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§1. Introduction.

The so-called Brun-Titchmarsh theorem states that there is an absolute
constant C, such that

1.1) a(x; g, 1) < Cp—m—E,

X
¢(q) log 7

where n(x; q,!) is defined as usual to be the number of primes not exceeding
x that are congruent to /modg. This estimation holds uniformly for all
g < x with x/q sufficiently large and for all /mod ¢ with (g, {)=1.

The most important feature of this theorem is that it holds for a quite
wide range of ¢ and in this respect it surpasses any results obtained by
analytic methods. Actually this inequality may be the strongest tool to
attack various problems in the theory of numbers, apart from the mean value
theorem of Bombieri.

Although the asymptotic formula of #n(x; ¢, [), which holds uniformly for
smaller ¢, can be obtained by analytic methods, the result (also its aesthetic
value) is mared by the exceptional zero of Dirichlet’s L-functions. The
elimination of this zero remains still one of the deepest problems in the
theory of numbers.

In this respect the reduction of the value of the constant C, of has
a very significant meaning, for if we could show that

with an effectively calculable positive 7 for at least ~§—Q<—2ql——|—1 reduced residue

classes ! mod ¢ under the condition

log x >

<
7=¢€xp <c‘ log log x

then we would be able to prove the extremely valuable inequality

<1— Ca
p=1 log (¢+3) log log (¢+3)
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for the exceptional zero 3 of Dirichlet’s L-functions mod ¢ with the aid of
Rodosskii-Tatuzawa’s theorem [10, p. 314]. Here ¢, and ¢, are effectively
calculable positive constants.

Hence considerable efforts have been made to improve the Brun-Titch-
marsh theorem.

By the direct application of the Selberg sieve we can show that

loglog—;c—
(13) w(x;q, 1) 2—————|14+0| ——— ||
90((1)108'7 log—q—

which is due to Klimov [6] By a more careful treatment of the remainder
term in the Selberg sieve, van Lint and Richert [8] improved this to

(1.4) n(x;q, 1)< zm(wo(ég)).

Later the strong improvement initiated by Bombieri of the large sieve method
enabled Bombieri and Davenport [2] to give a second proof of [1.3), and
further Bombieri [1] proved on the same line. Recently Montgomery
[9] has elaborated their proof and obtained the neat

(1.5) a(x;q )s2—2

X
1 .
¢(q) log 7

and so it turns out that
’ Co<2.

More recently towards the inequality a progress has been made by
Hooley [5], who has proved that

' 2
2(x; ¢, 1) < (2+8,) * - if 1<q<x*,
@(4)1087(7'
and
2
n(x;q, NS A+8)——"—0  if 29S¢z
@(Q)log—q“

for almost all [ mod g, where ¢, and 0, are arbitrarily small positive numbers.

§2. Main results.

The purpose of the present paper is to show that the recent developments
mainly due to Gallagher [4] concerning the hybrid mean values of character-
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sums and integrals of finite Dirichlet series can yield rather strong results
not only in the theory of the density of the zeros of Dirichlet’s L-functions
but also in the field of the Selberg sieve.

THEOREM 1. If

then we have

X

m(x; g, 1) =20+2) ————,
o(q) logﬁ

1-£ .
save for at most ¢ 5 residue classes I mod q.

This is an improvement of Hooley’s result and may be the first one in
this field that maintains its significance still for ¢ close to x.

But, compared with Hooley’s method, the essential novelty of our method
is that it enables us to prove results which hold uniformly for all / mod g,
(g, ) =1, though for ¢ in the restricted range.

THEOREM 2. We have uniformly for all Imodq with (¢,1)=1

3
(i) =g l)s2————— if x7=q<x,
o(q) log =~
. logl ., S 3
(ii) n(x;q,l)_————<1+0( OI%g"f" ) i AT =g=aT,
©(q) log
q3
logl
(iii) m(x; q, l)§2—6—1————<1+0( OI%gOng >) if JC17 <C]<x
g «/“
X ., 98 4
(iv) m(x; ¢, 1) =(1+e)———— fr<g<xT,
xll
o(q) log —
q88
\56,_
(V) n(xe7l)§_2<l+5) * 1f 1§Q§x249,
¢(q) log —
q56

It is easy to see that the results (ii)-(v) are all improvements of Mont-
gomery’s inequality [1.5).

If we assume the natural extension to Dirichlet’s L-functions of the
Lindeloéf hypothesis concerning the size of the Riemann zeta-function along
the critical line, further improvements are possible.

THEOREM 3. If we assume the Lindelof hypothesis
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1 . 5
|L(5+it, 1) | < (it +1) 7,
then we have, when 1= q =< x*~¢

m(x; q, 1) = 2(1+5¢)

_x
©(q) log x

save for at most q'~¢ residue classes [ mod q.
THEOREM 4. If we assume the extended Lindeldf hypothesis as in Theorem 3,
we have uniformly for all lmodq with (¢,1)=1

Tc(x;q,l)é(l—l—?s)—-——x—x— if x%§q§x2L
¢(g) log—
q2
and
. X . 1
ﬁ(X,Q,l)§2(1+E)W if 15g=x3,

In this paper we prove only Theorems 1 and 2, since the proofs of
Theorems 3 and 4 are similar and also they have only theoretical interest.

The author wishes to express his indebtedness to Prof. Tatuzawa for his
encouragements and helpful discussions on this subject, and to Prof. Hooley
for suggesting the introduction of the parameter z, of §7, which improves
the final result substantially.

Notations: ¢(n) and p(n) are Euler’s and Mobius’ functions, respectively.
z(n) denotes the number of divisors of n. We denote by (m, n) and [m, n]
the greatest common divisor and the least common multiple of m and n,
respectively. X is a Dirichlet character mod ¢ and L(s, ¥) is the Dirichlet’s
L-function attached to X with the complex variable s=o-+it. ¢ is an arbitrarily
small positive number, and the constants implied by the symbols “O” and
“ & depend on ¢ at most and are effectively calculable. Finally the positive
variable x is assumed to be half an odd integer and sufficiently large, depend-
ing only on e.

§3. Selberg’s sieve.
Let z be a positive number with
1<z=Zx

and let S(x; q,!) denote the number of integers not exceeding x that are
congruent to /modqg and are free from any prime factors <z Then we
have obviously

(3.1) z(x;q, 1)< S(x; g, l>+§ +1.
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The quantity S(x; g, ) is estimated by the standard application of the
Selberg sieve. Here we summarize his method: We set

1 _pd)d G
Y if (9d)=1and d<z,
3.2) Ag= Y o(d) (r,dp)=1 o(r)
0 otherwise,
where
¢ (r)

:";27‘ ¢n) -
Then we have
1 AasAay

(3.3) YV T u%s 14, 4]

and also, when z is sufficiently large, the inequality
(3.4) = %mg z

is well-known. Further, to make simpler the estimations in what follows,
we remark that
(3.5 |Aal=1.

This is proved as follows: if (g, d)=1, then we have

_ pir) _ ©*(0r)
Y_a% ((rr,gz—;al o(r) T (';;?’;‘,’2:1 @(ar)
> ©*(0) g . d L7

ild 90(5) rag=1 @(7) o o(d) rap=1 @) ’
r=z/d r=z/d

and by the definition of 1, we get [3.5).
Now as for S(x; q,!) we have

(3.6) S(x; q,1)=S:(x; ¢, 1),

where the right side is defined by

(3.7 Six; 9, D)= X (X A)".
nsln(g;d q) dln

§4. Analytic expression of S,(x; g, [).

Since we have (g,!)=1, we can write as follows:

Gy S, ) ST 20

: Dg, 1) =—r~
(4 1) Sl(xl Qy ) (P(Q) x mod g e
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= SD<IQ) I H0SEw,  say.

And we consider the generating series of S(x, X). This is

x(n)
ns

@« S 2 (2ar=160 2 _Aete a4

dy, dg=z [dx, dz]s

=L(s, )K(s, X), say.
We note here that
x(d)

(4.3) K(S’ X):déz ds ] de
where

Pa= [dl.d221=d2dlxd2
and so
(4.4 lpal = 7%(d)
since [(3.5).

For the proof of we shall need a different expression of
K(s, X), originally due to Selberg: Defining G(d, X) by

d oo
(4.5) Gd, =73 (=) 1w,
we have
46) K 0= 2 L6 n( 2, Hp- 1)

=3 B 0wt 5), sy,
which is the consequence of
d% Gs(d, X)=X(n)n’.
Now let
4.7) T=x

and we express S(x, X) by the integral

S(x, )=

Zm j L(s DK(s, )= " ds +0(— )
From we see that
|Gy(d, X)|= d?z(d),
and so from we have
K(s, X)) z

uniformly for -%-éaé& Also we have
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IL(s, 1)1 < (gsDE  (Is|= 1)

1

uniformly for —2—§ 0= 2. Thus shifting the line of integration to the line

1
0=-5, We get
(4.8) S(x, 1) = —"i(;—) K1, 0xB@+0(-L)

1 Lier

(7 s, mKGs, 12 -as,
3T S

+

21

where E(X)=1 if X is principal, and =0 otherwise.
We have from for the principal character %,

K1, 1) = d}g}g%
-1
Y
Hence we get from and
(4.9 Sitxs 0, == +0(5)
y e "
T O | %~iTL(s, DK (s, X)——ds.

§5. Lemmas.

To the estimation of the third term of we apply some of the recent
results in the theory of numbers, which are embodied in the following three
lemmas:

LEMMA A. We have for any T, =0

T

>

1
x mod g ~-T1
(¢ primitive)

This is‘esssentially due to Lavrik [7], and for the proof see [9], where
the restriction 7,=2 is imposed but it is easy to see that we may write
their result as in the above form. We can eliminate the restriction that X
is primitive and we get

COROLLARY OF LEMMA A. We have for any T, =0

1A
L(—+it, 1)| dt < p(@) T log* a(Ty+2) .

)Y

T1
xmodg¥ -T

L(—é—+it, X) rdt & qT, log* ¢(T,+2).
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PROOF. Let X* be the primitive character mod ¢* which induces X mod q.
Then we have

Ls, 0= 10 (XY 1s, 1),

pl“

where p denotes generally a prime number. Thus we have

Sl o= g neg) 2, o).

(¢: primitive)

which, with Lemma A, gives

>3 j S tit, 1) dt < T, log* (T, +2) 2 () 11 (1+

x mcd g

Since

() 2 o(d)o( L),

we have

T o) 3.1_;;.<1+“> =470P> w(d) g(m

dig
SeO L0+ (044 05 )

O SN S))

plg
Lq.

This proves the corollary.
LEMMA B. If T,>1, we have for any positive M, N and complex numbers
an

Ty X
> {71 2 axmnt|rdt
x mod ¢ .

Ty M<n=EM+N

K@THN) 3 laal®.

<nEM+
Also we have

> 4 X(m)|*<K(g+N )M<n§M+NI a,|%.

x mod ¢ MIn=M+N

This is due to Gallagher and plays a fundamental role in this paper.
LEMMA C. We have for any character X mod g

IL(—%——Ht, 7)< g +1).

This is a deep result of Burgess [3], where the factor |{|+1 is neglected
but to make the estimation uniform we insert it.
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§6. Proof of Theorem 1.
From we have

S Asean- 5}
(qt) i

E_H’T

! L(s, DA, X)—ds‘

- 4TEZ§D(Q) xn’%dq
xlog x
<o {,“EJ

X {z modqf K( 2

since we have [(4.7).

From to Lemma A and by the partial integration we get

i, X)I |tl+1 }

1tl+1 Fro(5).

6.1) 2 " L(g+in )|

% mod ¢

lf|+1 < qlogkx,

and from Lemma B we get
xmodq |K< 2 + t X)I |t|+1
4 4 2
<(qlogT+z )d§z4 d (dlgzdpdlpdz)

z! 210
<g(1+-5-)(og 2,
since we have [4.4).

Thus we have
}2

< x(log x)””(l%—%) ;

> {Six; 9, D)—

Imo q
(¢.H=

Now we put

and
(6.2) g xtse,

Then we have
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Thus if we denote by E, the number of /mod ¢ with (¢g,!)=1 such that

R I DO S
Sl(xx q’l qY 2 qY ’

then we have
3
Eq & q7x-1+2syz(log x)29+522

Sqxtsqtt

for sufficiently large x= x,(e).
Hence we get from

Si(x;q, )= 7’{,—(1+0<x-€»

2 . X
1—8e¢

IA

7 (1+0(x79)),
©(9) loqu:

save for at most ¢'~° residue classes / mod ¢ under the condition [(6.2).

lecting this result and [3.1), [3.6), we obtain [Theorem 1l

§7. Proof of Theorem 2, Part I.
We denote by I(x, 2) the third term of the right side of [(4.9), and so

(7'1) Sl(x; q, l) =
Noticing that

q’}‘, +0(%) +I(x, 2).

G(d, )= X p)Z(wu’,
uv=d
we divide K(s, X) into two parts as follows:

(7.2) K(s, 1) =3 £

S
usz U

= ’jf;? X H?(s, X, —)

=3+ 3

U=z <u=z
:Kl(sy X)+K2(S, X) ’

where z;,=1 is to be determined explicitely. Thus we have

(7.3) I(x, 2) = I,(x, 2)+1,(x, 2),
where
1 Ly X8 _
5= 2 { LiTL(s, DEKy(s, O-"—ds  (j=12).
, : .

We have

Col-
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(74)  1(x, 2)]

1
2 1 1
= ano(q) Py EZ v xmodq [L<“+” x)llH<2+” X )l |t[+1
x% 1
= T E Vi B Lown, sy,
Since
| i it 5|« (55
we have '
y
Qu, v) < (- xmodqf +” X>HH< T >\2 |t|i—1

uy )M{x modq.( ltH—l }

SeNRECRES >i T

where we used the Holder inequality twice.
From Lemma B we have

xmodq |H( 2 +lt x uv )l “l‘i‘l

o(osT %) 5,

a=k

& q<1+ i >Iog

since we have [(3.5).

Thus we have from this and (6.1)

0 <o -2 ) (o () o'
which, with (7.4), gives

1
(7.5) [1,(x, 2)] € d leog X{Z‘* 13 2 15+ Zi 11 2 }
gp( ) uSz1 f vg% v q4u§z1 ) ug% v
L 1
< Hlogt (G H+0).
qT

We now turn to I,(x, 2).

In this case K,(s, X) has the following expres-
sion:



(7.6)

where
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X(uvd,d
K, 0= ¥ T 40) s

UVsSz
2
dy,da= P

= 3, 2 sy,

n<—
21

f(n) = X #(U)Zumh uvdsz o
n=uv2didy
21<u=z
v=-2_
u

2
-
dy, do= m

Here we have from

(7.7)

()= zi(n),

317

where z,(n) is the number of representations of 7 as a product of four factors.

We have

| L(x, 2)| K

(q) {xmodq IL( g Tib, ")l ItH-l &

X{xmodqf K(g+it 1) g .

From (6.1) we get easily

IL( 5 Fit, x)l Itl+1 < q(log x)*.

xmodq

From (7.6, [7.7) and by Lemma B we get

Thus we have

xmodq |K<2

& q(log T+ qzz
: 1

Itl—l—l
) ) f*(n)

n

17

L q(l

| I,(x, z)|<<x2(log x)“(l—{— (121>

From this and [7.3), (7.5), we get

|15, 9] < E(log 9 {(z2) * +—Z—+—}.

q4

The right side is minimized at 21:——%—, and hence we have proved

q3
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318
LEMMA D. If
zzq%,
we have

1
1 ¥

| I(x, 2)| < x*(log D" {Z—+—5} .

gt  g*

§8. Proof of Theorem 2, Part II.
We now give another estimation of I(x, z) which is stronger than Lemma

D when ¢ is small.
We divide I(x, z) into two parts as follows:

Q1) -  Ix 2)= ZW((D {-fr>m>ro jMST}L(s XK(s, 1)~ (s:%——i—it)

= Is(xy Z)+14(x7 Z) ’ Say’

where To=1 is to be determined explicitely.
We have from

5+t X)HH< otk )’ T

T _ o(d)
Ii(x, 2) < so(q)dgz Vd xmzodq

To

x2 ‘L'(d)
go(q) Vi Q.(d), say.

As for Q,(d) we have

2J+1

UD<, T, 5 Edqu, L(4+it, )| H(5+it, 1, Z-)[ a

2J+1

L(—%—ﬂ—it, X)rdt}%

(9 Bar il

(i, 2 ey

X{zmodq“fzf
(27g log* x) 4 {(2’q+ d> %, }

.as]w

< ( ) ToS2i=T 2J

<« () atog 0 (1 (7)),

Thus we get
|1,(x, 2)| € x¥(log x) 4 { S i CO N T(Z)}
d=z dT

(8.2)
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& x%(log x)5(z%—l— )
qTy)* 4

On the other hand we have from Lemma C

22q°T, 5 z(d)

I , ,
s Ao 2 va R p hicoy
where we put
__3
a= 16 +e.
So we have
1
I x2q“T, w(d) z 1
l 4(x, Z>l<< SD(Q) d@z '\/d (q IOg T0+ d >d§‘¢zi dl
1 1
&£ x2q*T, log* x(22 +%) .
Hence from this and (8.1), we get
83) |15, 21 < 3 log® #{Tug (42 ) +—2}.
(¢ T)“

o

Now if 2= ¢? then we have z _2_%, and the right side of [8.3) is mini-

mized at

1
To= ( ‘z%:a >—$
q

+2a

3
which is =1 when z2=¢? Thus we have

LEMMA E. If
Gzzzgrt

we have

1
| I(x, 2)| < x2(log x)*—2——o

1
And if z=¢%, we have 22 g%, and the right side of is minimized

at
1
T0:q7(1 4a)219

which gives
LEmMA F. If

we have
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1
|1(x, 2)| < ¥ (log —5"g—.
g7 7"

§9. Proof of Theorem 2, Conclusion.

Now from Lemma D we have
1

1 2
| 1(x, 2)| < x%(log 0",

q 6
when
x 2
gt =zz=¢3
In this case we put
_ X
= 5
q® (log x)*°
which gives
X
ll<x1 Z)[é q(log x)z -
Then from and we get
. x log log x
Six; 1) < —(1Ho(—5255)).
¢(q) log
q 3

Thus from and we get uniformly for all /mod ¢ with (g, [)=1

(9.1) n(x;¢, 1)< —_—"<1+0 lo%olgogxx ))
¢(q) log

q3
when
> X <7
7" = ogn™ =1
If

3 t2a

i
q? =z2=q*"

b4

then from Lemmas D and E we have

| I(x, 2)| < x*(log )"

gt
So we put

o

X
B= 1,

g% (log x)**
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which, with [3.1), (3.4), (3.6) and [(7.1), gives uniformly for all /modg with
(g, H=1

©.2) a(e; g, )s2——*——(140(0ELEX Y,
©(q) log —7= log x
Nz
—+4a x 17
97 Z g or 24°
Further if
qZ—zzgq—g‘JﬁZu’

then we have

and so from Lemmas D and E we have
1

| 1(x, 2)| < x%(log "
q

%(1—-0\ i

Thus we put

Z—{ 7 “(log x)**® } ",

which gives as above uniformly for all /mod ¢ with (¢,[)=1

(9.3) m(x;q, 1)<11 x (1+0< log log x ))
0(q) 108 —area— log x
q a
when
Biba o X T
1 Z ogn® =4
Finally if
zzq*,
we put
2= x%
q 7 (1 +3a) (log x>13

which, with Lemmas D and F, gives

x
|I(X,Z)|§W

Hence we get uniformly for all Imod ¢ with (g,1)=1
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(9.4) n(x;q,1)=2 (140 Eﬁlﬁi))’
¢(9) log T vam
when
(logx DE = o7
With a little further calculation all assertions of follow from

the results (9.1) - (9.4).

Concluding Remark: In the estimations of I(x, z) we did not make use
of the inner structure of A, (3.2), and one may ask what will happen if '
is taken into account in a more detailed calculation of I(x, z), especially when
g is in the range

q = exp ((log X)%) .

In this case we can give a fairly nice estimation of H(s, X, —2—) unless d is

too large and X is the exceptional one, and so the summands of I(x, z) which
corresponds to non-exceptional characters do not give any trouble. But it
turns out that as long as we use [3.2), which means that 4, is something
near to

a1~ 0L,

the term corresponding to the exceptional character is connected essentially
with the exceptional zero. Thus we run against a rock.
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