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§0. Introduction.

In this paper we shall describe the theory of extended powers of CW-
complexes. Our main application is to demonstrate the following conjecture
of M. G. Barratt:

CONJECTURE. Any element of positive stem of the stable homotopy groups
of spheres is nilpotent.

The extended n-th power D,(X) of a CW-complex X is defined by
WS, X s, X™/WS, Xs,(base point)™, where WS, is an acyclic S,-free complex
as S, being the n-th symmetric group (for details of the definition, see §1).
The study of constructions of this kind was initiated by N.E. Steenrod [18].
For n=a prime, various applications of extended powers to homotopy theory
have been done by J.F. Adams, M. G. Barratt, D.S. Kahn, M. Mahowald and
H. Toda. Also R.]J. Milgram treated the D, construction to apply it to the
Arf invariant problem.

The basic idea of the proof of the conjecture is given by H. Toda in
[19]. That is, roughly speaking, the study of the stable homotopy type of
D,(X) for X=S* or S*\U,e**' may lead us to the conjecture. We shall
describe two ways of attacking the conjecture, which are given in Part I
and Part II, respectively. The second method gives the comprehensive result
(Corollaries 8.2 and 8.4), but the estimate of exponent ¢ in a‘*=0 is very large.
On the other hand, though it gives only a restricted result (Corollary 4.2),
the first method gives much better estimate of exponent than that of the
second one.

The paper is organized as follows.

§1. Extended power of CW-complexes.

§ 2. Cohomology group of D, (X).

§3. Homotopy type of I'-spectrum.

§4. Applications to the stable homotopy groups of spheres.

§5. Further properties of D, (X).

§ 6. Some properties of 4.
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§7. The adjoint of h, and the theorem of Kahn-Priddy.

§ 8. The nilpotency of elements of n5(S°).

The part I consists of §1-§4 and the part II consists of §5-§8. In §1
and § 2, the definition and the basic properties of the extended power D,(X)
and the ['-spectrum are given. In §3, we shall show that if X is S¥\U e**
a Moore space of type (Z,, k), then the associated ['-spectrum Dy is mod p
homotopy equivalent to a generalized Eilenberg-MacLane spectrum. Then
in §4, we prove that if @ € z¥(S°; p) is of order p, then « is nilpotent. In Part
II, §5 and § 6 give an analysis of non-additivity of D, construction and more
detailed study of D,(X). Then in §7 and § 8, we give the proof of the con-
jecture by use of the theorem of Kahn-Priddy [8].

I would like to thank M. G. Barratt for many helpful conversations.

PART 1.
§1. Extended powers of CW-complexes.

Throughout this paper we work in the category of based CW-complexes.
All maps and homotopies will mean base point preserving maps and base
point preserving homotopies unless otherwise stated. Let S, be the sym-
metric group on n-letters. Let G be a subgroup of S,. Then for any space
X, G acts on the smash product X™ of n-copies of X as the permutations.
Let WG denote a G-free acyclic complex, G acting from the right and WG
denotes the r-skeleton of WG. Let WGP be the one point disjoint union of
WG with trivial G-action on the point. We regard the added point as a
base point.

DEFINITION 1.1. The extended n-th power of X with respect to G is
defined by

DPX)=(WGP)Ag X™.
For a map f; X—Y, the extended power of f is defined by
DP(f)=id Aef™; DF(X) —> DFP(Y)

where f™=fA -+ Af; X™—>Y™ denotes the smash product of f.

The following functorial properties are obvious. 1). DP(id)=id;
2). DP(fog)=DF(f)oD§(g); 3). If f~g homotopic, then DP(f)~ D&(g);
4), DP(X)=X"™ and DP(f)=[f™.

For our purpose, the case that G=S, or a p-Sylow subgroup of S, for
a prime p will be important. In those cases D¥(X) is denoted by DP(X)
and DY, (X), respectively. If 7 is infinite, DF(X) is denoted simply by Dg(X).

We consider the direct product S,;XS,, as a subgroup of S,:» by letting
S, act on the former n-letters and S, act on the latter m-letters. The wreath
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product S,JSm acts on the set {(,/); 1<:1<n and 1<j;<m}. So we may

condider Sanm as a subgroup of S,,. These inclusions define equivariant
maps
WS, X WS,, —> WS,in; S, X S, -equivariant

WS, X (WS,)* —> WS, S, j S, - equivariant,

and we can construct the following natural maps in the obvious ways
,un,m; Dn(X) AN Dm(X) — Dn+m(X)
¢n,7n ) Dn(Dm(X» — Dnm(X) .

PROPOSITION 1.2. fnim,(ln,m A lpycxs) 1S homotopic 0 pomei(lpco A tmg)-
Let T; Dy(X) A Dp(X)— Dp(X) A Dop(X) be the switching function, then p,,T
is homotopic to pn, if X is connected and simply connected.

PROOF. The first statement is clear from definition. Let o € S,;, be the
element defined by o(t)=1i+m for1<i<nand ¢(@)=1i—n for n+l1=1=<n+m.
Let T7; S, XS,—S,%XS, be the switching function. Then we have the fol-
lowing commutative diagram

T/
Sp X Sy —> Sp XS,

I e |

Sn+m > Sn+m

where o4 indicates the inner automorphism defined by o¢. Let Box: BS,in
— BS, . be the map of the classifying space. Then using obstruction theory
we can easily see that Bosx is freely homotopic to the identity (not neces-
sarily preserving base points). Taking a suitable model of WS,.n, Satn acts
also on WS, ., from the left. Let l,: WS,,n— WS, be the left action of
o. l, is equivariant, for we consider WS, ., as the right S,.n.-space. Since
Boyx~1id, we have easily that [, is (freely) equivariant homotopic to the
identity. Now Dn(X)/\Dm(X)L Dm(X)/\D,,(X)#L’TI)Mm(X) is induced
T No Winl
from (WS, X WS, ): AX"™ ——» (WS, XWS)  ANX®™ —» (WS, ;) AX™,

Winl
and this is (freely) equivariant homotopic to (WS, X WS, ) AX™™ —s

(WSpsm)+ AX™*™, Hence we have that p,,7T is (freely) homotopic to fu,,
and if X is connected and simply connected, the proposition follows. Q.E.D.
Now let us consider a pair (X, S¥%), i.e, a space X and an inclusion

IAI
i; S¥— X, and consider the composition map g,; D(X)AS* — D, (X)A X
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Hn,1
- Dn+1(X)

DEFINITION 1.3. For a pair (X, S*¥) with £ >0, we define a spectrum Dy
={(Dx)p, &} by (Dx)npsi=D(X)AS  for 0=i< kand e,p4; =1d for 0<i<k—1,
Enk+k-1— &n-

A spectrum M= {M,, ¢,} is called a ring spectrum with unit if there
exists maps i,; S"— M, and ¢, ; M,AM,— M,,, such that the following
diagrams are homotopy commutative.

1IN, I A1
M, AS™ —> M, ANM, S*AM,, —> M, AM,
A o [E P
Mn+m Mm/\Sn —_—> Mn+m
[
Pam A1 IAT
M, AMAASY —> M uAS* M,AS'AM, —> M,AM,AS*
ll/\s ls l¢n,m/\1
M AMpyy —> Mpyipy enl M, mAS?
nym+1 1,5
Mn+1/\Mm —> Mn+m+1
nym+1

where 7T denotes the switching function and ¢ is the corresponding structure
map. Also the homotopy associativity and homotopy commutativity are
defined in the usual way.

THEOREM 1.4. If X is 1-connected, then Dy is a homotopy associative and
homotopy commutative ring spectrum with unit.

PROOF. The ring structure is defined by ftzm; Du(X)ADp(X) = Dyym(X)

and by the obvious extemnsion to all (Dy);. The unit is defined by ixn+s;
i(‘”’-)/\l

ZA . .
Skl 5> X™AST—s D.(X)AS? where j is the natural inclusion. Let us
check the homotopy commutativity of the last diagram. In order to do that,
it suffices to check the homotopy commutativity of

IAT
Dy(X)AS*AD(X) —> Dy (X)AD (X)AS*

l #n,m/\l
gﬂ/\l Dn+m(X)/\Sk

l En+m
D (X)ADp(X) —> Dypimis(X).

Ur+1ym



Nilpotency of elements of the stable homotopy groups 711

But this is clear by [Proposition 1.2l The rest of the proof is similar. Q.E.D.
DEFINITION 1.5. A homotopy associative ring spectrum M is called a I'-
spectrum if for any n and 7 there exist an integer k£ and a map

0; DP (M) —> My,

such that 8| DQ(M,); DP(M,)— M,, is homotopic to n—1 fold iteration of the
multiplication.

EXAMPLE. The spectrum Dy is of course a ['-spectrum by means of
Duyms Da(Dn(X))— Dpm(X). Also various Thom spectra such as MO, MSO,
MU and S, the sphere spectrum are [’-spectra. For the sphere spectrum,
we have

PROPOSITION 1.6. For any integers n and r, there exists an integer k such
that for any N, there exists a retraction v; DP(SH)— Sknv,

PrROOF. D{’(S*) is the one point compactification of WS xg (R*)"
Therefore D’(S*) is considered as the Thom complex of the vector bundle
over BS{ induced from k-7, where y; BS,—BO(n) denotes the regular

representation. Since S, is a finite group, y has finite order % in ]%(BS;”).
This proves the proposition.

§2. Cohomology group of D,(X).

Let X be a space with a base point *. Let Q(X)=1im £2"S™(X) denotes
—_—
the infinite loop space. Let /I'* be the free monoid functor of Barratt [4],
i. e., for suitable model of WS,
I'*(X)=\UWS, x X*/R

where the equivalence relation R is the following;

(Zl’; Xy ety xn)’\“(w; Xo(1yy *** s xa(n)) for o Sn ’
(7'0; xlv ) xn—l) *)N(Tw; xl) ) xn—l)
where we WS, and T; WS,— WS,_, indicates some S,-, equivariant map.

Let I'(X) be the universal group of I'*(X). For the details of definitions,
see and [7]

THEOREM 2.1 (Barratt-Quillen). I'(X)=Q(X), homotopy equivalent. If X
is connected, then I''(X)=I'(X)=Q(X).

For the proof, see [7] Note that for a connected space X the above
homotopy equivalence may be given by

I'+(j D.L
I'(X) — I''(Q(X)) — Q(X)

where j; X—-Q(X) is the natural inclusion and D.L denotes the Dyer-Lashof
map, see [11]. Now let p be a prime then we have
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THEOREM 2.2 (Barratt). If X is connected, then there exists a natural
splitting

AT (X); 2,)= 3 ADA(X); Z).

PrROOF. Let X,=XV S’ We consider the point + as the base point.
Let p; X,— X be the obvious map. I ,(X) denotes \5 WS, xX*/R, so I,
=1

filters I'*. Apparently I',(X,)= il WSix s, Xt I'(X)/ Iy ((X)=D,(X) and
=1
I' (X)) (X)) = Dy(X,)=(WS,Xs,X™,. Then we have the following com-
mutative diagram
'y (Xy) —> I'y(X,) —> Di(X,)

| Pty | Tup) | Dute)
T i(X) —> T'(X) —> Dy(X)

where the horizontal sequences are cofiberations. If X is connected, then
ﬁ*(X+) =~ Hy(X)and D,(p)x; H«(D(X4); Zp) — Hx(D,(X); Z,) is an epimorphism.
Apparently we have a natural splitting

HoT(X2); Zp) = Hi(T - (X4) 5 Zp)+Hu(Do( X5 Zy)

and this gives the required splitting of Ho ([ (X); Z,) or H(I+(X); Zp) =
H(Q(X); Z,). Q.E.D.

Now we recall the homology of Q(X), [6]. Let Q' be the modp Dyer-
Lashof operation. For a class x of dimg¢, Q%(x) is defined by Qi-gxp-1(%X) if
p odd and by Q;_,(x) if p=2, where Q; denotes the operation in [6] The
degree of Q¢ is i for p=2, and 2i(p—1) for odd p. Let B denote the homo-
logy Bockstein operation. We use the following convention.

a). p=2. Let I=(s,-,s,) be a sequence of non-negative integers.
We denote Q°to---0@°% by QL. We define the degree, length and excess of

k k

Iby dI)=Xs;; lI)=Fk; e(I)=s,— X s;. I is called admissible if 2s;=s;,,
=1 i=2

for 2555k

b). p is odd. Let I=(e, sy, -*+, €4, Sx) be a sequence of integers such

that s;=0 and ¢;=0 or 1 for all . We denote B%1Q° --- B*Q%* by Q. We
"k k

define d(I) = 12 2sj(p—1D)—¢e;); II)=Fk; e(I)=2s,— _22(25,-(1)——1)—5]-). 1 is called
=1 Jj=

admissible if ps;—e;=s;-, for 27 <k.

THEOREM 2.3 (Dyer-Lashof). If X is connected, then Hy(Q(X); Z,) is iso-
morphic to a free commutative graded algebra generated by all Q'x;, where
{x;} is a Z,-basis of H(X; Z,) and I is admissible with e(I)> deg x;.

For the proof, see [6].
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Now let x=IT Q%(x,) be any monomial of Hx(Q(X); Z,). We define the
=1
13

height of x by h(x)= X p'¥? and A(1)=0. This is well defined. Let A,(X)

=1
denote the sub-module of H«(Q(X); Z,) spanned by all monomials of height n.
PROPOSITION 2.4. If X is connected, He(D(X); Z,) = A, (X).

PROOF. Let M,(X) be the image of Hy(I',(X); Z),) ﬁﬂ; H(I''(X); Z,) =
Hy(Q(X); Z,). Then since F(Q(X); Z,)= S H«(DA(X); Z,) (Theorem 2.2), it
is enough to prove that M,(X)=submodule of Hx(Q(X); Z,) spanned by all
monomials of height<n. Let S,(p) be a p-Sylow subgroup of S,. Then

Sp,(p)zpr---ij, the r-fold wreath product of Z, with itself. Let n=a,p*

+ --- +a, be the p-adic expansion of n. Then Sn(p)zspk(;b)“kx oo X Si(p)%.
Let B,,(X) denote WS,(p)Xs,pm»X"™ and B,(X) denote WS,X s, X" Then we
have an obviovs natural map B, ,(X)— B,(X). Clearly

By o(X) = By (X)X - X By (X )%

and B, (X) = B, (- (Bp,po(X) ).
Consider the map

Since B;,(X)—B,(X) is a finite covering of degree prime to P, ¢.x;
HyIB;(X); Z,)— Hx(I',(X); Z,) is an epimorphism. Therefore we have
M,(X)=1Image of (j,o¢,)+. Note that Hy(B,; ,(X); Z,) is written by iterated
Dyer-Lashof operations, and we can define the height of elements in
Hy(B; ,(X); Z;). Then by comparing the height, we can see that M,(X) is
spanned by all monomials of height = n. Q.E.D.

Now let us assume that X is #—1 connected and H(X; Z,)=Z,. Let i;
S*— X be a map representing a generator z< H,(X; Z,). z also denotes the
corresponding element in H,(Q(X); Z,). Consider the map

En-1; Dn—l(X) A Sk — Dn(X)
and the commutative diagram

1X1 D.L
(WSp-1 X5, , X" )X St — (WSp-1 X5, [ X" XX - WS, X5, X" —> Q(X)

l, , l l

1At Pn-1,1
Dy (XINSH ——— Dy ((X)AN X ——— > Dy(X)

where vertical maps are obvious identification. Let o,; H;— H,., be the
suspension, and let a= Xz; H(Q(X); Z,)— H;.,(Q(X); Z,) be the homomor-
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phism defined by product with z. Clearly Xz; A,.,— A, and we have
En-1%0, = Q] An—l —_— An .

THEOREM 2.5. We assume that k is even if p is odd. Then g,_,x; H(D,_,(X)
NS*; Z,)— H(D,X); Z,) is monomorphic for any i, and isomorphic for

i<kn+2—‘%in

PROOF. It is enough to consider a; A,-;—A,. Since Hx(Q(X); Z,) is a
free graded algebra, under the assumption, « is clearly monomorphic. We
prove that « is epimorphism up to appropriate dimension. First we consider

t
the case of p=2. Let x=TI Q%ix; be a monomial of height n. Since Qi is
admissible and e(Q"*) > deg x;, we have easily

) deg (x) = 3 209 deg (x)+ 3 (2100 —1)
=1 i=1

=2 2/ deg (x;)+n—t
=nk+n—t.

Now let s be the number of l's in the sum >2'Y?(=n). Then we may
assume that I, =0 (the void set) for 1<i<s. Also we have easily

(*%) 2t—s)+s=n.
Suppose that deg x; >k for 1<:=<s, then by (*), we have

(F¥*) deg (x) = nk+n—t+s
and together with (**), this implies deg (x)=nk+ ZL Therefore if deg(x)
"< nk-{-%, at least one of x;, 1=1,2, ---, s, has degree & which must be z.
Thus a; A,_,— A, is epimorphism in dim. < nk—i—%

t
Next we consider the case of p odd. Also consider an element x = IT Q%(x;)
of height n=3p*"", By a simple calculation we have the following; If
deg x; is even and e(l;) > deg x;, then

deg Q%ix; = p'¥ deg x; 2p 3

(pl(I;) ).
If deg x; is odd and e(l;) > deg x;, then

deg QI’)C >pl(11) degx + p 1 (pl(Ii)_l) .

Let ¢/ be the number of x;’s such that deg x; is even. Then
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deg x = > (PP deg x+— 2p— 3 - (pao—1))
deg z; even p—
_|_ 2 (pl(h) deg XH'*—" (pl(l;) 1))

deg r; odd

= B (oot DT (o)

+ B (ol h7T (o)
= kn—l——%:—zir (n—t)+n—1".

Now let s be the number of 1's in Xp'’?, Then we may assume [;=0 for
1<i<s. Suppose that deg x; >k for any 7, 1=i<s Let s, and s, be the
number of x;s of even degree and the number of those of odd degree for
1<i<s, respectively. Clearly ¢/ = s, and p(f—s)+s=<n and we have

deg x = kn+ p (n——t)+n»~t’+231+93

>kn1rp (n—t)FZQ/ kn{—2pp3 n.

Then the rest of the proof is the same as that of p =2.

§3. Homotopy type of / -spectra.

Let M,=S%\,e*"" denotes the Moore space of type (Z, k). Then the
purpose of this section is to prove

THEOREM 3.1. We assume that k is even if p is odd. If k=2 lhen Dy,
has the same mod p homotopy type of a wedge of Eilenberg- Ma(,l,ane spectra
2'K(Z)).

Now we call a I'-spectrum M mod p connected if the stable homology

group H(M; Z,)=Z, for a prime p generated by the unit S—l-+M. A
generator of H(M; Z,)) is denoted by u. Then we have '

COROLLARY 3.2. Let M be a mod p connected I'-spectrum. Assume that
Bu+# 0, B being the cohomology Bockstein operation, then M has the same mod p
homotopy type of a wedge of Y'K(Z,).

The proof of [Theorem 3.1l and [Corollary 3.2 will be given in the end of
this section.

Let = be the cyclic group of order p and let D.(X) be the cyclic extended
power of X (see §1). H™(Brw; Z,)=Z, is generated by w} for p=2 and by
(Bw)™* or w,(Bw,)* " for odd p. Let e; & H;(Bm; Z,) be the dual homology
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class.
Let {x;}, i=1,2, -, be a Z,-basis of H(X; Z,). Then a Z,-basis of
Ho(DAX); Z,) is given by

ei®x1}: 1207 17'“y and ]:1’ 2; )

e Q(x;, Q- Qxy,), 1s#7,  for some s and ¢,

where we identify ¢,&(x;, & - @x;,) With €& (X5, @ -+ @ Xjycpy) for any
cern. Let Sqgi, 2% and 4 denote the dual of the Steenrod square, and the
dual of the Steenrod reduced power and the homology Bockstein operation,
respectively. Then we have
THEOREM 3.3. Let x be an element of Hy(X; Z,) then
Sg(eare @19 = 2 (TF7 ) e0rns @(Sahr)?,

ec+2ip<p—1)®(£f’;<x)p

c
P (ezn(p—l)+c®xp) =2 ([i]+qm
n—pi

I}Q—I‘?*_L] +qm—1
n—pi—1

—e(e+1) X

) Cotprainip-1 Q) (Pidx)?

and
A(ec®xp) - ‘S(C)ec—l®xp ’

where ¢ may be negative, m = (p—1)/2, p(q) £0(p) and e(s)=1 if s is even, e(s)
=0 1f s is odd.

PROOF. The last formula is easy to see. The second one is proved in
and the first one is similar and easier and the proof is left to the
reader.

Let S¢4 be the dual of the Milnor generator &; in the dual Steenrod
algebra Ay« Also @4 and Q; denote the dual of & and the dual of z; in
Apx, respectively. Now let D, (X) be the extended power with respect to
a p-Sylow subgroup of S,.. Then D, (X)= Do - o D.(X), r times iteration
of the cyclic extended power. Letu e HYX; Z,). Then the external reduced
power P(u) e H?Y(D.(x); Z,) is defined in [18], and we can consider the itera-
tion P(u)e H” D, (X); Z,). Then we have

PROPOSITION 3.4. Let X be k—1 connected and let u e H¥X; Z,) be a class
such that Bu+0. Then

Sq4iP(u)y+0  for p=2,
PEPDwu)y+0 and Q;P(w)+0  for odd p),

for any i, 017,
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PrROOF, Under the assumption of the proposition, there exists a map
f; S¥U,e*= M,— X such that f*(u)+#0. Therefore by the naturality of the
operations, it suffices to prove for X=S%U,e**' and ue H¥S*\U,e**; Z,),
a generator. We shall prove it in the term of the dual operations.

Let x e H,(S*\U,e**'; Z,) be the dual of u and let y & H,\y(S*\U et Z,)
be an element such that 4y=x. Note that P™(u) is the dual of x*" =x -
®x. Let z, i=1, -+, m be homology classes of D,r,(S*\U,e**"). We call
the sequence {z, -+, z,} essential if z;,, =S¢¥z; for any 7, 1<i1<m—1 for
p=2 and if z;,, = PL"%z; or z;,,= Bz for any i, 1=<i<m—1 for p odd. By
definition [13], Sq4¢ =[Sq*™", Sq4i-1], P4i=[L?*", P47 and Q,= B, Q; =[P,
Qi-.] for i=1. Therefore

Sq4i = Sq'Sq® --- S¢* "' +other terms

Pl = £ P'@P ... PP 4 other terms
and
Q;= +BP'P? .- PP other terms.

First we assume p—=2 and % is even. Consider the elements ¢, V* and

eoRx?=x% in He(D(S*\U,e**"); Z,). Then by [Theorem 3.3 the only essential
Sqik Sq%

sequence from ¢, X% to x%is {e,®y* —> ¢,Q¥y* —> x*}. Then by induction

using we have the following. In D,r,(S*\U,e**"), the only one

essential sequence from ¢,®X(,® --- (e, Q¥%)* )% to x¥ is {e,R(-+ (e, R ¥*)*

Sqk Sqi Sgx .
) 2, R (0,R) - (e R D) ) e — 2, R (e, R - R (e, QYD) —> x7T}.
This proves that S¢4:P™(u)+0 for i<r+1. Now let £ be odd. Note that
there exists a map g; S*\U,e***! - D_(S*\U,e**!) which is degree 1 on the 2k
cell. Then by the naturality we have Sg4:P™{(u)+ 0 for i <.

Next we shall consider the case p=odd. By we have that
in Hx(DAS*\J,e**"); Z,), d(e, 1 QyP)=e,, Q7 and Pi(e, . QP) =x*e, @ x?,
where *3£0(p). Furthermore the only essential sequence from e, ;®y? to x?

Pk
is {ep-, QY —> ¢, ,Xy? —> xP}. Then also by an induction, we can see
4
that in DpT,p(SkUpekH)r {ep—1®<ep—l® ®(ep-1®yp)p"')p - ep—z@(ep—1®
Px
®(ep-1(®yp)p“')p —_—> eo®}(ep—2®(ep—1® ®(ep—1®yp)p"')p o eo®(80®
PET

Re, (e, @y?)P---)?» —> xP"} is the only one essential sequence from the
first class to x?". Thus we have @4iP(u)+0 and Q;P(u)+0 for i<7r.
This completes the proof. Q.E.D.
PROOF OF THEOREM 3.1. Let X=S*U_ e**'. Assume that #=2 and & is
even if p is odd. In this case, the stable cohomology H*(Dx; Z,) is a con-
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nected coalgebra over A, with unit by Let ue H'(Dx; Z,) be
a unit. Let ¢; A,— H*(Dy; Z,) be the homomorphism of coalgebras defined
by ¢(a)=a(u) for a= A, Under the assumption on k&, the natural map
Dyr,o(X)— Dpr(X) has the degree #£0(p) on the p"% cell. Then by the natur-
ality of cohomology operations and by [Proposition 3.4 and by the fact that
the dual of ; for p=2 and &;, r; for p odd generates the sub-module of
primitive elements of A,«, it follows that ¢ is monomorphic. Then by
Theorem of [14], we have Hx(Dy; Z,) is a free A,-module. Therefore Dy is
a wedge of Eilenberg—MacLane spectra K(Z,). This completes the proof.

PROOF OF COROLLARY 3.2. Let M be a connected /'-spectrum with unit.
Then clearly H*(M; Z,) is a connected coalgebra over <4, with unit. There-
fore it is sufficient to show that ¢; A,—H*(M; Z,) is monomorphic. Since
Bu # 0 for the unit u, there is a map f; S*\U,e**'— M, for large k such that
f* is non trivial. M is a I'-spectrum, so for any n and 7, there exist an
integer k£ and a map ¢; DP(M,)— M,,. Consider the map

(r)

D;’:)I,(SkUpekH) f_'_l_]_, D@ (Mk) —_> D;N(Mk) —> A/[nk .

s P

Then by the naturality and by [Proposition 3.4, we can see that ¢ is mono-
morphic. This implies immediately the corollary.
REMARK. As a corollary, we have well-known result; MO =V S*K(Z,).

§4. Applications to the stable homotopy groups of spheres.

Let #3%(S°; p) denote the p primary component of the stable homotopy
groups of spheres. Then we have
THEOREM 4.1. Let y € ni(S°; p) be of order p. Then for any integer n

and for any a<=xi(S°; p) such that O<t<[ 2‘1);3

where [x] indicates the integer part of a rational x.
As an immediate corollary, we have
COROLLARY 4.2. Let y=ni(S°; p) be of order p, and let n be the smallest

n]—l, we have ay™ =0,

integer such that t:stemr<[ ZP;B rn]—l. Then we have y"*' =0.

PROOF OF THEOREM 4.1. Let y € ri(S°; p). Note that if p and % are odd,
then y>=0, and the theorem is apparently true. Therefore we may assume
that k2 is even if p is odd. Let f; S¥*¥—S¥ N large enough, be a repre-
sentative of y. By assumption, py=0. Therefore / extends to a map

f; SkEN | ) gkiN i1 > SN,
P

Now by [Proposition 1.6 it follows that for any n» and », we can choose
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N such that there exists a retraction r; D{(S¥)—S#¥, Note that N must
be even if n=2. Consider the following commutative diagram

DY(f)
Din(SEY ek v iy — " Din(SY)
» i
T o) |
| Dy
D:I,A(f)‘ ket A\'> e [)'(lr)(s N)

1 i

¥¢)

D;O)(Sk)/\'):smk N > SnN

where 7 and J are the natural inclusions. Since 2+ N is even if p is odd, by

and by [Theorem 3.1 we have D,(S¥*¥\U,et*¥+1) is mod p stably

homotopy equivalent to a wedge of S*K(Z,) up to dimension n(k+N)-+

2p—3
p

is mod p homotopy equivalent to a product of Eilenberg-MacLane complexes

up to this dimension. Then from the commutativity of the above diagram,

it follows that g~ 0 for any g; St*t¥Vt+i_, Sn*k+N) for O<i<[%13—n]—~1.
This completes the proof.

Now let M be a ['-spectrum. Then the stable homotopy group =nk(M)
turns out to be an associative commutative ring. Then by a similar argu-
ment, we can see

THEOREM 4.3. Let yezi(M) be an element of order p and satisfy that
rv; He(S; Z,)— He(M; Z,) is trivial. Then y is nilpotent.

REMARK. As far as known element in #%(S°) are concerned, the above
result is not best possible. For most elements of the 2-primary components,
it is known that «'=0. For the odd component, it is known that
ﬂ12+1 =0 for /31 € n'gp(p—])—z(soy P).

n. Therefore taking » and N large enough, we have DP(S¥V U, ektV 1)

PART II.

§5. Further properties of D,(X).

m

Let V A;=A,V .-V A, be the wedge sum of A;. We denote by i,; 4,

m m
—\V A; and 7,; \V A;— A, the natural inclusion and projection map, respec-
tively. For an integer n, w=(s,, -+, s,) is called a partition of n of length

m
m if each s; is non-negative and > s;=n. Then we define
i=1
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fw = ﬂw(Dal(ll) VANEERRVAN Dsm(im»; Ds;(Al) VANRERIVAN Dsm(Am)
> Dy(V AY A = A Dy (VA —> Dy(V Ay

where p, denotes an obvious generalization of the pairing f,,;; Di(X)AD;(X)
—D;y;(X), and Dy(X) stands for S° for any X. Consider the maps

F=V fui; VDAY A -+ A Dyn(An) —> Do( N Ay)

the wedge sum of f,, for all partitions of n of length m.
THEOREM 5.1. For any n and m, f is a homotopy equivalent.

PROOF. By definition, Du(V A)=(WS,,) As,(A,V -V A)®. (A, V -
VA)P=VAGA - NAy ), 1,=1,2, -+, m. Letw=(s, -+, s,,) be a partition
of n of length m. Then [, denotes the minimal S,-invariant subspace of
(A, V -V A)™ including AP A --- A Ag™. Then we have an equivariant
splitting (A, V - VA,)™ =1, and thus

all partitions

l)n( <7 Al) = \/(Wsn.z. /\Sn[w) .

Now the subgroup G =35, X -+ X S;,, of S, acts on A{Y A -+ A AF™ and
the inclusion A{™ A --- A ASm™ — [, is equivariant with respect to the inclusion
G —3S,. Consider the following induced maps

WG+ AG(A;'H) AN /\A;':Zm)) —_— WS”+ /\G(Aisl) A e A A;;:m))
- WS”+ /\Sn]w .

The second map is easily seen to be a homeomorphism and the first one is
a homotopy equivalence. But

WG, AN(APO N o A AY = D (AD A -+ A Dy (A

and it is easily seen that the resulting map is equal to f,. This proves the
theorem.

COROLLARY 5.2. Let Vg;; VA, — B be the wedge sum of g,. Then D,(Vg)f;
V D (A) N -+ A Dy, (An)— Dy(B) is homotopic to V p(Ds,(g) N -+ A Dg,(8m)),
where the sum is taken all over the partitions of n.

Now let ¢ be an element of S,,. Then ¢ defines a map o*; X, X --- X X,
=X, o1 X X Xy iomy DY 0(xy, 0, Xm) = (Xyo109 " 5 Xy-1cmy)- This induces maps
0¥, Xy N o AN X=X, oA A Xpoimy and 6% X,V e VX =X Vo V
Xy-1my Let w=(sy, -+, s,) be a partition of n. Then o*w =(s,_;,, -
defines a partition of n. Then we have

LEMMA 5.3. Assume that A; is 1-connected for all i. Then the following
diagram is homotopy commutative

’ Sa- l(m))
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Jw
Dy (A) N+ A Dy (An) > DAV -V Ay
la* an(a*)
D*‘u—m)(/‘lv—lu)) ANA Dsa—l(m)< o-10m) T Du(Ayoiy Voo V Ay
oXw

PROOF. Consider the diagram

0'*

DSJ_(Al) A e A Dsm(/lm) —_ DSU”I(I)<A”“1(1)) VANEELRVAN Dsa—l(m)(AU—l(m))
la lﬁ

g¥*
Dl A) A = A DV )~ Dy,

¢\ /i

D, (Vv A)

(VAJA - (VA

“’" “a 1(m)

where a=D;(i) A -+ A Dy(i) and B=D; _, (oos) A * ADs, - (ty-10my)-
Then the commutativity of the rectangle diagram is obvious and the triangle
diagram is homotopy commutative if all A; are 1-connected by
Then the lemma immediately follows. Q.E.D.
Now we take A;=B=_S* for any i. Let ¢,; S¥—S* denote the identity.

Then 7=¢,V -+ V¢,; VS¥ —S* is the natural projection. Let ¢; S*—\ S*
be the standard comultiplication map. Then n¢ =m¢,; S*—S* By
5.2, applying D, we have

G4 Dalme~ (Y o Daen) A+ A Dee))f Dol )
~ 1S Dl )

where 7! indicates a homotopy inverse of /.
Let ay; Du(V S*)—Dy(SHA - A D, (S*) be the composition
m Vi Proj.
D,(\V S*) — }U/DSI(S’Z) Ao A D (8% —> D (SHYA -+ A Dy, (S5).
Note that in the stable category, we have
(5.5) Dn(mek)w% Ly D () .

Now let us consider the diagram

Dy(9) m Ay Hw
Dn(Sk> —> Dn(\/Sk) I D31<Sk) ANRELIVAN Dsm(Sk) Dn(Sk)
H | Dy ) l"* H
D.(¢)

D,(S*) —> Dn(\/Sk) > Dy (SHA (S%) £y Dy(S*).

So-1(1) 30 1(m)
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We assume that £=2. Then by Lemma 5.2, the second and third rectangles
are homotopy commutative. Also as is well known, ¢~o*¢ for any o< S,
if k=2. Hence the first rectangle is homotopy commutative.

Let £ be the set of all partitions of n of length m. Then S,, acts on £ by
w—o*w. Let {; d;, 1=1,2,---,m, be integers such that {,=0<t,< -+ <t,,
;Sz}ldi =m and lg‘,ltidi:n. Then ({;, d;) defines a partition of n by arranging
¢t; with multiplicity d; (d; may be 0). Then clearly all such (¢;, d;) give rep-
resentatives of the set £/S,.. Note that #{the orbit set through ({;, d;)} =
m1/11(d;") with convention 0!=1.

Now we put n=p, a prime, and m=0(p). For ({;, d;,) satisfying the
above condition we have

p=td+tdy+ - Ftpdy = dyt o+ dy

and p=d,+ -+ +d, if and only if d,=p and d;=:--=d,=0 and t,=1.
Then by a simple calculation we can see that every (t;, d;) satisfies (d,=m—p,
dy=p, dy=+-=d,=0) or (d,>m—p, d, <p,---,d,<p). For an integer f, we
define v,(t) by t= 11 p*r®, Then apparently we have

p- {all primes]
v(ml/(pHm—p))=v,(m)—1 if m=0(p).
vy(m1/(d, 1) -+ (dp 1) =v,(m) if dy>m—p and d;<p for i>1.
If d,=m—p and d,=p (hence t,=1), the corresponding partition w is
0, -, 0, 1_,_’_}) Then a,, is a map from Dp((\n/Sk) to SP*, Let &; in/S"—>\p/S’*

»
be the map shrinking the first m—p spheres. Then we have the following

commutative diagram

D,(S%
D,(9) \\\<Eii
-Dp(ﬂ)

D,V S ~D,(V S*

aw'
Spk

where ¢, ¢’ are the respective comultiplication, w =(0, -+, 0,1,+-+,1) and w’ =
(1,--,1). Then we denote by h, the composition «a,D,(@)~a, D,(¢");
D,(S*)—S?*, Let j; S?*—D,(S*) be the inclusion. Then summing up the
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preceding argument, we have
THEOREM 5.6. Let m=p"a, r =1 and a=+0(p). Then in the stable category,

there exists a map g; D,(S*)— D,(S*) such that Dp(mzk)rvpfg-l—( g)jhp.
REMARK 5.7. If p=2, the theorem can be written precisely as
D(’"%)"””‘Dac&h‘*‘( 7721 )jhz-

§6. Some properties of /,.

Let f; X—Y be a map. C,=Y\U,;CX denotes the mapping cone of f.
Consider the map D,(f); Dy(X)—D,(Y). Then we define a map

e; DyY)Up,p,C(Dy(X)) —> Dy(Y\U,CX)
by
ew; xy A s ANxp), =(w; (x;, HA -+ A(xp, 1))

Apparently e¢| D, (Y); D(Y)—D,(Y\U,CX) is the natural inclusion. We
assume that the chain map fi; C«(X; Z,)—C«(Y; Z,) is trivial, then so is
D,(f). Then we have canonical splittings

Hy(Cr; Zp) = Hy (Y ; Zp)+H(X; Z))
Hq+1(CDp(f> s Zp) = Hyss(Dp(Y) 5 Zp)+Hy(Dy(X) 5 Z) -

Denote by £ e H,.,(Cs; Z,) the corresponding element to x& Hy(X; Z,) and
similarly for Cp,».

Note that the natural map D, (X)— Dy(X) induces an epimorphism of
Hy( ; Z,) for the cyclic subgroup of order p. Therefore any element of
Hy(Dy(X); Z,) is written as ¢;@x? or ¢,Q(x;Q -+ @ x,) for x, x; € H(X ; Z,).
Then by Theorem 2 of immediately we have

/\
PROPOSITION 6.1. ex(e;Q x?)=2e;-p+1 QZP for 2=0(p) if i—p+1=0, and
=0 if i—p+1<0.
Now from it follows that the degree of the map S?*C D,(S%)

2. 57% ig 0 mod p. Then we have

THEOREM 6.2. Let k=pta, a==0(p). Assume that a is even if p odd. Then
the functional BP-(Sq'- if p=2) operation of hy; D, (S*)—S?* is non trivial for
1<i<pt (non trivial for 2<1< 28 if p=2).

PrROOF. We may prove the theorem for a large suspension of 4, so that
h, is in the stable range. Then by we have

Dp(p‘k)’\’pg'{"jhp ’ Dp(S k) — Dp(s k) .

Let Mi=S*U,e*** be a Moore space. Let xe H,(M%¥';Z,) and
y< Hy (M%7 ; Z,) denote the generators such that 4y=x. Also we denote by
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x the corresponding generator of H,(S%; Z,). By [Proposition 2.4, we can
easily see that a Z,-basis of Hy«(D,(M%"); Z,) is given by
(1) e@x?, eQ(xP1y), ezi(p—l)—1®xp , ezi(p-1>®xp ,
Coi-vip-0-1Q0YP  and  eui-np-n@¥?, 1=1,2, .

Then by [Theorem 3.3 and by the naturality of the operation for the inclusion
D (MEY— D, (ME?Y) and by k=ap’, we have

(i) Sqfk(ei(g)xz):(ki)eo@xzzo for i< 2

Sti(es®)=(F D)o@t 20  for <242,
and
(h—1)k
(iii) (ﬂﬂ’i)*(em—n(p—l)@yp):( 2 )%@xpio for 1< pi+1.
1—1

Furthermore by the structure of Hi(D,(S*); Z,), we can easily see that
BP*=0 on HP*D,(S*; Z,). Thus if i<’ the functional BP* (S¢*- if p=2)
operation of %, is non trivial if and only if so is for jh,; D,(S*)— D,(S%).

Next consider Cp,p., the mapping cone of Dp(pey); Dy(S*)— Dy(S*).
Apparently (pep)s =0, C«(S*; Z,)—C«(S*; Z,). Then by [Proposition 6.1 and
by (ii) and (iii) above, we have

(V) (Se)s(e @) #0  for 2=i<2+2

T —
(BPYx(Cyicp-n@xP) =0  for 1=Zi<p'+1

in H«(Cpypeps s Zp). This implies that the functional S2*- (Sq¢'- if p=2) operation
of D,(p¢) is non trivial for 1 <i<p* (2=:<2" if p=2). Finally consider the
map Plpysh; Dy(S*)— D,(S*). The cofibre of p¢p, s may be considered as
D,(S*) A (SY\U,e¥) in the stable range. Then S%%(Sq%) is easily computed by
(ii) and (iii) and by the Cartan formula. i.e., BRL'H?**¥ (D, (SHYA(S¥ U, eV ) ; Z))
=0 for 1>0 and S¢'H?**** =0 for 2=<i<2. Thus the functional oper-
ations of p¢p,sk, are trivial.

Therefore if the functional operation of 2, for ¢ in that range is trivial,
then so is for D,(p¢,) by the additivity of functional operation, but this is a
contradiction. This completes the proof.

REMARK. M. Barratt pointed out that the cofibre of the map h, is
homotopy equivalent to 22D,(S*°!). Furthermore we can see that the co-

fibration Dz‘(S")-—LSf"’—»Ch2 is equivalent to the usual cofibration of stunted
projective spaces 2*RPy—S* —J3*'RP¢, Then if p=2, the theorem can
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be proved directly from this fact.

For odd prime p, the composition map Dﬂ(Sk)ﬁDp(Sk)—tSp" is also
denoted by h,. Then we have

COROLLARY 6.3. Theorem 6.2 holds for the map h,; DA(S*) — SP*,

THEOREM 6.4. D{(S*) is stably homotopy equivalent to RP?, the one point
union of the real projective space, if and only if k=002%"), where ¢(r)=
£8{; 0<iZr, 1=0,1,2 or 4 mod 8} denotes the Adams number.

PROOF. It is known in [T] that the J-group J(RP") is isomorphic to Z,s,
generated by £—1, £ is the canonical line bundle over RP". Note that D{’(S¥)
" is the Thom complex of the bundle 2£--k. Then by the result of [3] the
theorem is proved.

Now let L, =S5%"*'/x denote a mod p lens space of dimension 2r4+1. We
may consider L}, = Br®"*P,

THEOREM 6.5. Let p be an odd prime and k even. Then DEP(S*) is stably

homotopy equivalent to Ly, if and only if kEO(p[E%]).
PROOF. As is easily seen, if & is even D (S¥) is the Thom complex of

the complex vector boundle over Br induced from %-;r, where 7 ; Br— BU(p)

denotes the complex regular representation. Let & be the canonical line
bundle over CP®, and let n; Br—CP~=DBS"' be the canonical projection.
7*& denotes the induced bundle and (z*£)* the i-th tensor product. Then
apparently we have that D@ +’(S*) is the Thom complex of the vector bundle

(B/2)(1+a*E+(a*E)*+ -+ +(@*E)P™)

over Br®™tP=Lr.
Consider the J-homomorphism J; K(L;)—J(L3). Then it is shown in[9]
that

Jjiwy) = zts] it r£00)
~zZlvtliz, it r=00
and the cyclic group Zl[,_l’rrl{I is generated by f(r(o)). Here o=nzn*£—1 and

r; K(X)—KO(X) denotes the realization homomorphism. It is also known
that J((0))= —J(r(¢%) = --- = —J(r(¢?"")). Now

1+m*8+4 o (@ P =1+ (g+ 1)+ -+ +(o+1)P
=((o+1)"—1)/0
=p+(5)ot - +(, 2 Jorrar.

Therefore we have
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ot - arepmn=((5)=(5)+ -~ +1)Je0)

=(p—1)/(r(0)).
Then by the result of [3], we have that D@ +>(S*) is stably homotopy equiv-

alent to Ly, if and only if £/2=0(pl7Th, i.e. k=0(pl7T}). This completes
the proof.

§7. The adjoint map of %, and the theorem of Kahn-Priddy.

Let Q(S°):1i_m £2"S™ be the infinite loop space of sphere and Q,(S° the

component of the trivial map of Q(S°. In [6], Dyer and Lashof have shown
that for any prime p, there exists a map a.; Br—Q,(S°) such that the adjoint

map
Ad(az); 2B — Q(SY)

satisfies Ad(a.)x(0(e;+p-1))=Q(s;). Here = is a cyclic group of order p, o
denotes the suspension isomorphism and s, € H\(S*; Z,), €i+p-1 € Hisp-(Br; Z,)
are generators. Ad(a.) can be factored through §(SY), the universal covering
space of Q(S'). Then by use of the spectral sequence of the path fibre space
Q.(S"— P—0(SY), they have shown that

(7.1) Hy(Qo(S%; Z,) is a free commutative algebra generated by a..(p-15)
and @.(Cyicp-1-1) (@mle;) if p=2) for all ;, as an algebra over the
algebra of the Dyer-Lashof operations.

In [5], Barratt-Kahn-Priddy have constructed a map
w; BS. —> Q«(S")

such that wx; H«(BS.; Z,) — H«(Q,(S°); Z,) is an isomorphism of algebras over

the Dyer-Lashof algebra, where BS.,=1im BS, denotes the classifying space

of the infinite symmetric group and the Dyer-Lashof operation is defined by

the wreath product WSn§<(BSm)"~»BSnm. Let 7,; Br—Q,(S°® be the map

obtained by restricting w on BrC BS,. By the definition of w, y,(e;)=

Q. x(—=])* - x(—]), where J= H(S°; Z,) is the class represented by the
—_———

» times

point different from the base point and * denotes the loop product (c. f. [127).

Therefore we may consider a.=7y,.
Now we introduce a filtration in Hx(Q,(S°); Z,) defined by Tsuchiya [21]

For a basis element x= ﬁQ’k(yp,(eik)), the height of x is defined by h(x)=
k=1

%pl(i’k)’ where [(I,) denotes the length of I,. Then the filtration G,=
k=1
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Hy(Q\S%; Z,) DG, DG, D -, is defined by putting G, =subspace spanned by
all basis of height={. Apparently Glzﬁ*(Qo(S°) s Zp), GG, Ggy and
G./G, is spanned by 7p(€icp-n-1) and yp(ericp-n) (by 72es) if p=2).

For a connected space X (in paticular X=S"), H«(Q(X); Z,) has the
similar filtration using the height defined in § 2. This filtration is denoted
by F,. Then we have,

LEMMA 7.2. Let f; 2 Ba‘”—Q(S?*) be a map satisfying f«(0(isp-1) = Qi(sy)
mod Fp. H«(Q(SY); Z,) for i+p—1=7r. Then for the adjoint map Ad(f); Bx™
—Q4(S?), we have~Ad(f)*(ei+p_1)E.rp.(ei+p_1) mod G,.

PROOF. Let Q(S') be the universal covering space of Q(S*). It is shown
that Hx(@(SY); Z,) is isomorphic to the subalgebra of Hx(Q(SY); Z,)
generated by Q“(s,), where s, H\(S'; Z,) is a generator and [ admissible,
e(I)>1 and I#0 for p odd. For p=2, it is easy to see that Hx(Q(SY); Z,)
is isomorphic to the subalgebra generated by all Q(s,) and si where I
admissible, e(I)>1 and I#0. Let f; 3 Bx—Q(S?) be a lift of f. Then
Fx(0(esp-1)) = Q(sy) mod Fpy; implies that in Hx(Q(S?); Z,), fx(0(essp-1)—Q4(5))
is decomposable of Q;(s;), =0, or of the form Q;Q,(x) for some x. Therefore
easily we have that z( f*(a(ei+p_1))zr(0i(sl)) mod G, where 7 is the trans-
gression. Hence Ad(f)x(ei+p-1) = 7p(€i+p-1) mod G,.

THEOREM 7.3. Let h; X*RPT™—S> be a map such that the functional Sq"-
operation is non-trivial for r+1=n=2. Then the adjoint map Ad(h); RP"—
Q,(S°) satisfies that Ad(h)sx(e,-,) = 72(€yr-1) mod G,.

PrOOF. First we assume that n=2. Let 7; S'—RP" be the inclusion.
Then if the functional S¢*-operation of 4 is non-trivial, the map 2=(S')—X~RP"
—S* is essential. Hence Ad(h); RP™— Q,(S®) satisfies that Ad(h)x; 7, (RP)—
7.(Qy(S%)) = Z, is an isomorphism and so is for H( ; Z,).

Now we assume n>2. We restrict h; 2*RP™—S® on Y*RP™!. Then
as is well-known, A is the suspension of a map

h'; Y"RP™?!—s S7,
Let X®"RP"!*—-S*—>C—3Y""'RP"! be the induced cofibre sequence. Then
taking the functor @, we have a sequence of fibering

Q3I"RP™ —> QS™ —> QC —> QI™'RP™,

Let s, H,(S™; Z,) and o™ (¢,) € H,p 1 (X" RP™*; Z,) be generators. Note
that Hy(C; Z,) = Hx(S™; Z,)+ Hx (X" RP"*; Z,). Therefore H«(QC; Z,) has
the following Z,-basis in dim.<2n; s,, ¢"*(ey), ---, 0" e,_), s2.

Consider the cohomology spectral sequence of the path fibration 2QC—
P—QC. Let ue H*QC; Z,) be a generator and o(u)= H* Y{(2QC; Z,) the
suspension of . Then by assumption, S¢"u=u?+0. Hence d,uRc(u))=
u*#0. Then we can see easily that the Z,-basis of Hy«(2QC; Z,) in dim.<
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2n—1 is given by {z(s,), z(a"**(ey), ---, (6" (e,-,)), 7(s2)}, where z denotes the
transgression.

Next consider the homology spectral sequence of Q2"RP"'—2QS"—
RQC. QQE"RP™'=QX"*RP", QQS™*=0QS™* and 2QC is simply connected,
for n= 3. Then the spectral sequence turns out to be an exact sequence

Hm—z(QZn_lRPn_l ; Zy) —> Hyp f(QS™; Z,) —> Hzn—z(QQC; Z,)

0
—> H,, (QI"'RP™1; Z,).

Then by the structure of Hx«(2QC; Z,) given above, it is easily seen that
0(z(6"*(e,-,))) #0 and the map Ad(R)=R2Q(h)oj; X" 'RP™*—-Q(X"*RP"?)
—Q(S™ 1) satisfies that Ad(h)«(6" Ye,.))=Q" *(s,-,). Then by taking further
adjoint and by the result of and by the fact that Hy(Q(SY); Z,)/Fps+1 is
spanned by s; and Q(s,), 1= 0, we can see that Ad(h’); YRP"'—Q(S") satisfies
Ad(h)x(e,-1) = Q" '(s;) mod Fp,;. Hence so is Ad(h) and the theorem follows
from Q.E.D.

We shall prove the similar result for odd prime. In order to do that,
we prepare the following lemma for odd prime p.

LEMMA 7.4. The suspension homomorphism X=; [ X*™m-1BgGr@-1 Gm-17_,
[2=Br®™P-1 S=1 of the homotopy sets is an epimorphism if m>n. Here
Bra®™?=1 denotes the 2n(p—1) skeleton of Br.

PrROOF. Consider ther natural inclusion ¢; S*™!'— Q%S?™*,  We may
assume that 7 is a fibre map and Q3! denotes the fibre. In [20], it is shown
that the p-primary component =;(Qi™'; p)=0 for 1 <2mp—3. For any com-
plex K, we have the suspension exact sequence

22
[K, Q"] —> [K, S*m] —> [K, 2*5*™+].
Then if K=23*L for some L, we can see that 2%; [K, S ']®Q,—[2*K,
S¥1®Q, is an epimorphism if dim K <2mp—3. Here @, denotes the ring
of fractions whose denominator is prime to p. Note that Hi(Bz®"?- con-
sists of elements of order p. Therefore

22; [Z’Zm—an.(zn(p—l)), SZm—l] 5 [Z’Zm+an_(2n(p—1))’ 52n+1]

is an epimorphism if 2m—1+2n(p—1)=2mp—3, i.e., m=n+1. This proves
the lemma.

THEOREM 7.5. Let h; 2°Bra™—S> be a map such that the functional
BPr-operation of h is non-trivial for 2n(p—1)=r. Then the adjoint map
Ad(h); Ba" — QS satisfies that Ad(h)x(esncp-1) = 7p(€2ncp-1y) mod G,.

PrOOF. Consider the restriction of A; 2*Br®*®- -S> Then by
7.4, h is the suspension of a map h’; 2" Bg®*®-1_, §2+1  Consider the
sequence of cofibrations
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EZn+an.L2n(p—1)) S2n+1 C 2’2n+2Bn.(2n(p—1))

where C denotes the mapping cone of A’. Then as in the proof of Theoreml
7.3, we have a sequence of fibrations

QZ’:lnHBn.(Zn(p—l)) > Qszn+l 5 QC S Q22n+23n(2n(p—1)).

Let Spnsy € Hynsi(S*"H 5 Z), 0**42%(e;) € Hypypy (¥ 2B P~ Z) be generators
of appropriate groups, and also denote the corresponding elements in
H(QS™*; Z,) and Hu(QX™+:Br®-2; 73  Since Hi(C; Z,) = H(S™; Z,)
+ Hy(Z2m+2 Brenm-1 Z,), we can easily see that in dim.=<2np+2, H(QC; Z))
is a free commutative algebra generated by Hx(C; Z,) and the degree of
any monomial is less than ».

We shall consider the cohomology spectral sequence of the path fibre
space QQC—P—-QC. Let 34, H™(QC; Z,) be the dual of s;,4; and
0(S5n+1) € H™(2QC; Z,) denote the suspension of 3,,.;. By assumption,
BL"Syn11 =0 (Cyncp-1) in H¥(C; Z,). Hence so is in H¥QC; Z,). Then by
Kudo’s transgression theorem [10], we have

dzn(p—l)+1(§2n+1®G(§2n+1)p—1> - ﬂ-@ngznﬂ #0.
Then by simple calculation, we can deduce that in dim.=< 2np+1, Hx(QQC; Z,)
is free commutative algebra generated by

T(Son+1), T(@¥F%ey), -+, T(Uzn+2(ezn<p—1)—2)) ’

where z denotes the transgression. In particular, we have that all elements
of H,,,+,(2QC; Z,) are decomposable.
Next consider the fibration

QQ(Z’ZnHBn(Zn(p-D)) —> QS —» 20C

and the associated homology spectral sequence. Note that QQ(2?*"+Bp®n?-1)
= Q2™ Br®"®-) and QQS*™*'=QS*. In dim.=<2np+1, H(QX?"Br@"®-,
Z,) is a free commutative algebra such that every monomial has degree <p.
Consider the element 6°™(eynp-1y) € Hynp(Q(2*"Br®*®~): Z), which is inde-
composable. Then by the structure of H«(2QC; Z,), we have 0°(esp-1y) # 0
in £~ of the spectral sequence. This implies immediately that the map

Ad(h), Z’Zan(r) — Q(Zanﬂ?(T)) > Q(Szn)

satisfies Ad(R)x(0*™(€snp-1)) = Q"(S2n) € Hynp(QS*™; Z,). Then taking further
adjoint, we can easily see as in [Theorem 7.3, that

Ad(h); IBx” —> Q(SY)

satisfies Ad(h)«(0"(esncp-1) = Q"(sy) mod Fp,,. Hence the theorem follows from
Lemma 7.2
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We shall now state the theorem of Kahn-Priddy [8].

THEOREM 7.6 (Kahn-Priddy). Let & be a cyclic group of order p (p may
be 2). Let h; 3~Ba”—S= be a map such that Ad(h)x(esicp-1) = 7p(Cricp-1))
mod G, for 2i(p—1) <r (Ad(h)«(e,) =7x(ey) if p=2). Then the homomorphism
of p-primary components

hs; 7i(Br; p) —> wi(S°; p)

is an epimorphism for 0 <i<r.
REMARK 7.7. In [8], the theorem is proved for a map h; X*Br®™ —S~.
But the argument is easily seen valid when restricted on appropriate skeletons.
COROLLARY 7.8. Let h; Y*Ba™—S> be a map such that the functional
Bt -operation is non-trivial for 2i(p—1) <r (the functional Sq*operation is non-
trivial if p=2). Then hy; ni(Bz; p)—ri(S°; p) is an epimorphism for
0<i<r.

§8. The nilpotency of elements of 7%(S°).

In the sequel, we denote by a; S*—S° a stable map a; S*¥—S¥ for
large N. By [Proposition 1.6, for any 7, s and p, there exists a number N
and a retraction R; DP(S*®¥)—S#¥  Therefore we can use the notation
R; DP(S%-—S° for any » and p. Let ¢(r) be the Adams number. Then we
have

THEOREM 8.1. Let a; S*—S° be an element of order 2™ and k even. Given
an integer n, let r be the maximal integer such that nk=02%"). Then for
any Be ni(S°; 2) for 0<i<r, we have 2™ a®"B+2r)=0 for some yeni(S°’; 2).

PROOF. Let hy; D,(S™)—S?"* be the map defined in §5. By assumption
and by DP(S™ey = Yerk(RPP) = Sk Y2 RP™,  Since k is even,
the functional Sq¢® operation of A, is non-trivial by Then by
Corollary 7.6, we have

hat; Tivana(DF(S™) ;5 2) —> Tirans(S™"F; 2)

is an epimorphism for 0<i<r. So given B&ri(S°;2), we may choose
BE 7fi+2nk(D§T)<Snk); 2) so that hz‘(.g):ﬁ-

Consider the product ™. Since a is of order 2™ so is a™ Therefore
the following composition

Dér)(zm) Dér)(an) R
D(S™) —> DAS™) —> DS —> S°

is null-homotopic. By we have

9" R DY (o™ (gm)anhw 0: DP(S™) —> SO,
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Then by composing 5, we have
"R D§ (@) f+-2m (2"~ B~ 0 .

Hence by putting RD{(a™)f =7, the proof is completed.

COROLLARY 8.2. Any element of ni(S°; 2), 1> 0, is nilpotent.

PrROOF. It is sufficient to prove for elements of even stem. Let a; S*—S°
be of order 2™ and %k even. We take n such that nk=0(2¢**V), Then in
Theorem 8.1, we can take « itself as . Thus we have 2™ (a®**'+27)=0
for some 7. Since 2"a=0, by composing a we have 2" 'a***?=0. Then
iterating this argument, we have a’*=0 for some t.

REMARK. Unfortunately the exponent ¢ given in this corollary is much

bigger than that given in [Corollary 4.2l For an element of order 2, the

estimation of ¢ is approximately Z[i;ﬁ], whereas that of is 2k4-3.
Now we shall state the corresponding results for odd component. The
arguments are similar and the proof will be omitted.
THEOREM 8.3. Let k be even and let a; S*—S° be of order p™. Given an

integer n, let v be the maximal integer such that nkEO(;D[?’r:T]). Then for any
i, 0<i<2r and for any Bemi(S°;p), there exists y & n%k(S°; p) such that

pm a0 f+py)=0.
COROLLARY 84. Any element of z¥(S°; p), 1> 0, is nilpotent.
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