis.

HYPOTHESIS $A^{\prime}$ . $G$ is a group with $O(G)=1=O_{2}(G)$ in which each
maximal 2-1ocal subgroup $M$ which is not 2-closed satisfies the following
conditions:

(1) $C_{M}(O_{2}(M))\leqq O_{2}(M)$ ;
(2) $M/O_{2}(M)$ is a TI-group;
(3) $\Omega_{1}(O_{2}(M))\leqq Z(O_{2}(M))$ .
All propositions in this section will be proved under this hypothesis, but

some of them are valid under the weaker one in which the assumption that
$\Omega_{1}(O_{2}(M))\leqq Z(O_{2}(M))$ is not made.

(3.1) If $H\in \mathcal{H}$ , the following conditions hold:
(1) $N(H)$ is a maximal 2-local subgroup;
(2) $H$ is a maximal $S_{2}$-intersection;
(3) if $H\leqq P\in S(G)$ , then $N_{P}(H)\in S(N(H))$ ;
(4) if $x$ is a central involution of $G$ contained in $H$, there is $ P\in S(G\rangle$

such that $x\in Z(P)\leqq H\leqq P$.
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PROOF. Let $M$ be a maximal 2-1ocal subgroup containing $N(H)$ . Then
$O_{2}(M)\leqq H$ by a proPerty of $\mathcal{H}$ . Since $M/O_{2}(M)$ is a TI-group and $N(H)$ is
not 2-closed, we have $O_{2}(M)=H$, and hence (1) holds. Also $C(H)\leqq H$ and
$\Omega_{1}(H)\leqq Z(H)$ by our hypothesis. Let $D$ be a maximal $S_{2}$-intersection con-
taining $H$. Since $D$ is also contained in $\mathcal{H}$ , we have $\Omega_{1}(D)\leqq Z(D)\leqq H$, and
so $\Omega_{1}(D)=\Omega_{1}(H)$ . Since both $N(D)$ and $N(H)$ are maximal 2-1ocal subgroups
by (1), it follows that $N(D)=N(H)$ . Thus $H=D$ is a maximal $S_{2}$-intersection.
\langle 3) is a well-known Property of a maximal $S_{2}$ -intersection. Let $x$ be a central
involution of $G$ contained in $H$. Since $\Omega_{1}(H)\leqq Z(H)$ , we can take $P\in S(G)$

such that $H\leqq P\leqq C(x)$ . As remarked above, $C(H)\leqq H$ and therefore $x\in Z(P)$

$\leqq H,$ $q$ . $e$ . $d$ .
(3.2) If $P\in S(G)$ and $a$ is a central involution of $G$ contained in $P-Z(P)$ ,

then $C_{P}(a)\in \mathcal{H}$ .
PROOF. Let $C_{P}(a)\leqq Q\in S(C(a))$ . Then $P\neq Q\in S(G)$ and $C_{p}(a)=P\cap Q$ .

Let $D$ be maximal among $S_{2}$ -intersections of the form $P\cap R,$ $P\neq R\in S(G)$ ,
containing $P\cap Q$ . Then it is known that $D$ is a maximal $S_{2}$ -intersection. By
\langle 3.1), $\Omega_{1}(D)\leqq Z(D)$ , so $C_{P}(a)=D\in \mathcal{H},$ $q$ . $e$ . $d$ .

(3.3) Let $a$ be an involution of $G$ such that $C(a)$ is not 2-closed. Then
$O_{2}(C(a))\in \mathcal{H}$ .

PROOF. By a property of $\mathcal{H}$ , there is $H$ in $\mathcal{H}$ such that $O_{2}(C(a))\leqq H$ and
$C(a)\leqq N(H)$ . By (3.1), $\Omega_{1}(H)\leqq Z(H)$ , so $H\leqq C(a)$ and therefore $O_{2}(C(a))=H$,
$q$ . $e$ . $d$ .

(3.4) Let $P,$ $Q$ be distinct $S_{2}$ -subgroups of $G$ such that $Z(P)\cap Z(Q)\neq 1$ .
Then $\langle Z(P), Z(Q)\rangle\leqq P\cap Q\in \mathcal{H}$ and $\langle P, Q\rangle\leqq N(P\cap Q)$ .

PROOF. Let $a$ be an involution of $Z(P)\cap Z(Q)$ . Then $C(a)$ is not 2-closed,
and so $H=O_{2}(C(a))$ is contained in Yif by (3.3). Clearly, $\langle P, Q\rangle\leqq N(H)$ and
$\langle Z(P), Z(Q)\rangle\leqq H$. Since $H$ is a maximal $S_{2}$ -intersection by (3.1), we have
$H=P\cap Q$ and therefore the lemma holds.

It will be convenient to introduce the notation $\mathcal{H}(X)$ to denote the set of
elements of $\mathcal{H}$ contained in the subgroup $X$ of $G$ .

(3.5) Let $P\in S(G)$ and let $H_{i},$ $1\leqq i\leqq 2$ , be distinct elements of $\mathcal{H}(P)$ . If
$a$ is an involution of $H_{1}\cap H_{2}$ , then $C_{P}(a)\in S(C(a))$ . In particular, $\Omega_{1}(Z(P))$ is
strongly closed in $H_{1}\cap H_{2}$ with respect to $G$ .

PROOF. Since $\Omega_{1}(H_{i})\leqq Z(H_{i})$ , we have $\langle H_{1}, H_{2}\rangle\leqq C_{P}(a)$ . Take $Q\in S(G)$

so that $C_{P}(a)\leqq C_{Q}(a)\in S(C(a))$ . Since $H_{i}$ is a maximal $S_{2}$-intersection and
$H_{1}\neq H_{2}$ , we have $P=Q$ and so $C_{p}(a)\in S(C(a)),$ $q$ . $e$ . $d$ .

(3.6) Let $P\in S(G)$ and let $H\in \mathcal{H}(P)$ . Set $Q=N_{P}(H)$ . If $Q_{1}\in S(N(H))$

and $x$ is an involution of $Z(Q_{1})-Z(Q)$ , then $C_{P}(x)=H$.
PROOF. Let $Q_{1}\leqq P_{1}\in S(G)$ and $C_{p_{1}}(x)\in S(C(x))$ . Take $R$ in $S(G)$ so that

$C_{P}(x)\leqq C_{R}(x)\in S(C(x))$ . If $P\neq R$ , then as $H$ is a maximal $S_{2}$-intersection, we
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have $H=C_{p}(x)=P\cap R$ and the assertion holds in this case. Suppose then
that $P=R$ , in which case $C_{P}(x)\in S(C(x))$ . As a consequence $C(x)$ is not 2-
closed, so $O_{2}(C(x))\in \mathcal{H}$ by (3.3). Furthermore

$O_{2}(C(x))\leqq C_{P}(x)\cap C_{P_{1}}(x)\leqq P\cap P_{1}=H$ ,

whence $O_{2}(C(x))=H$. Thus $C(x)\leqq N(H)$ and therefore $C_{P}(x)=C_{Q}(x)$ and
$C_{P_{1}}(x)=C_{Q_{1}}(x)$ , which, however, is not possible as $x\in Z(Q_{1})-Z(Q)$ .

As an immediate consequence, we have
(3.7) Let $P,$ $H$ and $Q$ be as in the preceding lemma. If $H\neq H_{1}\in \mathcal{H}(P)$

and $Q_{1}\in S(N(H))$ , then $\Omega_{1}(Z(Q_{1}))\cap H_{1}\leqq\Omega_{1}(Z(Q))$ .
We next prove
(3.8) Let $P_{i},$ $1\leqq i\leqq 3$ , be $S_{2}$-subgroups ofG such that $P_{1}\neq P_{2}\neq P_{3}$ , and let

$H_{i},$ $H_{i+1}$ be distinct elements of $\mathcal{H}(P_{i}),$ $1\leqq i\leqq 3$ . Then we have $\bigcap_{i=1}^{4}H_{i}=1$ .
PROOF. Suppose false, and take an involution $d$ of $D=\bigcap_{i=1}^{4}H_{i}$ . Then by

(3.5), $\langle H_{i}, H_{i+1}\rangle\leqq C_{P_{i}}(d)\in S(C(d))$ . Furthermore $C_{P_{1}}(d)\neq C_{P_{2}}(d)$ because $H_{1}\neq H_{2}$

and $P_{1}\neq P_{2}$ , and so $O_{2}(C(d))\in \mathcal{H}$ by (3.3). However

$O_{2}(C(d))\leqq C_{P_{1}}(d)\cap C_{P_{2}}(d)\leqq P_{1}\cap P_{2}=H_{2}$ ,

whence $O_{2}(C(d))=H_{2}$ . Likewise we have $O_{2}(C(d))=H_{3}$ , which contradicts our
assumption that $H_{2}\neq H_{3}$ . Hence (3.8) holds.

(3.9) Let $P\in S(G)$ and let $H_{i},$ $1\leqq i\leqq 2$ , be distinct elements of $\mathcal{H}(P)$ . If
$N_{P}(H_{i})\neq Q_{i}\in S(N(H_{i})),$ $1\leqq i\leqq 2$ , then $Z(Q_{1})\cap Z(Q_{2})=1$ .

PROOF. By (2.1), $|\mathcal{H}(Q_{i})|>1$ , so let $H_{i}\neq K_{i}\in \mathcal{H}(Q_{i}),$ $1\leqq i\leqq 2$ . If $Q_{i}\leqq P_{i}$

$\in S(G)$ , then clearly $P_{1}\neq P\neq P_{2}$ . Therefore $Z(Q_{1})\cap Z(Q_{2})\leqq K_{1}\cap H_{1}\cap H_{2}\cap K_{2}$

$=1$ by the preceding lemma, $q$ . $e$ . $d$ .
We now proceed to the study of the $S_{2}$-intersections of $G$ . In view of

\langle 2.4) and (3.1), we are naturally led to the
DEFINITION. A path( $P_{i}$ ; $H_{i}$ ; m) is, by definition, a pair of a sequence

$\{P_{i}\}_{0\leqq i\leqq m}$ of $S_{2}$-subgroups of $G$ and a sequence $\{H_{i}\}_{1\leqq i\leqq m}$ of elements of $\mathcal{H}$

satisfying the following conditions:
(1) $P_{i- 1}\neq P_{i},$ $1\leqq i\leqq m$ ;
(2) $H_{i}\neq H_{i+1},1\leqq i\leqq m-1$ ;
(3) $H_{i}=P_{i-1}\cap P_{i},$ $1\leqq i\leqq m$ .

We shall call $m$ the length of the path. The path is Proper if $\bigcap_{=1}^{m}H_{i}\neq 1$ . The
path joins $P$ and $Q$ if $P_{0}=P$ and $P_{m}=Q$ .

Our aim here is to establish the uniqueness of the proper path joining
two fixed $S_{2}$-subgroups of $G$ . We first prove the following result.

(3.10) Let ( $P_{i}$ ; $H_{i}$ ; m) be a path joining $S_{2}$-subgroups $P$ and $Q$ of G. Then
the following conditions hold:
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(1) if $m\leqq 3$ , then $P\neq Q$ ;

(2) if ( $Q_{i}$ ; $K_{i}$ ; n) is another path joining $P$ and $Q$ such that $(\bigcap_{i=1}^{m}H_{i})$

$\cap(\bigcap_{i=1}^{n}K_{i})\neq 1$ , then $m=n$ and $P_{i}=Q_{i},$ $1\leqq i\leqq m$ (and therefore $H_{i}=K_{f}$

for each $i$ ).

PROOF. In either case, $m\leqq 3$ by our assumption or (3.8). We note $als$ {\rangle

that we need only consider the case $n\leqq m$ in proving (2), and consequently

the assertion is obvious if $m=1$ .
Assume then that $m=2$ . Since $H_{1}\neq H_{2}$ , we have $P\neq Q$ . Suppose

that $P\cap Q=K\in \mathcal{H}$ , then $1\neq H_{1}\cap H_{2}=H_{1}\cap H_{2}\cap K$ and $H_{1}\neq K\neq H_{2}$ because
$Q\neq P_{1}\neq P$. This, however, contradicts (3.8). Therefore $P\cap Q$ is not contained
in $\mathcal{H}$ , and consequently $n=2$ . But then $H_{i}=K_{i},$ $1\leqq i\leqq 2$ , by (3.8) and so
$P_{1}=Q_{1}$ . Thus the assertion holds if $m=2$ .

Assume next that $m=3$ . Since $Q$ and $P_{1}$ are joined by a path of length
2 while $P\cap P_{1}\in \mathcal{H},$ $P\neq Q$ as was proved above. Since $P_{1}\neq P_{2}\neq Q,$ $H_{1}\neq H_{2}\neq H_{3}$

and $H_{1}\cap H_{2}\cap H_{3}\cap K_{n}\neq 1$ , (3.8) yields that $H_{3}=K_{n}$ . Consequently, we have
that $n>1$ and that $H_{1}\neq H_{2}\neq H_{3}\neq K_{n- 1}$ . Since $H_{1}\cap H_{2}\cap H_{3}\cap K_{n-1}\neq 1$ , it
follows from (3.8) that $P_{2}=Q_{n- 1}$ . We can now apply the argument of the
preceding paragraph to conclude that $n=3$ and $P_{1}=Q_{1}$ . The proof is
complete.

We finally prove
(3.11) Let $P,$ $Q$ be $S_{2}$ -subgroups of G. Then the following conditions hold:
(1) there is at most one proper path joining $P$ and $Q$ ;
(2) $P$ and $Q$ are joined by a Proper path if and only if $P\neq Q$ and

$P\cap Q\neq 1$ ;
(3) if ( $P_{i}$ ; $H_{i}$ ; m) is a pr0per path joining $P$ and $Q$ , then $m\leqq 3$ and

$P\cap Q=\bigcap_{i=1}^{m}H_{i}$ .
PROOF. Let ( $P_{i}$ ; $H_{i}$ ; m) be a proper path joining $P$ and $Q$ , so that

$1\neq\bigcap_{i=1}^{m}H_{i}\leqq P\cap Q$ . Then (3.8) yields that $m\leqq 3$ , and therefore $P\neq Q$ by the

preceding lemma. Conversely, (2.4) shows if $P\neq Q$ and $P\cap Q\neq 1$ that $P$ and

$Q$ are joined by a proper path ( $Q_{\tau}$ ; $K_{i}$ ; n) such that $P\cap Q=\bigcap_{i=1}^{n}K_{i}$ . Thus (2)

holds. Furthermore the above argument and (3.11, 2) show that (1) and (3)

also hold.

4. Henceforth, we assume that $G$ is a group satisfying the following
conditions:

(1) $G$ satisfies Hypothesis $A$ ;
(2) $O^{2}(G)=G$ ;
(3) an $S_{2}$ -subgroup of $G$ is neither dihedral nor semi-dihedral;
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(4) $G$ is not a C-group.
The purpose of this section is to establish various properties of $G$ that

will be necessary in the succeeding one. The following is the list of them.
Let $P\in S(G)$ , then the following conditions hold:
(4.1) $|P|=q^{4},$ $q$ is a p0wer of 2 and $q>2$ ;
(4.2) $Z(P)$ and $P/Z(P)$ are elementary Abelian groups of order $q^{2}$ ;
(4.3) $|\mathcal{H}(P)|=2$ .
Let $\mathcal{H}(P)=\{H_{1}, H_{2}\}$ , then the following conditions hold:
(4.4) $H_{i},$ $1\leqq i\leqq 2$ , are elementary Abelian normal subgroups of $P$ of

order $q^{3}$ ;
(4.5) every elementary Abelian subgroup of $P$ is contained in either $H_{1}$

or $H_{2}$ ;
(4.6) $P=H_{1}H_{2}$ and $H_{1}\cap H_{2}=Z(P)$ ;
(4.7) $O^{\prime}(N(H_{i}))/H_{i}$ is a central extension of $PSL(2, q)$ by a group of odd

order, $1\leqq i\leqq 2$ ;
(4.8) $N(H_{1})\cap N(H_{2})=N(P)$ ;
(4.9) for each $i,$ $1\leqq i\leqq 2,$ $H_{i}$ has a subgroup $\hat{H}_{i}$ of order $q$ such that

$Z(Q)\cap Z(R)=\hat{H}_{i}$ for any distinct $S_{2}$ -subgroups $Q,$ $R$ of $G$ containing $H_{i}$ ;
(4.10) $Z(P)=\hat{H}_{1}\times\hat{H}_{2}$ ;
(4.11) there exist precisely three conjugacy classes of involutions of $G$ , and

we can take representatives of these classes respectively from $Z(P)-\hat{H}_{1}-\hat{H}_{2}$ ,
$\hat{H}_{1}-\{1\}$ and $\hat{H}_{2}-\{1\}$ ;

(4.12) $C(x)\leqq N(P)$ for each $x$ in $Z(P)-\hat{H}_{1}-\hat{H}_{2}$ ;
(4.13) $C(x)\leqq N(H_{i})$ for each $x\neq 1$ in $\hat{H}_{i}$ and each $i$ ;
(4.14) if $h_{i}\in H_{i}-Z(P),$ $1\leqq i\leqq 2$ , then $[h_{1}, h_{2}]\in Z(P)-\hat{H}_{1}-\hat{H}_{2}$ .
Let $Q\in S(G)$ , then the following conditions hold:
(4.15) there exists at most one path of length $\leqq 3$ joining $P$ and $Q$ ;
(4.16) $P$ and $Q$ are joined by a path of length $\leqq 3$ if and only if $P\neq Q$

and $P\cap Q\neq 1$ .
Let ( $P_{i}$ ; $K_{i}$ ; m) be a path of length $m$ joining $P$ and $Q$ , then the following

conditions hold:
(4.17) if $m=2,$ $P\cap Q=K_{1}\cap K_{2}=Z(P_{1})$ ;
(4.18) if $m=3,$ $P\cap Q=K_{1}\cap K_{2}\cap K_{3}=Z(P_{1})\cap Z(P_{2})=K_{2}$ ;
(4.19) if $m=4,$ $P\cap Q$ contains no involutions that are conjugate to the

elements of $Z(P)-\hat{H}_{1}$ – $H,$ .
Finally, we have
(4.20) precisely $1+2(q+q^{2}+q^{3})S_{2}$ -subgroups of $G$ intersect $P$ in the non-

identity elements.
The outline of the proof is as follows. In addition to the family $\mathcal{H}$ , two

other families of 2-subgroups of $G$ will come into our consideration. Namely,
for each subgroup $X$ of $G$ , we dePne
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$\mathcal{Z}(X)=$ { $\Omega_{1}(Z(P));P\in S(G)$ and $\Omega_{1}(Z(P))\leqq X$}
and

$\mathcal{H}^{\prime}(X)=$ { $H;H\in \mathcal{H}(X)$ and $|\mathcal{Z}(H)|>1$ }.

The families $\mathcal{Z}(G)$ and $\mathcal{H}^{\prime}(G)$ will be denoted simply by $\mathcal{Z}$ and $\mathcal{H}^{\prime}$ . Still more
important than these is the family $JC(P)$ , where $P\in S(G)$ , consisting of pairs
$(H_{J}, H_{2})$ of distinct elements of $\mathcal{H}^{\prime}(P)$ such that $N_{P}(H_{1})=N_{P}(H_{2})$ . We first
show that $JC(P)$ is in fact not empty. In proving this, Goldschmidt’s 2-fusion
theorem [5] will be used significantly. Taking $(H_{1}, H_{2})$ from $X(P)$ , we then
investigate the structure of $Q=N_{p}(H_{i})$ and $N(H_{i}),$ $1\leqq i\leqq 2$ . We prove among
other things that there is a power $q$ of 2 such that $q^{3}\leqq|Q|\leqq q^{4}$ , that $|P:Q|$

$\leqq 2$ , and that $\mathcal{H}^{\prime}(P)=\{H_{1}, H_{2}\}$ . If $q=2$ , then $|P|\leqq 32$ and it will not be dif-
ficult to derive a contradiction, so we assume $q\neq 2$ . We then show that
$\mathcal{H}=\mathcal{H}^{\prime}$ . In proving this, Corollary 4 or 5 of [5] will be useful. At this
stage, we can count the number of $S_{2}$-subgroups of $G$ which have nontrivial
intersections with $P$, and in particular show that there is $R\in S(G)$ such that
$P\cap R=1$ . On the other hand, we can show that $Z(Q)$ has subgroups $\hat{H}_{ir}$

$1\leqq i\leqq 2$, of index $q$ such that every involution of $Z(Q)-\hat{H}_{1}-\hat{H}_{2}$ has a 2-closed
centralizer. It then follows if $P\neq Q$ that the subgroups $Z(P),\hat{H}_{1}$ and $\hat{H}_{2}$

partition $Z(Q)$ , which, however, is not possible as $q\neq 2$ . Thus we conclude
that $P=Q$ . Once this is established, it is not difficult to verify $(4.1)-(4.20)$ .

Before entering into details, a few remarks are in order. First, it is
clear that Hypothesis A implies Hypothesis $A^{\prime}$ of Section 3, so that the
results there are applicable. Secondly, since $G$ is not a TI-group, $\mathcal{H}$ is not
empty in $G$ . Lastly, if $H\in \mathcal{H}$ then $N(H)/H$ is a TI-group by (3.1), and hence
the structure theorem of TI-groups will be essential. We quote the following
result from [13, Theorems 2, 3 and 6].

THEOREM. Let $N$ be a TI-group which is not 2-closed, then $N$ is solvable
if and only if $m(N)=1$ . If $N$ is nonsolvable, then $O^{\prime}(N)/Z(O^{\prime}(N))$ is iso-
morPhic to one of the groups $PSL(2, q),$ $Sz(q)$ and $PSU(3, q),$ $q$ a Power of 2
and $q>2$ .

We begin by proving an analogue of [14, Lemma 8].

(4.21) Assume that the elements of $\mathcal{Z}$ are TI-sets. If $P\in S(G),$ $X\in \mathcal{Z}$ and
$P\cap X\neq 1$ , then $X\leqq P$.

PROOF. If $Z(P)\cap X\neq 1$ , the assertion follows from (3.4). Otherwise, let
$1\neq x\in P\cap X$. Then $H=C_{P}(x)\in \mathcal{H}$ by (3.2). Hence, there is $Y\in \mathcal{Z}(H)$ such
that $x\in Y$, by (3.1). Since $x\in X\cap Y,$ $X=Y\leqq P$ by our assumption, $q$ . $e$ . $d$ .

(4.22) If $H\in \mathcal{H}^{\prime}$ , then $|H|\neq 4$ .
PROOF. Let $H\leqq P\in S(G)$ . Since $|\mathcal{Z}(H)|>1,$ $H-Z(P)$ contains a centraE

involution $x$ of $G$ . By (3.2), $C_{p}(x)=H$, so $|H|\neq 4$ by the lemma of Suzuki
[11, Lemma 4].
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(4.23) If $H\in \mathcal{H},$ $N(H)$ is nonsolvable and $P,$ $Q$ are distinct $S_{2}$-subgroups
of $N(H)$ , then the following conditions hold:

(1) the subgroup $\Omega_{1}(Z(P))\cap\Omega_{1}(Z(Q))$ does not depend up0n the choice of
$P$ and $Q$ ;

(2) if $\Omega_{1}(Z(P))\neq\Omega_{1}(Z(Q))$ , then

$|P:H|=|\Omega_{1}(Z(P))$ : $\Omega_{1}(Z(P))\cap\Omega_{1}(Z(Q))|$ .
PROOF. Since $N(H)$ is nonsolvable, it follows from the structure theorem

of TI-groups that $P$ acts by conjugation transitively on $S(N(H))-\{P\}$ . Hence,
$\Omega_{1}(Z(P))\cap\Omega_{1}(Z(Q))=\Omega_{1}(Z(P))\cap\Omega_{1}(Z(R))$ for any $R\in S(N(H))-\{P\}$ , which
implies the validity of (1).

To prove (2), we set $Z=\Omega_{1}(Z(P))\cap\Omega_{1}(Z(Q)),$ $q=|P:H|,$ $r=|\Omega_{1}(Z(P))|_{r}$

$s=|Z|$ and $t=|\Omega_{1}(H)|$ . Hypothesis A and (1) show that $\Omega_{1}(H)-Z$ is the
direct union of $(q+1)$ subsets $\Omega_{1}(Z(R))-Z,$ $R$ ranging over all $S_{2}$-subgroups
of $N(H)$ . Consequently, $t-s=(q+1)(r-s)$ whence $t=qr+r-qs$ . In particular,
$t-r(\neq 0)$ is divisible by $qs$ and hence $r\geqq qs$ . Therefore, setting $t^{\prime}=t/s$ and
$r^{\prime}=r/s$ , we have that $t^{\prime}=qr^{\prime}+r^{\prime}-q$ and that $r^{\prime}\geqq q$ . As $t^{\prime}>r^{\prime}\geqq q$ and $qr^{\prime}>q_{r}$

it follows that $r^{\prime}=q,$ $q$ . $e$ . $d$ .
(4.24) Assume that the elements of $\mathcal{Z}$ are not TI-sets. Then, for any

$H\in \mathcal{H},$ $N(H)$ contains an $S_{2}$ -subgroup of $G$ .
PROOF. Let $H\leqq P\in S(G)$ and set $X=\Omega_{1}(Z(P))$ . By our assumption,

there is $Y$ in $\mathcal{Z}$ such that $X\neq Y$ and $X\cap Y\neq 1$ . Take $Q\in S(G)$ so that
$Y=\Omega_{1}(Z(G))$ . Then $H_{1}=P\cap Q\in \mathcal{H}$ and $P\leqq N(H_{1})$ by (3.4). In particular, we
can assume that $H\neq H_{1}$ . Furthermore, we can assume that $|\mathcal{Z}(H)|>1$ , be-
cause otherwise $P\leqq N(X)=N(H)$ . Let $X\neq Z\in \mathcal{Z}(H)$ . Then $H_{1}\cap Z=X\cap Z$

by (3.5). Suppose $X\cap Z=1$ , then, as $Z$ is not cyclic by our assumption, (4.23)
yields that

$|P:H_{1}|=|X:X\cap Y|<|X|=|Z|\leqq|P:H_{1}|$ ,

a contradiction. Thus $X\cap Z\neq 1$ . We can take $R\in S(G)$ so that $H\leqq R$ and
$Z=\Omega_{1}(Z(R))$ (see the proof of (3.1, 4)). Clearly, $P\cap R=H$, so the assertion
follows from (3.4).

(4.25) We have $|\mathcal{H}^{\prime}(P)|\geqq 2$ for each $P\in S(G)$ .
PROOF. If $\mathcal{H}(P)=\mathcal{H}^{\prime}(P)$ , the assertion follows from (2.1), so we assume

that there is $H\in \mathcal{H}(P)$ such that $|\mathcal{Z}(H)|=1$ . Since such $H$ is unique, we are
reduced to showing that $|\mathcal{H}(P)|\geqq 3$ . Suppose, by way of contradiction, that
$\mathcal{H}(P)=\{H, H_{1}\}$ with $H\neq H_{1}$ . Let $x$ be a central involution of $G$ contained
in $P$. If $x$ is not contained in $Z(P)$ , then $C_{P}(x)\in \mathcal{H}(P)$ by (3.2) and so $x\in H$

or $x\in H_{1}$ . Since $\Omega_{1}(H)=\Omega_{1}(Z(P))$ by Hypothesis $A$ , every central involution
of $G$ contained in $P$ is necessarily contained in $H_{1}$ . On the other hand, $H_{1}$

is normal in $P$, so Hypothesis A implies that every involution of $H_{1}$ is a
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central involution of $G$ . We conclude that $A=\Omega_{1}(H_{1})$ is a strongly closed
Abelian subgroup of $P$ with respect to $G$ . By the 2-fusion theorem of Gold-
schmidt [5], the normal closure $K$ of $A$ is the direct product of the simple
groups isomorphic to $PSL(2, q)$ with $q\equiv 0,3$ or 5 (mod8), $Sz(q),$ $PSU(3, q),$ $q$

a power of 2, or a group of type JR, and if $A\leqq Q\in S(K)$ then $A=\Omega_{1}(Q)$ .
Since every 2-1ocal subgroup of $G$ is 2-constrained (and core-free) by a
result of Gorenstein [7, Theorem 4], $K$ is in fact a simple TI-group. Let
$y\in N(H)-N(P)$ and set $H_{2}=H_{1}^{y}$ . Then $\Omega_{1}(Z(P))=\Omega_{1}(Z(P))^{y}\leqq A\cap A^{y}$ and so
$\langle A, A^{y}\rangle$ is a 2-subgroup of $K$ . Thus $A=A^{y}$ by the above remark, which,
however, is a contradiction because $H_{1}\neq H_{2}$ .

(4.26) $JC(P)$ is not empty for each $P\in S(G)$ .
PROOF. If $H\in \mathcal{H}^{\prime}(P)$ is not normal in $P$, take $x$ in $N_{P}(N_{P}(H))-N_{P}(H)$ .

Then clearly $(H, H^{x})\in JC(P)$ . If every element of $\mathcal{H}^{\prime}(P)$ is normal in $P$, the
assertion follows from the preceding lemma.

(4.27) We have $\mathcal{Z}(H)\neq \mathcal{Z}(N(H))$ for each $H\in \mathcal{H}$ .
PROOF. Suppose, by way of contradiction, that $\mathcal{Z}(H)=\mathcal{Z}(N(H))$ , and let

$P\in S(N(H))$ , then as $\mathcal{Z}(P)=\mathcal{Z}(H)$ , we have $N(P)\leqq N(\langle \mathcal{Z}(H)\rangle)=1V(H)$ . Con-
sequently, $P\in S(G)$ . Let $H\neq H_{1}\in \mathcal{H}(P)$ , then (3.5) yields $\mathcal{Z}(H_{1})=\mathcal{Z}(H\cap H_{1})$

$=\{\Omega_{J}(Z(P))\}$ , whence $H_{1}=O_{2}(N(\Omega_{1}(Z(P))))$ . Since $H_{1}$ was arbitrary, we con-
clude that $\mathcal{H}(P)=\{H, H_{1}\}$ , contrary to (4.25). Hence the lemma holds.

(4.28) $SuPPose$ that $P\in S(G)$ has a cyclic center. Then no element of
$\ovalbox{\tt\small REJECT}^{\prime}(P)$ is normal in $P$.

PROOF. Suppose that $H\in \mathcal{H}^{\prime}(P)$ is normal in $P$. Then Hypothesis A
implies that every involution of $H$ is central in $G$ . Since $|\mathcal{Z}(H)|>1,$ $\Omega_{1}(H)$

is not cyclic and so $H$ contains a four-group A normalized by $P$. Let
$a\in A-Z(P)$ , then $H=C_{p}(a)$ by (3.2). On the other hand, $C_{P}(a)=C_{P}(A)$ whence
$|P:H|=2$ . Since $O^{2}(G)=G$ , it follows from the transfer lemma of Thompson
[15, Lemma 5.38] that every involution of $G$ is central in $G$ . Consequently,
if $H\neq H_{1}\in \mathcal{H}^{\prime}(P)$ , then $\Omega_{1}(H_{1})\cap H=\Omega_{1}(H_{1}\cap H)=\Omega_{1}(Z(P))$ by (3.5). Hence
$\Omega_{1}(H_{1})$ is a four-group and $H_{1}\cap H$ is either cyclic or generalized quaternion.
Furthermore, we have $H_{1}=\Omega_{1}(H_{1})(H_{1}\cap H)$ and so $H_{1}^{2}=(H_{1}\cap H)^{2}\neq 1$ as $H_{1}$ is
not a four-group by (4.22). Hence $\Omega_{1}(H_{1}^{2})=\Omega_{1}((H_{1}\cap H)^{2})=\Omega_{1}(Z(P))$ whence
$P\leqq N(\Omega_{1}(H_{1}^{2}))=N(H_{1})$ . We now apply the above argument to $H_{1}$ and conclude
that $H^{2}=(H_{1}\cap H)^{2}=H_{1}^{2}$ , which, however, is not possible as $H\neq H_{1}$ .

(4.29) If $P,$ $Q$ are distinct $S_{2}$ -subgroups of $G$ and $\Omega_{1}(Z(P))=\Omega_{1}(Z(Q))$ , then
the following conditions hold:

(1) elements of $\mathcal{Z}$ are TI-sets;
(2) $P\cap Q\in \mathcal{H}-\mathcal{H}^{\prime}$ .
PROOF. Firstly, $H=P\cap Q\in \mathcal{H}$ and $P\leqq N(H)$ by (3.4). Moreover, if

$X\in \mathcal{Z}$ and $X\cap H\neq 1$ , then $X\leqq H$ by (3.4). Hence (1) is a consequence of (2).
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There is an element $X$ of $\mathcal{Z}(P)$ such that $X\not\leqq H$, by (4.27). By the above
remark, $X\cap H=1$ . Consequently, if $X$ is not cyclic, then $N(H)$ is nonsolvable
and hence (2) holds by (4.23). If $X$ is cyclic, (2) holds by the preceding lemma.

(4.30) Let $H\in \mathcal{H}^{\prime}$ and let $Q_{i},$ $1\leqq i\leqq 2$ , be distinct $S_{2}$ -subgroups of $N(H)$ .
Then $\Omega_{1}(Z(Q_{1}))\neq\Omega_{1}(Z(Q_{2}))$ .

PROOF. Let $Q_{i}\leqq P_{i}\in S(G)$ , $1\leqq i\leqq 2$ . Then $\Omega_{1}(Z(P_{1}))\neq\Omega_{1}(Z(P_{2}))$ by
\langle 4.29, 2). On the other hand, $\mathcal{Z}(Z(Q_{i}))=\{\Omega_{1}(Z(P_{i}))\},$ $1\leqq i\leqq 2$ , by (2.1) and
(3.5). Hence $\Omega_{1}(Z(Q_{1}))\neq\Omega_{1}(Z(Q_{2}))$ as asserted.

For the remainder of this section, we Px the following notation:

$P\in S(G)$ ;

$(H_{1}, H_{2})\in JC(P)$ ;

$N_{i}=N(H_{i})$ , $1\leqq i\leqq 2$ :
$Q=N_{P}(H_{i})$ , $1\leqq i\leqq 2$ ;

$X=\Omega_{1}(Z(Q))$ .
Furthermore, in a few lemmas below, let $Q\neq Q_{i}\in S(N_{i})$ , and set $X_{i}=$

$\Omega_{1}(Z(Q_{i})),$ $1\leqq i\leqq 2$ . Note that $X_{i}\neq X$ by (4.30), and that $X_{1}\cap H_{2}=X_{1}\cap X$

and $X_{2}\cap H_{1}=X_{2}\cap X$ by (3.7).
(4.31) The following conditions hold:
(1) $|Q:H_{1}|=|Q:H_{2}|$ ;
(2) $|Q$ : $H_{i}|=|X:X_{i}\cap X|\geqq|X_{i}\cap X|,$ $1\leqq i\leqq 2$ ;
(3) $Q=X_{1}H_{2}=X_{2}H_{1}$ .
PROOF. Note first that $X_{1}\cap X_{2}=1$ by (3.9). Hence, if $i\neq j,$ $|X:X_{i}\cap X|$

$\geqq|X_{j}\cap X|$ . Assume first that $N_{i}$ is nonsolvable for each $i,$ $1\leqq i\leqq 2$ . Then,
by (4.23),

$|Q:H_{1}|=|X_{1}$ : $X_{1}\cap X|$

$\leqq|Q:H_{2}|$

$=|X_{2}$ : $X_{2}\cap X|$

$\leqq|Q:H_{1}|$ .
Therefore the assertion holds in this case.

Assume next that either $N_{1}$ or $N_{2}$ , say $N_{2}$ , is solvable. Then $m(Q/H_{2})=1$

and so $|X_{1}$ : $X_{1}\cap X|=2=|\Omega_{1}(H_{1}):X|$ as $\Omega_{1}(H_{1})\cap H_{2}=X$ by Hypothesis A
and (3.7). This implies first that $N_{1}$ is solvable by (4.23), and next that
$|\Omega_{1}(H_{1}):X_{1}\cap X|=4$ . Therefore, setting $C=C_{N_{1}}(X_{1}\cap X)$ , we have that $C$ has
precisely three $S_{2}$-subgroups (see (4.30)). On the other hand, $C/H_{1}$ is a TI-
group and so $|S(C)|\equiv 1$ (mod $|Q:H_{1}|$ ). Thus $|Q:H_{1}|=2$ . Since $N_{1}$ is solv-
able, we also have $|Q:H_{2}|=2$ . Hence the lemma holds in this case as well.

NOTATION. We define $q=|Q:H_{\iota}|,$ $1\leqq i\leqq 2$ .



562 K. GOMI

(4.32) The following conditions hold:
(1) $H_{i}$ is elementary Abelian, $1\leqq j\leqq 2$ ;
(2) $Q=H_{1}H_{2}$ and $H_{1}\cap H_{2}=X$ ;
(3) $|X|\geqq 4$ .
PROOF. By the preceding lemma, $H_{i}=X_{i}(H_{1}\cap H_{2})$ , whence $H_{1}^{2}=(H_{1}\cap H_{2})^{2}$

$=H_{2}^{2}$ . Since $H_{1}\neq H_{2}$ , we must have $H_{1}^{2}=1=H_{2}^{2}$ , proving (1). As $Q=H_{1}H_{2}$

by (4.31), it follows from (1) that $H_{1}\cap H_{2}=X$. Suppose $|X|=2$, then, as
$|X|=q|X_{1}\cap X|$ by (4.31), we have $q=2$ and $X_{1}\cap X=1$ . But then by (2),
$|H_{1}|=q|X|=4$ , contrary to (4.22). Hence $|X|\geqq 4$ .

(4.33) The following conditions hold:
(1) every elementary Abelian subgroup of $Q$ is contained in either $H_{1}$ or $H_{2}$ ;
(2) $\mathcal{H}^{\prime}(Q)=\{H_{1}, H_{2}\}$ ;
(3) either $P=Q$ or $|N_{P}(Q):Q|=2$ and $H_{1}$ is conjugate to $H_{2}$ in $N_{P}(Q)$ .
PROOF. Let $h_{1}\in H_{1}-X$. As $H_{1}=X_{1}X$ by (4.31, 3) and (4.32, 2), $h_{1}$ can be

written as $h_{1}=x_{1}x$ with $x_{1}\in X_{1}-X$ and $x\in X$ , whence $C_{Q}(h_{1})=C_{Q}(x_{1})=H_{1}$

by (3.6). Likewise we have $C_{Q}(h_{2})=H_{2}$ for each $h_{2}\in H_{2}-X$. It then follows
from (4.32) that every involution of $Q$ is contained in either $H_{1}$ or $H_{2}$ . Hence
(1) holds. Consequently, if $H\in \mathcal{H}^{\prime}(Q)$ , we have either $|\mathcal{Z}(H\cap H_{1})|>1$ or
$|\mathcal{Z}(H\cap H_{2})|>1$ , whence $H=H_{1}$ or $H_{2}$ by (3.5). (3) is an immediate con-
sequence of (2).

(4.34) For each $i,$ $1\leqq i\leqq 2,$ $H_{t}$ has a subgroup $\hat{H}_{i}$ such that $Z(R)\cap Z(S)$

$=\hat{H}_{i}$ for any distinct $S_{2}$ -subgroups $R,$ $S$ of $N_{i}$ . Furthermore the following con-
ditions hold:

(1) $\hat{H}_{1}\cap\hat{H}_{2}=1$ ;

$(2)(3)$
$if1\neq x\in\hat{H}_{i},then|\hat{H}_{i}|\leqq q,1\leqq i\leqq 2_{i}C(x)\leqq N(H_{i})$

.
PROOF. In proving the Prst part, we need only consider the case $i=1$ ,

and must show that $Z(R)\cap X$ does not depend upon the choice of $R\in S(N_{1})$ ,
$R\neq Q$ . If $q>2,$ $N_{1}$ is nonsolvable by (4.31) and the assertion holds by (4.23).

Assume then that $q=2$ . Then $|X|=4$ and $Z(R)\cap X$ is a subgroup of $X$ of
order 2 for each $R\in S(N_{i})-\{Q\}$ and each $i$ , by (4.31) and (4.32). SuPpose
that $R,$ $S\in S(N_{1})-\{Q\}$ and $Z(R)\cap X\neq Z(S)\cap X$. Then $Z(T)\cap X$ does not
depend upon the choice of $T\in S(N_{2})-\{Q\}$ , by (3.9). Hence $H_{1}$ is not con-
jugate to $H_{2}$ in $N_{P}(Q)$ whence $P=Q$ by the preceding lemma. But then
$P\cong Z_{2}\times D_{8}$ and either $O(G)\neq O_{2^{\prime},2}(G)$ or $O^{2}(G)\neq G$ by the theorem of Harada
[9], contrary to our hypothesis. Hence the assertion holds in this case as
well.

(1) and (2) are consequences of (3.9) and (4.31). Let $1\neq x\in\hat{H}_{1}$ , then
$C_{p}(x)\in S(C(x))$ by (3.5). Likewise, $C_{p_{1}}(x)\in S(C(x))$ if $Q_{1}\leqq P_{1}\in S(G)$ . As $C(x)$

is not 2-closed, $O_{2}(C(x))\in \mathcal{H}$ . But $O_{2}(C(x))\leqq C_{P}(x)\cap C_{P_{1}}(x)\leqq P\cap P_{1}=H_{1}$ ,
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whence $O_{2}(C(x))=H_{1}$ . Hence $C(x)\leqq N(H_{1})$ . The proof of (4.34) is complete.
(4.35) If $x\in X-\hat{H}_{1}-\hat{H}_{2}$ and $C(x)\not\leqq N(P)$ , then $\mathcal{H}\neq \mathcal{H}^{\prime}$ and $x\in Z(P)$ .
PROOF. Let $y\in C(x)-N(P)$ . Suppose first that the elements of $\mathcal{Z}$ are not

TI-sets. Then $P=Q$ and $\mathcal{H}=\mathcal{H}^{\prime}$ by (4.24) and (4.29). Therefore $\mathcal{H}(P)=$

$\{H_{1}, H_{2}\}$ by (4.33, 2). On the other hand, $x=x^{y}\in X\cap X^{y}$ , so $P\cap P^{y}\in \mathcal{H}$ by
(3.4). Consequently, $x\in X\cap X^{y}=\hat{H}_{1}$ or $\hat{H}_{2}$ by the preceding lemma, contrary
to our assumption. Hence the elements of $\mathcal{Z}$ are TI-sets.

By (3.5), $C_{p}(x)$ and $C_{p}(x)^{y}$ are distinct $S_{2}$-subgroups of $C(x)$ , so $ H=O_{2}(C(x)\rangle$

$\in \mathcal{H}$ by (3.3). Suppose that $x$ is not contained in $Z(P)$ . Then $H\in \mathcal{H}^{\prime}$ because
otherwise $\Omega_{1}(H)=Z(P)$ , and we have $N_{P}(H)=C_{P}(x)\neq P$ because $x$ is central
in some $S_{2}$-subgroup of $N(H)$ . Thus if $z\in N_{P}(N_{P}(H))-N_{P}(H)$ , then $(H, H^{z})$

$\in JC(P)$ . As a consequence, $\mathcal{H}^{\prime}(N_{P}(H))=\{H, H^{z}\}$ by (4.33, 2). But $H_{i}\leqq C_{P}(x)$

$=N_{P}(H)$ , so $H=H_{1}$ or $H_{2}$ and hence $N_{P}(H)=Q$ . Again we have $x\in\hat{H}_{1}$ or $\hat{H}_{2r}$

contrary to our assumption. Hence $x\in Z(P)$ . Since $x\in Z(P)\cap Z(P)^{y}$ and
elements of $\mathcal{Z}$ are TI-sets, $Z(P)=Z(P)^{y}$ and hence $P\cap P^{y}\in \mathcal{H}-\mathcal{H}^{\prime}$ by (4.29).
The proof is complete.

(4.36) We have $\mathcal{H}^{\prime}(N_{P}(Q))=\{H_{1}, H_{2}\}$ .
PROOF. In view of (4.33, 2), we may assume that $P\neq Q$ , so that elements

of $\mathcal{Z}$ are TI-sets by (4.24). The proof differs according as $Z(P)$ is cyclic or
not.

Assume first that $Z(P)$ is not cyclic. Let $Z\in \mathcal{Z}(N_{P}(Q))$ . Since $|N_{P}(Q):Q|$

$=2$ by (4.33, 3), $Q\cap Z\neq 1$ and hence $H_{i}\cap Z\neq 1,$ $i=1$ or 2, as every involution
of $Q$ is contained in $H_{1}$ or $H_{2}$ . Thus $Z\leqq H_{1}$ or $H_{2}$ by (4.21). Consequently,
if $H\in \mathcal{H}^{\prime}(N_{P}(Q))$ , then $|\mathcal{Z}(H\cap H_{i})|>1$ for $i=1$ or 2 and so $H=H_{1}$ or $H_{2}$ by
(3.5). Hence the assertion holds in this case.

Assume next that $Z(P)$ is cyclic. Let $H\in \mathcal{H}^{\prime}(N_{P}(Q))$ . By (4.28), $H$ is not
normal in $P$ and so $(H, H^{\prime})\in JC(P)$ for some $H^{\prime}\in \mathcal{H}^{\prime}(P)$ . As a consequence,
$|Z(N_{P}(H))|\geqq 4$ by (4.32, 3). Let $N_{P}(H)\neq R\in S(N(H))$ . If $H_{1}\neq H\neq H_{2},$ ( $ 3.9\rangle$

yields that $Z(R)\cap Z(Q_{i})=1$ for each $Q_{i}\in S(N_{i})-\{Q\}$ and each $i,$ $1\leqq i\leqq 2$ .
Hence $(Z(R)-\{1\})\cap Q=(Z(R)-\{1\})\cap(X-\hat{H}_{1}-\hat{H}_{2})$ . Since $|Z(R)|\geqq 4$ and
$|N_{P}(Q):Q|=2$ , $Z(R)\cap Q$ contains an element $x\neq 1$ . Since $R\leqq C(x)$ but
$R\not\leqq N(P),$ $(4.35)$ forces $\langle x\rangle=Z(P)$ . Therefore if $R\leqq S\in S(G)$ , then $\langle x\rangle=$

$Z(S)$ by (2.1) and (3.5). But then $H=P\cap S\in \mathcal{H}-\mathcal{H}^{\prime}$ by (4.29), contrary to
$H\in \mathcal{H}^{\prime}(N_{P}(Q))$ . Hence we must have $H=H_{1}$ or $H_{2}$ in this case as well.

(4.37) We have $|P:Q|\leqq 2$ and $\mathcal{H}^{\prime}(P)=\{H_{1}, H_{2}\}$ .
PROOF. By the preceding lemma, $N_{P}(N_{P}(Q))$ permutes $H_{1}$ and $H_{2}$ , and so

normalizes $Q=H_{1}H_{2}$ . Hence $N_{P}(N_{P}(Q))=N_{P}(Q)$ , which implies that $ N_{P}(Q\rangle$

$=P$. Therefore the assertions follow from (4.33) and (4.36).

(4.38) We have $q>2$ .
PROOF. Suppose that $q=2$ . Then $|X|=4$ and $|\hat{H}_{i}|=2$, so $Q\cong Z_{2}\times D_{8}$ .
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We will show that either $O(G)\neq O_{2,2}(G)$ or $O^{2}(G)\neq G$ , which obviously con-
tradicts our hypothesis. Harada’s theorem disposes of the case $P=Q$ , so we
assume that $P\neq Q$ , in which case elements of $\mathcal{Z}$ are TI-sets by (4.24) and
hence $X\neq Z(P)$ . Set $\langle b_{i}\rangle=\hat{H}_{i},$ $1\leqq i\leqq 2$ , and $c=b_{1}b_{2}$ . Since $b_{1}$ is conjugate
to $b_{2}$ in $P$ by (4.33, 3), $ Z(P)=\langle c\rangle$ . By the same reason, $[Q, Q]=\langle c\rangle$ . On
the other hand, $P/X\cong D_{8}$ , and so there is an element $d$ of $P-Q$ such that
$d^{2}\in X$ and consequently $d^{2}\in Z(P)$ . Replacing $d$ by $b_{1}d$ , if necessary, we may
assume that $d^{2}=1$ . Take $a_{1}\in H_{1}-X$ and set $a_{2}=a_{1}^{d}$ . Then $a_{2}\in H_{2}-X$, so
$[a_{1}, a_{2}]=c$ by (4.33, 1). We can now calculate $C_{p}(d)$ . It is easy to see that
$|C_{p}(d)|=8$ . Suppose $O^{2}(G)=G$ , then $d$ is conjugate to an element of $X$ by
Thompson’s lemma. In particular, $|C(d)|$ is divisible by 16. Thus $C_{P}(d)$ is
not an $S_{2}$-subgroup of $C(d)$ , which implies that $C_{P}(d)\in \mathcal{H}$ (see the proof of
(3.2)). Moreover, $d$ is not contained in $Z(P)$ , so $C_{P}(d)\in \mathcal{H}^{\prime}$ , contradicting the
preceding lemma. Therefore we have $O^{2}(G)\neq G$ in this case.

Since $Q/H_{i}$ is elementary Abelian of order $q$ , (4.38) has the following
immediate consequence.

(4.39) $O^{\prime}(N(H_{i}))/H_{i}$ is a central extension of $PSL(2, q)$ by a group of odd
order, $1\leqq i\leqq 2$ .

(4.40) We have $\mathcal{H}=\mathcal{H}^{\prime}$ .
PROOF. Suppose $\mathcal{H}\neq \mathcal{H}^{\prime}$ , then $\mathcal{H}(P)\neq \mathcal{H}^{\prime}(P)$ and elements of $\mathcal{Z}$ are TI-

sets by (4.29). Let $H\in \mathcal{H}(P)-\mathcal{H}^{\prime}(P)$ and set $N=N(H)$ . Note that $N(Q)=$

$N(P)\leqq N(Z(P))=N$ by (4.37).

Suppose that $H\leqq Q$ . Then $X\leqq H$ and hence $X=Z(P)$ because $\Omega_{1}(H)=$

$Z(P)$ . Since elements of $\mathcal{Z}$ are TI-sets, $\hat{H}_{i}=1,1\leqq i\leqq 2$ , and $Z(R)\cap H=1$ if
$Q\neq R\in S(N_{1})$ , by (4.21). As $2<q=|Z(R)|,$ $N$ is nonsolvable, so $P=Q$ because
$H<Q,$ $|P:Q|\leqq 2$ and $Q$ is normal in $N(P)$ . However this contradicts the
following general lemma.

(4.41) Let $N$ be a group with $C_{N}(O_{2}(N))\leqq 0_{2}(N)$ and with class 2 $S_{2}-$

subgroups. Then for any distinct $S_{2}$ -subgroups $S,$ $T$ of $N$, we have $Z(S)\pm Z(T)$ .
PROOF. Suppose that $Z(S)=Z(T)$ . Set $ M=\langle S, T\rangle$ and $Z=Z(S)=Z(T)$ .

Then $C_{M}(O_{2}(M))\leqq 0_{2}(M)$ and $Z\leqq Z(M)$ . Consequently, setting $\overline{M}=M/Z$, we
obtain that $C_{\overline{M}}(O_{2}(\overline{M}))\leqq O_{2}(\overline{M})$ . Since $\overline{M}$ has Abelian $S_{2}$-subgroups, this yields

that $\overline{M}$ is 2-closed, contrary to the fact that $S\neq T,$ $q$ . $e$ . $d$ .
Hence $H_{\mp}^{\mathcal{F}}Q$ . Therefore $|P:Q|=2$ and so $P=QH$. Since $N_{H}(H_{1})\not\leqq H_{1}$ ,

$H_{1}<H_{1}N_{H}(H_{1})\leqq Q$ . Moreover $H_{1}N_{H}(H_{1})$ is normal in $N_{N_{1}}(Q)$ , whence $H_{1}N_{H}(H_{1})$

$=Q$ . Consequently, $P=H_{1}H$ and $H_{1}\cap H=Z(P)$ as $\Omega_{1}(H)=Z(P)$ . In partic-
ular, $P/H$ is an elementary Abelian group of order $\geqq q$ , and so $O^{\prime}(N)/H$

is a central extension of $PSL(2, r),$ $r\geqq q$ , by a group of odd order. Since
$H\leqq HX<P$ and $HX$ is normal in $N(P)$ , we conclude that $HX=H$ whence
$X=Z(P)$ . Set $\overline{N}=N/X$ and $M=C(X)$ . Note that $M\leqq N$. Since $O_{2}(M)=H$
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and $C_{\overline{M}}(O_{2}(\overline{M}))\leqq 0_{2}(\overline{M}),$ $Z(\overline{P})\leqq\overline{H}$, which implies that the second center $Z_{2}$ of
$P$ is contained in $H$. On the other hand, $[Z_{2}, H_{1}]\leqq X\leqq H_{1}$ and therefore
$Z_{2}\leqq Q\cap H$. Since $H_{1}<H_{1}Z_{2}$ and $H_{1}Z_{2}$ is normal in $N_{N_{1}}(Q)$ , it follows that
$H_{1}Z_{2}=Q$ whence $Z_{2}=Q\cap H$. Consequently, $\overline{H}$ is Abelian and $\overline{P}$ has class 2.
Furthermore $Z_{2}$ is not normal in $N$ by (4.41) applied to $\overline{M}$, which implies that
$\overline{H}$ is elementary. Suppose that $\overline{N}$ has a subgroup $\overline{K}=K/X$ of index 2. Then,
as $O^{2}(N/H)=N/H,$ $|H:H\cap K|=2$ . Since $Z_{2}$ is not normal in $N$, we conclude
that $|Z_{2}$ : $Z_{2}\cap K|=2$ . But then $H_{1}<H_{1}(Z_{2}\cap K)<Q$ and $H_{1}(Z_{2}\cap K)$ is normal
in $N_{N_{1}}(Q)$ , a contradiction. Hence $O^{2}(\overline{N})=\overline{N}$ and consequently every involu-
tion of $\overline{P}$ is conjugate to an element of $\overline{Q}$ in $\overline{N}$, by Thompson’s lemma. Since
$\overline{H}$ is elementary, $\overline{Q}$ is not strongly closed in $\overline{P}$ with respect to $\overline{N}$. However
$\overline{Q}$ is weakly closed in $\overline{P}$ with respect to $\overline{N}$, because $\mathcal{H}^{\prime}(P)=\{H_{1}, H_{2}\}$ and
$Q=H_{1}H_{2}$ . We can now apply Corollary 4 or 5 of [5], and conclude that
$m([\overline{Q},\overline{t}])\leqq 1$ for each involution $\overline{t}$ of $\overline{P}-\overline{Q}$ , whereas $|[\overline{Q},\overline{t}]|=q$ as $\overline{t}$ inter-
changes $\overline{H}_{1}$ and $\overline{H}_{2}$ . This contradiction completes the proof.

The lemma (4.40) combined with (4.35) and (4.37) has the following im-
mediate consequences.

(4.42) $C(x)\leqq N(P)$ for each $x\in X-\hat{H}_{1}-\hat{H}_{2}$ .
(4.43) $\mathcal{H}(P)=\{H_{1}, H_{2}\}$ .
We next eliminate the C-group case.
(4.44) We have $\hat{H}_{i}\neq 1$ for each $i,$ $1\leqq i\leqq 2$ .
PROOF. Suppose false, then each element $\neq 1$ of $X$ has a 2-closed cen-

tralizer by (4.42). Since $|P:Q|\leqq 2$ , every involution of $G$ is conjugate to an
element of $X$ by Thompson’s lemma. Consequently, $G$ is a C-group, contrary

to our hypothesis. Hence $\hat{H}_{i}\neq 1,1\leqq i\leqq 2$ .
(4.45) A path is proper if and only if its length is not larger than 3.
PROOF. Let ( $P_{i}$ ; $K_{i}$ ; m) be a path. We have already shown in Section 3

that it is proper only if $m\leqq 3$ . Therefore we must show that it is proper
whenever $m\leqq 3$ . It clearly holds if $m\leqq 2$ , so assume $m=3$ . Since $\mathcal{H}(P_{i})=$

$\mathcal{H}^{\prime}(P_{i})=\{K_{i}, K_{i+1}\},$ $(K_{i}, K_{i+1})\in JC(P_{i}),$ $1\leqq i\leqq 2$ . Set $Q_{i}=N_{P_{i}}(K_{i})=N_{P_{i}}(K_{i+1})_{r}$

$1\leqq i\leqq 2$ . Then, by (4.32, 2), (4.34) and the preceding lemma, $\bigcap_{t=1}^{3}K_{i}=(K_{1}\cap K_{2})$

$\cap(K_{2}\cap K_{3})=Z(Q_{1})\cap Z(Q_{2})=\hat{K}_{2}\neq 1$ , as desired.
(4.46) Precisely $1+2(q+q^{2}+q^{3})S_{2}$ -subgroups of $G$ have non-identity inter-

sections with P. There is $R\in S(G)$ such that $P\cap R=1$ .
PROOF. By (3.11) and the preceding lemma, there is a one to one cor-

respondence between the set of the $S_{2}- subgroups\neq P$ of $G$ which intersect $P$

in the non-identity elements and the set of paths of length $\leqq 3$ having $P$ as
one end. Since $|\mathcal{H}(P)|=2$ and $N(H_{\iota})$ has precisely $1+qS_{2}$-subgroups, the
number of such paths is clearly equal to $2(q+q^{2}+q^{3})$ . Thus the first part of
the lemma holds.
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Since $N_{N_{1}}(Q)=N(P)\cap N_{1},$ $|N(P):N_{N_{1}}(Q)|=|P:Q|$ . On the other hand,
$|N_{1}$ : $N_{N_{1}}(Q)|=1+q$ . Consequently, $|P:Q|\cdot|G:N(P)|$ is divisible by $1+q$ , and
therefore $|G:N(P)|$ is divisible by $1+q$ . Since $1+2(q+q^{2}+q^{3})$ is not divisible
by $1+q$ , the second part of the lemma holds as well.

(4.47) Involutions of $X-\hat{H}_{1}-\hat{H}_{2}$ are conjugate to each other in $G$ .
PROOF. In view of (4.42) and (4.46), it will suffice to prove the following

\langle perhaps well-known) result.
(4.48) Let $G$ be a group containing $S_{2}$-subgroups $P$ and $R$ such that $P\cap R$

$=1$ . Then the involutions of $G$ with 2-closed centralizers form a single con-
jugacy class.

PROOF. Let $C$ denote the set of the involutions of $G$ with 2-closed cen-
tralizers. Take $a$ from $C$ so that $C_{P}(a)\in S(C(a))$ . We will show that every
element $b$ of $C$ is conjugate to $a$ in $G$ . Replacing $b$ by its conjugate element,

if necessary, we can assume that $C_{R}(b)\in S(C(b))$ . If $b$ is not conjugate to $a$ ,

there is an involution $c$ commuting with both $a$ and $b$ . Since $C(a)$ and $C(b)$

are $2\cdot closed$ , we get $c\in P\cap R$ , whereas $P\cap R=1$ by our assumption. Hence
$b$ is conjugate to $a,$ $q$ . $e$ . $d$ .

(4.49) We have $P=Q$ .
PROOF. Suppose false. Then the elements of $\mathcal{Z}$ are TI-sets, by (4.24).

Consequently, by (4.29) and (4.40), the centralizer of every central involution
of $G$ is 2-closed. Therefore $Z(P)\cap\hat{H}_{i}=1,1\leqq i\leqq 2$ , whence every involution
of $X-\hat{H}_{1}-\hat{H}_{2}$ is central in $G$ by (4.47). But then (3.5) and (4.34, 1) yield that
$X$ is partitioned by $\hat{H}_{1},\hat{H}_{2}$ and $Z(P)$ . Thus, setting $|\hat{H}_{i}|=r,$ $1\leqq i\leqq 2$, we have
$|Z(P)|=qr-2r+2$ . This is obviously a contradiction because $r\neq 1$ and $q>2$ .

(4.50) The following conditions hold;
(1) $N(P)=N_{1}\cap N_{2}$ ;
(2) $X=\hat{H}_{1}\times\hat{H}_{2}$ and $|\hat{H}_{i}|=q,$ $1\leqq i\leqq 2$ ;
(3) the sets $E_{1}-\{1\},$ $H_{2}-\{1\}$ and $X-fi_{1^{-}}\beta_{2}$ are the conjugacy classes of

$N(P)$ contained in $X-\{1\}$ .
PROOF. Since $|\mathcal{H}(P)|=2$ , $|N(P):N(P)\cap N_{i}|\leqq 2$ . Hence, $N(P)\leqq N_{i}$ by

(4.49), which proves (1). As a consequence, $N(P)$ normalizes each $\hat{H}_{i}$ . By
(4.47), (4.49) and the Burnside lemma, elements of $X-\hat{H}_{1}-\hat{H}_{2}$ are conjugate to
each other in $N(P)$ . As $\hat{H}_{1}\hat{H}_{2}\not\leqq\hat{H}_{1}\cup\hat{H}_{2}$ , it follows that $X=\hat{H}_{1}\hat{H}_{2}=\hat{H}_{1}\times\hat{H}_{2}$ and
therefore $|\hat{H}_{i}|=q,$ $1\leqq i\leqq 2$ . Let $h_{i},$

$h_{i}^{\prime}\in\hat{H}_{i}-\{1\},$ $1\leqq i\leqq 2$ , and set $x=h_{1}h_{2}$ ,
$x^{\prime}=h_{1}^{\prime}h_{2}^{\prime}$ . Since $N(P)$ is transitive on $X-\hat{H}_{1}-\hat{H}_{2}$ , we have $x^{\prime}=x^{n}$ for some
$n\in N(P)$ . Since $N(P)$ also normalizes $\hat{H}_{i}-\{1\}$ , it follows that $h_{i}^{\prime}=h_{i}^{n}$ for
each $i$ . Hence (3) holds.

Before proceeding further, we remark here that we have already estab-
lished almost all of the statements $(4.1)-(4.20)$ . Note that every involution
of $G$ is conjugate to an element of $X=Z(P)$ . Hence, (4.11) is immediate from
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(4.50, 3) and the Burnside lemma. Also, $(4.15)-(4.18)$ are the consequences of
(3.11), (4.45), (4.6) and (4.9). Thus it remains only to prove (4.14) and (4.19).

(4.51) If $h_{i}\in H_{i}-X,$ $1\leqq i\leqq 2$ , then $[h_{1}, h_{2}]\in X-\hat{H}_{1}-\hat{H}_{2}$ .
PROOF. Since $H_{i}=X_{i}X$, there is $x_{i}\in X_{i}-X$ such that $h_{i}\in x_{i}X$. Suppose,

for instance, that $[h_{1}, h_{2}]\in B_{1}$ , then $[x_{1}, x_{2}]\in H_{1}$ , whence $x_{2}$ normalizes $\langle H_{1}, x_{1}\rangle$ .
But then $\hat{H}_{1}<X_{1}\cap X_{1}^{x_{2}}$ , contradicting (4.9). Hence the lemma holds.

(4.52) Let $(P_{i}$ ; $K_{i}$ ; 4 $)$ be a path of length 4 joining $P_{0}=P$ and $P_{4}$ . Then
$P\cap P_{4}$ contains no elements that are conjugate to the elements of $X-\hat{H}_{1}-\hat{H}_{2}$ .

PROOF. If $P\cap P_{4}=1$ , there is nothing to prove, so assume that $P\cap P_{4}\neq 1$ .
By (4.15), $P\neq P_{4}$ and therefore $P$ and $P_{4}$ are joined by a path ( $Q_{i}$ ; $L_{i}$ ; n) of
length $n\leqq 3$ . Suppose that $n\leqq 2$ . Then the uniqueness of a path of length
$\leqq 3$ joining $P$ and $P_{3}$ yields first that $K_{4}\neq L_{n}$ and next that $K_{3}=K_{4}$ , a con-
tradiction. Therefore $n=3$ . But then $P\cap P_{4}=L_{2}$ contains no elements that
are conjugate to the elements of $X-\hat{H}_{1}-\hat{H}_{2}$ . The proof of (4.52) is complete.

5. We continue assuming that $G$ is a group satisfying the conditions
stated at the beginning of the preceding section, so that $G$ satisfies $(4.1)-(4.20)$ .
Furthermore, we fix the following notation throughout the section.

$P\in S(G)$ ;
$Z=Z(P)$ ;
$\{H_{1}, H_{2}\}=\mathcal{H}(P)$ ;
$N_{i}=N(H_{i}),$ $1\leqq i\leqq 2$ ;
$q=|P:H_{i}|,$ $1\leqq i\leqq 2$ ;
$C$ ; the class of the involutions of $G$ conjugate to the elements of

$Z-\hat{H}_{1}-\hat{H}_{2}$ ;
$B=N(P)$ ;
$K$ ; a complement of $P$ in $B$ ;
$N=N(K)$ ;
$W=N/K$.
(5.1) For each $w\in N$, we have $BwB\cap N=Kw$ .
PROOF. We first consider the case that $w=1$ . As $B\cap N=C_{P}(K)K$, we

must show that $C_{P}(K)=1$ . Set $C=C_{P}(K)$ . Since $K$ acts by conjugation
transitively on each of the sets $\hat{H}_{1}-\{1\},\hat{H}_{2}-\{1\}$ and $Z-\hat{H}_{1}-\hat{H}_{2},$ $C\cap Z=1$ .
Since the square of every element of $P$ is contained in $Z$, it follows that $C$

is elementary Abelian. Hence $C$ is contained in either $H_{1}$ or $H_{2}$ . Let $h$ be
an arbitrary element of $C$ and set $D=[h, P]$ . Then $D$ is a K-invariant sub-
group of $Z$ of order $\leqq q$ . In addition, $D\cap\hat{H}_{i}=1,1\leqq i\leqq 2$ , by (4.14). Since $K$

is transitive on $Z-\hat{H}_{1}-\hat{H}_{2}$ which consists of $(q-1)^{2}$ elements, we must have
$D=1$ . Consequently $C\leqq Z$ and so $C=1$ , as required.

We next consider the general case. Let $x$ be an element of $BwB\cap N$.
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Since $BwB=BwP,$ $x$ is written as $x=bwy$ with $b\in B$ and $y\in P$. As $K,$ $K^{y}$

$\leqq B\cap B^{x}$ , the Schur-Zassenhaus theorem applied to $B\cap B^{x}$ shows that $P\cap P^{x}$

contains an element $z$ such that $K^{y}=K^{z}$ . By the preceding paragraph,
$N\cap P=1$ , whence $y=z\in P\cap P^{x}=(P\cap P^{w})^{y}$ . We conclude that $y\in P\cap P^{w}$ .
Hence $x=by^{w- 1}\cdot w\in Bw$ , and so $x\in Kw$ by the preceding paragraph. The
proof is complete.

(5.2) For each $i,$ $1\leqq i\leqq 2,$ $N$ contains an involution $w_{i}$ such that $N_{i}=$

$B\cup Bw_{i}B$ .
PROOF. By symmetry, we need only consider the case that $i=1$ . Set

$M=O^{\prime}(N_{1})$ . Since $M/H_{1}$ is a central extension of $PSL(2, q)$ by a group of
odd order, $M\cap K$ normalizes exactly one element, say $P_{1}$ , of $S(N_{1})-\{P\}$ . It
also follows from the structure of $M/H_{1}$ that $N_{1}$ has an element $x$ such that
$P^{x}=P_{1}$ and $x^{2}\in H_{1}$ . Since $M\cap K$ is normal in $K,$ $K$ normalizes $P_{1}$ and so
$K,$ $K^{x}\leqq B\cap B^{x}$ . Therefore by the Schur-Zassenhaus theorem applied to
$B\cap B^{x},$ $H_{1}$ has an element $h$ such that $K^{xh}=K$. Setting $w=xh$ , we have
that $w\in N\cap N_{1}$ and that $P^{w}=P_{1}$ . Since $N_{1}$ acts by conjugation doubly
transitively on the set $S(N_{1})$ , the above implies that $N_{1}=B\cup BwB$ . Further-
more, since $H_{1}$ is elementary Abelian,

$w^{2}=x^{2}[x, h]\in H_{1}\cap N=H_{1}\cap(B\cap N)=1$ ,

by the preceding lemma. Therefore $w$ satisfies all the requirements.
NOTATION.

$P_{i}=P^{w_{i}},$ $1\leqq i\leqq 2$ ;

$Z_{i}=Z(P_{i}),$ $1\leqq i\leqq 2$ .

(5.3) We have $ G=\langle B, N\rangle$ .
PROOF. Since $\mathcal{H}(P)=\{H_{1}, H_{2}\}$ and $B<N_{1}$ , every maximal 2-1ocal sub-

group of $G$ is conjugate to either $N_{1}$ or $N_{2}$ . Furthermore, $G$ has no strongly

embedded subgroups, because $G$ has three conjugancy classes of involutions.
Hence, by (2.2) and (5.2), $G=\langle N_{1}, N_{2}\rangle=\langle B, w_{1}, w_{2}\rangle=\langle B, N\rangle,$ $q$ . $e$ . $d$ .

(5.4) If $1\leqq i\leqq 2,1\leqq!\leqq 2$ and $i\neq j$ , the following conditions hold:
(1) $w_{i}Bw_{i}\leqq B\cup Bw_{i}B$ ;
(2) $w_{i}Bw_{j}=KZw_{i}w_{j}Z$ ;
(3) $w_{i}Bw_{i}w_{j}\leqq Bw_{j}B\cup Bw_{i}w_{j}B$ ;
(4) $w_{i}Bw_{j}w_{i}=KZw_{i}w_{j}w_{i}Z_{i}$ ;
(5) $w_{i}Bw_{i}w_{j}w_{i}\leqq Bw_{j}w_{i}B\cup Bw_{i}w_{j}w_{i}B$ ;
(6) $w_{i}Bw_{j}w_{i}w_{j}\leqq B(w_{i}w_{j})^{2}B\cup Bw_{j}w_{i}w_{j}B$ ;
(7) $w_{i}B(w_{i}w_{j})^{2}\leqq Bw_{j}w_{i}w_{j}B\cup B(w_{i}w_{j})^{2}B$ .
PROOF. Without loss, $i=1$ and $j=2$ . (1) is an immediate consequence

of (5.2). To prove (2), we note that $P=Z_{1}Z_{2}$ . We have
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$w_{1}Bw_{2}=w_{1}KZ_{1}Z_{2}w_{2}$

$=Kw_{1}Z_{1}Z_{2}w_{2}$

$=KZw_{1}Z_{2}w_{2}$

$=KZw_{1}w_{2}Z$ ,

proving (2). The equation (4) can be verified in a similar way. (3) is an
immediate consequence of (1) and (2). Indeed,

$w_{1}Bw_{1}w_{2}\leqq(B\cup Bw_{1}B)w_{2}$

$\leqq Bw_{2}B\cup B(w_{1}Bw_{2})$

$\leqq Bw_{2}B()Bw_{1}w_{2}B$ .
We can verify (5) in a similar way by using (2), (3) and (4). It remains to
prove (6) and (7). Since $w_{1}Bw_{2}w_{1}w_{2}=w_{1}Bw_{1}(w_{1}w_{2})^{2}$ , it will suffice to prove
the following:

$N_{1}(w_{1}w_{2})^{2}\leqq Bw_{2}w_{1}w_{2}B\cup B(w_{1}w_{2})^{2}B$ .
Let $x=n(w_{1}w_{2})^{2}$ be an arbitrary element of $N_{1}(w_{1}w_{2})^{2}$ , so that $n\in N_{1}$ . Setting
$H=H_{1}^{w_{2}w_{1}w_{2}}=H_{1}^{(w_{1}w_{2})^{2}}$ , we see that $P^{w_{2}w_{1}w_{2}}$ and $P^{(w_{1}w_{2})^{2}}$ are distinct $S_{2}$-sub-
groups of $N(H)$ . Since $P^{n}\leqq N(H_{1})$ , we also have $P^{x}\leqq N(H)$ . If $P^{x}=P^{w_{2}w_{1}w_{2}}$ ,

then $x\in Bw_{2}w_{1}w_{2}$ , so we assume $P^{x}\neq P^{w_{2}w_{1}w_{2}}$ . It then follows $f$ rom the
structure of $N(H)/H$ that $P^{w_{2}w_{1}w_{2}}$ contains an element $y$ such that $P^{x}=$

$P^{(w_{1}w_{2})^{2}y}$ . Since
$P^{w_{2}w_{1}w_{2}}=(H_{2}H_{1})^{w_{2}w_{1}w_{2}}=H_{2}^{w_{1}w_{2}}H$ ,

we can assume that $y\in H_{2}^{w_{1}w_{2}}$ . We can then assume that $y\in\hat{H}_{1}^{w_{2}}$ , because
$H_{2}^{u\iota_{1}w_{2}}=(\hat{H}_{1}Z_{2})^{w_{1}w_{2}}=\hat{H}_{1}^{w_{2}}Z^{w_{2}w_{1}w_{2}}\leqq\hat{H}_{1}^{w_{2}}H$ .

But $\hat{H}_{1}^{w_{2}}\leqq Z^{w_{2}}=Z_{2}\leqq B$ whence $y\in B$ . Hence $x\in B(w_{1}w_{2})^{2}B$ , as required.
(5.5) Let $x$ be an element of G. Then $|P\cap P^{x}|=q^{i},$ $0\leqq i\leqq 4$ . Moreover

the following conditions hold:
(1) if $|P\cap P^{x}|=q^{3}$ , then $x\in Bw_{1}B\cup Bw_{2}B$ ;
(2) if $|P\cap P^{x}|=q^{2}$ , then $x\in Bw_{2}w_{1}B\cup Bw_{1}w_{2}B$ ;
(3) if $|P\cap P^{x}|=q$ , then $x\in Bw_{1}w_{2}w_{1}B\cup Bw_{2}w_{1}w_{2}B$ .
PROOF. Assume that $P\neq P^{x}$ and $P\cap P^{x}\neq 1$ . Then, by $(4.16)-(4.18),$ $P$

and $P^{x}$ are joined by a path ( $Q_{i}$ ; $K_{i}$ ; k) of length $k(\leqq 3)$ and $|P\cap P^{x}|=q^{4-k}$ .
We can assume without loss that $K_{1}=H_{1}$ .

Assume Prst that $k=1$ . Then $P\neq P^{x}\leqq N_{1}$ and so $B$ contains an element
$b$ such that $P^{x}=P_{1}^{b}=P^{w_{1}b}$ . Hence $x\in Bw_{1}B$ in this case.

Assume next that $k=2$ . There is an element $b$ of $B$ such that $Q_{1}^{b}=P_{1}$

and so, replacing $x$ by $xb$ , we can assume that $Q_{1}=P_{1}$ . Then $K_{2}=H_{2}^{w_{1}}$ and
hence $N(K_{2})=(B\cup Bw_{2}B)^{w_{1}}$ . Since $B^{w_{1}}=N(P_{1})$ , there is an element $b$ of $B$



570 K. GOMI

such that $P^{x}=P_{1}^{w_{1}(w_{2}b)w_{1}}=P^{w_{2}bw_{1}}$ . Consequently, $x\in Bw_{2}Bw_{1}\leqq Bw_{2}w_{1}B$ by
(5.4, 2).

Assume finally that $k=3$ . As was shown above, $B$ contains an element
$b$ such that $Q_{2}^{b}=P^{w_{2}w_{1}}$ . Therefore, replacing $x$ by $xb$ , we can assume that
$Q_{2}=P^{w_{2}w_{1}}$ . Then the uniqueness of the path of length 2 between $P$ and $Q_{2}$ ,
\langle 4.15), yields that $Q_{1}=P_{1}$ and that $K_{2}=H_{2}^{w_{1}}=H_{2}^{w_{2}w_{1}}$ . Consequently, $K_{3}=$

$H_{1}^{w_{2}w_{1}}$ and hence $N(K_{3})=(B\cup Bw_{1}B)^{w_{2}w_{1}}$ . Since $B^{w_{2}w_{1}}=N(Q_{2})$ , $B$ has an
element $b$ such that $P^{x}=Q_{2}^{w_{1}w_{2}w_{1}bw_{2}w_{1}}=P^{w_{1}bw_{2}w_{1}}$ . Hence $ x\in Bw_{1}Bw_{2}w_{1}\leqq$

$Bw_{1}w_{2}w_{1}B$ by (5.4, 4). The proof is complete.
(5.6) If $1\leqq i\leqq 2,1\leqq j\leqq 2$ and $i\neq j$ , the following conditions hold:
(1) $P\cap P^{w_{i}}=H_{i}$ ;
(2) $P\cap P^{w_{i}w}!=Z_{j}$ ;
(3) $PP^{w_{i}w_{j}w_{i}}=z_{i}z_{j}^{w_{i}H_{f}^{w_{i}}}$ ;
(4) $P\cap P^{(w_{i}w_{j})^{2}}=1$ .
PROOF. Without loss $i=1$ and $j=2$ . (1) is immediate from the definition

of $w_{i}$ . Since $(P, P_{2}, P^{w_{1}w_{2}} ; H_{2}, H_{1}^{w_{2}} ; 2)$ is a path joining $P$ and $P^{w_{1}w_{2}},$ (2) is
a consequence of (4.17). (3) can be proved in a similar way. It follows from
\langle 2) and (3) that $Kw_{1}w_{2}\neq Kw_{2}w_{1}$ and that $Kw_{1}w_{2}w_{1}\neq Kw_{2}w_{1}w_{2}$ . Therefore the
coset $K(w_{1}w_{2})^{2}$ differs from any of the following seven cosets:

$K,$ $Kw_{1},$ $Kw_{2},$ $Kw_{1}w_{2},$ $Kw_{2}w_{1},$ $Kw_{1}w_{2}w_{1},$ $Kw_{2}w_{1}w_{2}$ .
Hence (4) is an immediate consequence of (5.1) and (5.5).

(5.7) Let $u$ be an involution of $G$ such that $P\cap P^{u}\neq 1$ . Then either $u\in P$

or $u$ is contained in an $S_{2}$ -subgrouP of $G$ which is joined to $P$ by a path of
length $\leqq 2$ .

PROOF. If $P=P^{u}$ , then $u\in P$. Otherwise, there is a path ( $Q_{i}$ ; $K_{i}$ ; k) of
length $k(\leqq 3)$ joining $P$ and $P^{u}$ . Since $u$ is an involution, ( $Q_{i}^{u}$ ; $K_{i}^{u}$ ; k) is also
a path of the same length joining $P$ and $P^{u}$ . Now the uniqueness of the
path yields that $u\in N(K_{1}),$ $u\in N(Q_{1})$ or $u\in N(K_{2})$ according as $k=1,$ $k=2$

or $k=3$ . Hence (5.7) holds.
NOTATION. $C(P)$ will denote the set of the elements of $C$ satisfying the

conclusion of (5.7).
(5.8) Let $x,$ $y$ be distinct elements of $C$ and let $z\in Z-\hat{H}_{1}-\hat{H}_{2}$ . If $xy\in C(z)$ ,

then $x,$ $y\in C(P)$ .
PROOF. Set $u=xy$ . When $u$ has even order, let $v$ be an involution of

$\langle u\rangle$ . Otherwise, let $v$ be an involution of $\langle zx\rangle$ . Such $v$ exists, because
$z\in C(u)$ but $x\in C^{*}(u)-C(u)$ when $u$ has odd order. In either case, $x\in C(v)$

and $v\in P$ by (4.12). If $v\in Z$, then $x\in C(v)\leqq N_{1}$ or $N_{2}$ by (4.8), (4.12) and
\langle 4.13), and the assertion holds in this case. If $v$ is not contained in $Z$, then
there is an $S_{2}$ -subgroup $Q(\neq P)$ of $N_{i},$ $i=1$ or 2, such that $v\in Z(Q)$ . Hence
$x\in C(v)\leqq N_{i}$ or $N(H)$ where $H_{i}\neq H\in \mathcal{H}(Q)$ , and the assertion holds in this
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case as well.
(5.9) We have $|C(P)|=(q-1)^{2}(1+2(q+q^{2}+q^{3}))$ .
PROOF. We devide $C(P)$ into three subsets; that is
$C_{0}(P)=C\cap P$ ;
$C_{1}(P)$ : the set of the elements of $C(P)-C_{0}(P)$ contained in an $S_{2^{-}}sub-$

group of $G$ which is joined to $P$ by a path of length 1;
$C_{2}(P)=C(P)-C_{0}(P)-C_{1}(P)$ .
Let $H$ be an element of $\mathcal{H}$ , then $C\cap H$ is the direct union of the sets

$C\cap Z(Q)$ , $Q$ ranging over all $S_{2}$-subgroups of $N(H)$ , whence $|C\cap H|=$

$(q+1)(q-1)^{2}$ . Hence

$|C_{0}(P)|=2(q+1)(q-1)^{2}-(q-1)^{2}=(2q+1)(q-1)^{2}$

If $Q,$ $R$ are distinct $S_{2}$-subgroups of $G$ joined to $P$ by a path of length 1,
$thenQ\cap R\leqq Pby(4.17)$ . $HenceC_{1}(P)isthedirectunionofthesetsC\cap(Q-P)_{r}$

$Q$ ranging over all $S_{2}$-subgroups joined to $P$ by a path of length 1. Thus
$|C_{1}(P)|=2q^{2}(q-1)^{2}$ . Let $Q$ be an $S_{2}$ -subgroup of $G$ joined to $P$ by a path
$(Q_{i}$ ; $K_{i}$ ; 2$)$ of length 2. Then $C_{2}(P)\cap Q=C\cap(Q-K_{2})$ by (4.17) and (4.18),

whence $|C_{2}(P)\cap Q|=q(q-1)^{2}$ . Furthermore if $R$ is another $S_{2}$ -subgroup of $G$

joined to $P$ by a path of length 2, then either $Q\cap R\leqq K_{2}$ or $Q\cap R\cap C$ is
empty by $(4.17)-(4.19)$ . Therefore $C_{2}(P)$ is the direct union of the sets
$C_{2}(P)\cap Q$ where $Q$ ranges over all such $S_{2}$-subgroups. Thus $|C_{2}(P)|=2q^{3}(q-1)^{2}$ .
Hence (5.9) holds.

(5.10) Let $Q$ be an $S_{2}$-subgroup of $G$ such that $P\cap Q=1$ . Then there is an
element $u$ of $C-C(P)$ such that $Q=P^{u}$ .

PROOF. Let $u$ be an element of $C-C(P)$ . Then, by (5.7) and the defini-
tion of $C(P),$ $P\cap P^{u}=1$ . Let $z$ be an element of $Z-\hat{H}_{1}-\hat{H}_{2}$ , then $|B:C(z)|$

$=(q-1)^{2}$ and so each coset of $B$ is a union of $(q-1)^{2}$ distinct cosets of $C(z)$ .
By (5.8), each coset of $C(z)$ contains at most one element of $C-C(P)$ , whence
$Bu$ contains at most $(q-1)^{2}$ elements of $C-C(P)$ . Consequently, the set
$\{P^{u} ; u\in C-C(P)\}$ contains at least $|C-C(P)|/(q-1)^{2}$ distinct elements. By

the preceding lemma,

$|C-C(P)|/(q-1)^{2}=|G:B|-(1+2(q+q^{2}+q^{3}))$

which is equal to the number of $S_{2}$-subgroups $Q$ such that $P\cap Q=1$ by (4.20).

Hence the assertion holds.
(5.11) The following conditions hold:
(1) $W$ is a dihedral group of order 8 and consists of eight cosets $K,$ $Kw_{1}$ ,

$Kw_{2},$ $Kw_{1}w_{2},$ $Kw_{2}w_{1},$ $Kw_{1}w_{2}w_{1},$ $Kw_{2}w_{1}w_{2}$ and $K(w_{1}w_{2})^{2}$ ;
(2) $(B, N)$ is a $(B, N)$ -pair of $G$ .
PROOF. Let $x$ be an element of $N$. If $P\cap P^{x}\neq 1$ , then $x$ is contained in

one of the above cosets except $K(w_{1}w_{2})^{2}$ by (5.1) and (5.5). If $P\cap P^{x}=1$ ,
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then by (5.10), there is an element $u$ of $C-C(P)$ such that $P^{x}=P^{u}$ . Since
$P\cap P^{x}=1$ , $B\cap B^{u}=K$ and therefore $u\in N(K)=N$, whence $u\in Kx$ . Con-
sequently, if $x\in N$ and $P\cap P^{x}=1$ then $Kx$ is an involution of $W$ . Hence $W$

contains precisely two elements of order larger that two. Since $W$ is a non-
Abelian group of order at least 8 by (5.6), it is easily seen that $W$ is a
dihedral group of order 8 and then that $W$ consists of the eight cosets listed
above. In particular $K(w_{1}w_{2})^{2}=K(w_{2}w_{1})^{2}$ , and hence $(B, N)$ satisfies all the
axioms of a $(B, N)$ -pair.

We have arrived at the goal.
(5.12) $O^{\prime}(G)$ is isomorphic to $PSp(4, q)$ .
PROOF. We have $G=BNB$ by (5.11). Furthermore

$N_{1}w_{2}N_{1}=Bw_{2}B\cup Bw_{1}w_{2}B\cup Bw_{2}w_{1}B\cup Bw_{1}w_{2}w_{1}B$

and
$N_{1}w_{2}w_{1}w_{2}N_{1}=Bw_{2}w_{1}w_{2}B\cup B(w_{1}w_{2})^{2}B$ .

Therefore
$G=N_{1}\cup N_{1}w_{2}N_{1}\cup N_{1}w_{2}w_{1}w_{2}N_{1}$ .

Hence, when represented as a permutation group on the set $\Omega$ of the cosets
of $N_{1},$ $G$ is a transitive rank 3 group. Since $|N_{1}$ : $B|=1+q$ , each coset of $N_{1}$

contains precisely $1+q$ cosets of $B$ . Hence, by using (5.6), we can compute
the subdegrees of $(G, \Omega)$ . They are 1, $(1+q)q$ and $q^{3}$ . Since $H_{2}K\leqq N_{1}\cap N_{1}^{w_{2}}$

and $|N_{1}$ : $H_{2}K|=(1+q)q,$ $N_{1}\cap N_{1}^{w_{2}}\leqq H_{2}K\leqq B$ . Hence $\bigcap_{n\in N}N^{n}\leqq\bigcap_{n\in N}B^{n}=K$ by

(5.6, 4). Consequently,

$\bigcap_{x^{\ulcorner--}G}N^{x}\leqq$ $\bigcap_{\overline{\subset},xG}K^{x}\leqq O(G)=1$ ,

which implies that the representation of $G$ on $\Omega$ is faithful. We have

$N_{1}w_{2}N_{1}=N_{1}w_{2}B\cup N_{1}w_{2}w_{1}B=N_{1}w_{2}Z_{1}\cup N_{1}w_{2}w_{1}Z_{2}$ .

Hence $\hat{H}_{1}=Z\cap Z_{1}$ fixes every coset of $N_{1}$ contained in $N_{1}w_{2}N_{1}$ . Therefore
by the theorem of D. G. Higman [10], $G$ contains a normal subgroup $G_{0}$ iso-
morphic to $PSP(4, q)$ . Since $|P|=q^{4},$ $|G:G_{0}|$ is odd and therefore $G_{0}=O^{\prime}(G)$ .

This completes the proof of Theorem B.

6. For certain reasons, we may consider the structure of maximal 2-
local subgroups to be a local structure of the simple groups of Lie type
defined over the fields of characteristic 2 (for brevity call them groups of
characteristic 2) which best reflects their global structure. Therefore we
may propose the problem of characterizing groups of characteristic 2 by the
structure of their maximal 2-1ocal subgroups, and view Theorem A from the
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standpoint of this problem. As was remarked by Gorenstein [7], the groups
of characteristic 2 are expected to be almost characterized by the property
that each their maximal 2-1ocal subgroup $M$ satisfies the condition (1) of
Hypothesis A. Therefore a natural formulation of the problem will be as
follows: assume the condition (1) for each maximal 2-1ocal subgroup $M$ of a
simple group $G$ and assume that $M/O_{2}(M)$ is isomorphic to $M^{*}/O_{2}(M^{*})$ (or

its odd extension) for some maximal 2-1ocal subgroup $M^{*}$ of a group $G^{*}$ of
characteristic 2, and then prove that $G$ is actually isomorphic to $G^{*}$ . For
instance, we have the following problem in connection with groups of charac-
teristic 2 and Lie rank 2:

SUBPROBLEM. Classify the groups in which each maximal 2-1ocal sub-
group $M$ which is not 2-closed satisfies the conditions (1) and (2) of Hypo-
thesis A.

An answer to this problem would of course contain Theorem A as a
special case.
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