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Let L be a linear second-order elliptic differential operator in R¥, for
instance, L = —4. We consider the equation

@ Lu+B(x, u(x)) = f(x)

where f(x) is integrable on £ C RY and u(x) vanishes on the boundary of £.
In case f(x, u) is monotone increasing in u, possibly multi-valued, we prove
the existence and uniqueness of solutions. Actually, L can be any abstract
accretive operator in LY(Q2) which satisfies a “ maximum principle”. In case
B(x, v) is not monotone but has the same sign as u, we prove the existence
of solutions when f(x) belongs to an Orlicz class arbitrarily close to L'(&Q).
We also consider equation (1) with a nonlinear boundary condition.

The linear case is considered by Stampacchia [18]. Our basic technique
is to multiply the equation by various monotone functions of u. This method
was used by Moser [14] in his proof of the DeGiorgi-Nash regularity theorem.
The standard variational approach [12, 17] cannot be applied to our problem
for two reasons. Firstly, 8(x, u) may be rapidly increasing in u# and may
even have vertical asymptotes. We can handle rapidly increasing non-
monotone B(x, u) by a lemma from [20]. We can handle (multi-valued)
monotone graphs by techniques from [6]. Secondly, the merely integrable
function f(x) need not belong to the dual space of the space where an energy
estimate holds.

While this work was in progress, we learned of four other related works.
(i) Browder [4] allows rapidly increasing non-linear lower-order terms of
high-order elliptic operators. Because his approach is Vai'iational, those of
his f’s which are functions must belong to a smaller space than LY(9). (ii)
Da Prato considers equation (1) with L =—4, B(u) a monotone continuous
function, and f & L?(Q2) for p>1. (iii) Konishi has a result similar to
part of our [Theorem 1in the case when fA(x) is a monotone continuous func-
tion and £ is bounded. (His “sub-Markov” assumption is equivalent to our
assumption (II).) His methods are entirely different from ours. (iv) Crandall’s
Theorem 4.12 in [5] is closely related to our [Theorem 1l in case L=—4. In
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a paper which is yet to be completed, we have obtained some analogous
results for parabolic equations.

§1. An abstract formulation of the monotone case.

Let 8 be a maximal monotone graph in RXR which contains the origin.
If the pair (s, t) = 8, we write t = S(s).

Let 2 be any measure space. We denote by | |, the norm in L?(9Q).
Let A be an unbounded linear operator on L'(£) which satisfies the following
conditions.

(I) It is a (closed) operator with dense domain D(A) in L'(Q); for any
A2>0, I+2A maps D(A) one-one onto L'(2) and (/+AA4)! is a contraction in
LYY,

(II) For any 2>0 and fe LY(Q),

s%p (I+2A)"f < max {0, sgp f}.
(By “sup” we mean the essential supremum. If sup f= oo, assumption (II)

is empty.)
(III) There exists a >0 such that

allull, = ||Aull, for all ue D(4).

THEOREM 1. For every fe LY(Q), there exists a unique u € D(A) such that

2 Au(x)+Bu(x) 2 f(x)  a.e.

Moreover, if f,fe LY(2) and u, &t are the corresponding solutions of (2), then
&) I(f—Aw)=(F—AD = 1 /~F -

In particular,

4 | A@u—a)|, < 2] f~F Il

LEMMA 2. Let y be a maximal monotone graph in RXR which contains
the origin. Assume that A satisfies (I) and (II). Let 1< p<co and p’'=p/(p—1),
p'=o00 if p=1. Let uec D(A)NLP(Q) with Auec L?(Q). Let g L¥(Q) be such
that g(x) € y(u(x)) a.e. Then

j QA‘u(x)g(x)dx >0.

PrROOF OF THEOREM 1. We denote, for u and fe LYQ), f= Bu whenever
f(x) € B(u(x)) a.e. We first establish (3) which implies (4) and the uniqueness.
Let g=f—Auc Bu and §=f—A@ € Bi. We multiply the equation

* (I) is equivalent to —A generating a linear contraction semi-group in L!(2).
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Au—a)+g—g=rf—f
by
+1 on {u>a}\J{g>g}

h(x) = 0 on {u=aln{g=4g}
—1 on {u<#al\U{g<g}.
Note that A(x) is defined a.e. and is measurable. Clearly h(x) < sign [u(x)—#@(x)]
Nsign [ g(x)—g(x)], where sign[r]=-+1 for >0, sign[r]=—1 for <0,
and sign[0]=the interval [—1,1]. Applying in the case p=1,.
r =sign, we have (A(u—f), h)=0. (This special case of is a con-
sequence of (I) since sign is the subdifferential of the norm.) Therefore we

obtain i X
lg—&l,=(g—-& =/,

This is estimate (3).
It follows that A+ B has closed range. Indeed, let u,e D(A), Au,+Bu,>f,
and f,—f in L'(2). By (4) we have
[ Ay —un)y < 2 fo—Talls -

Hence by (III) and the closedness of the operator A, u,—u and Au,— Au in
L'(£2). Since B is maximal, f—Au  Bu.

It remains to show that A-+B has dense range. (To accomplish this, we
use some arguments from [6]) Let us approximate 3 by the Lipschitz
functions

fa= T (I~U+2H7),  2>0.

First we solve the equation

(5) eut+AutBu=s

for any ¢>0, >0, f< L'(£). Indeed, (5) can be rewritten as
Aeut+AAutu=2Af+I+2P8)u,

(6) u= e (s A AU

The operator on the right side of (6) is the product of two contractions in
L'(2) and a number less than 1, hence is a strict contraction, so that it has
a fixed point u € D(A). If in addition fe L=({2), then u and Au belong to
L>(2). For, from (II) we have

1T+24) gl = gl  for ge LYQ)NL~(2).

The same fixed point argument in the space L'(2) N L=(2) shows that u and
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Au are essentially bounded.
Now we let 1—0, keeping fixed ¢>0 and fe L)\ L=(2). We denote
the solution of (5) by u;. From (6),

uall < (A42e) {21 S 1| - Mlusll}
whence

TNERSTY

where || | denotes the norm in LY Q)N L>(2). If we multiply equation (5)
by sign(u;) and by |B(uy)|?%B(u;), make use of and let p— oo,
we also find {B;(u;)} to be bounded in L'(2) "\ L*(2) by the norm of f in that
space.

Next, {u;} and {Bi(uz)} are Cauchy sequences in L*2). To prove this,
we subtract the equations for u; and #, and multiply the difference by u;—u,.
Using with y =identity, we obtain

elus—ull+(Balu)— Bulu), uz—u) 0.
The last factor may be rewritten as
Uyz—Up == {u;—([+A8) " uy}
+ {28 uy— T+ pB) uyt + {4 pB) ' u—u,t .

The middle term makes a non-negative contribution because 8 is monotone.
Hence

5“ul—u/z“%"}—(ﬁl(uz)‘—‘@/t(uy)y Rﬁl(ul)‘#ﬁﬂ(u‘u)) = 0.

Thus {u;} is Cauchy in L*Q) as 2—0. The limit u belongs to L'(2) L=(£2).
By Lemma 24 of [6], {B8:u;} is also Cauchy in L*(2); its limit g belongs to
LN L=(L2) and g(x) = B(u(x)) a.e. since S is maximal. So we have
(el+Au;—f—g in L¥ Q) as 2—0. Let v=(I+A)"(f—g). By () and (II), v
belongs to D(A) N\ L=(2). Clearly (eI-+A)(u;—v)—0 in L*(2). Multiplying this
expression by u;—v and using again, we obtain u,—v in L*Q).
Hence u=v. By definition of v, eu+Autg=1.
Finally let fe LY(®2) and let f*—f in L'(£2) where [ LY(Q2) L=(2).
Let u® be the solution of
eut+Aus+Bu*> f°.

Using (lII), together with estimate (4) with #=0 and B replaced by S+el, we
have
alul, = [Awll, =20 ¢, .

Hence su*—0 in L}{2). Hence

S=Ilim (f*—eu®) € lim (Au*+ Bu®)
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belongs to the closure of the range of A+-B.

The proof of depends on
LEMMA 3. Let T be a mapping from LY(Q) into LY(Q2) such that (for
u,ve L{(2)):

(M | Tu—Tol, = |lu—vl,.
(8 min {0, igf u} < Tu(x) £ max {0, S\Slzp u} a.e.

Let j be a convex lower semi-continuous function from (—oo, ) to [0, +00]
such that minj=3(0)=0. Then

[ i(Tu@ydx= | ju(x)dx
2 K]

for all ue L) such that jouec L'(Q).
PrOOF OF LEMMA 3. First we consider the particular convex functions

(cf. [8D:

JW(N=@—=1" and j(r)=(—r—0"

where ¢ is some non-negative number. Let y(x)=min {u(x), t}. Note that
ye L'(2). By (8 we have Ty(x)<t a.e. and thus

(Tu(®)—0* =(Tu(N—=Ty(x))" =|Tu(x)=Ty(x)| a. e

Integrating this inequality over £ and using (7), we obtain
j (Tu(x)—1)*dx < j Lu(x)—y(x) | dx = j (u(x)—1)* dx.
Q Q 2

Note that the operator u— —T(—u) also satisfies (7) and (8). So we can
apply the result just proved to this operator to obtain

[ (=T—utp—trdx< [ @x-t)yrdx.
Q Q

If we let v=—u, then the lemma follows for j,(). Combining the results for
both j, and j,, we have ‘

9) j JLHTu@—1))dx < j [t —1)]*dx

for all real t.

The general case follows by taking convex combinations of j;, and j,. In
fact, let j be any convex C' function on R with uniformly Lipschitz deriva-
tive such that minj=;(0)=0. Then

(10) o= L0 tr—n1ar

as can be easily checked by considering the cases ¥ =0 and 7 <0 separately.
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Multiplying (9) by j”(¢)/|t] and integrating, we have
co »]-”(f) . 00 jl/(t)
j ;Jg TR T~ dxdi = { - | R ECORNENS
By Fubini’s and [10), we obtain
[ j(Tuydx< | jau)dx.
] K]

If j is an arbitrary convex l.s.c. function, there is a sequence {j;} of
functions as above which converges to j monotonically from below. For
instance, we can define (cf. [2])

. . 1 TN

jAry=inf {5 lr—t*+j (D)} .
By the preceding result we have

{iaTwydz < [ jwydx < [z

This implies j(Tu) € L'(2) and the desired inequality.

REMARK. This lemma can be regarded as an interpolation lemma in
Orlicz classes. As was kindly pointed out to us by Jodeit, in the linear case
it is essentially due to O’Neil by a different proof. In the nonlinear
case with j(u)=|u|? the lemma follows from Peetre and Lions [13].
We thank L. Tartar for some helpful discussions on this subject.

PROOF OF LEMMA 2. Let j be the indefinite integral of 7 satisfying
7(0)=0. It is a convex L. s.c. function from (—oo, c0) into [0, +co] such that
minj=0. Its subdifferential 0j equals y. Since g(x) = dj(u(x)) a.e., we have,
from the definition of subdifferential,

J(Tu(x))—j (u(x)) = g (LT ulx)—u(x)]
= —Ag()(T,Au)(x)  a.e.
where T;=(I+2A)"'. Using the subdifferential property again,
JO)—j(u(x) = g(x)(0—u(x)) a.e.
Since gu is integrable, so is jou. Applying to the mapping T,
we have
[ iTadx< | ja@)dz.
) 9

Therefore, (g, T;Au)=0.
As is well-known, T,;Au— Au in L'(£2) as A—0. So we obtain the desired
result in case p=1. If 1 <p=oo,

1T Aull, = || Aull,
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(by Lemma 3 in case p<oo, and by (II) in case p=o0). If 1<p<oo,
T,Au— Au weakly in L?(2), which leads to the conclusion. In case p= oo,
a subsequence of T;Au converges a.e. so that Lebesgue’s dominated con-
vergence theorem is applicable.

PROPOSITION 4. Let @ be a convex l.s.c. function from R into [0, +oo]
such that min@=@0)=0. Let f L (Q) be such that @ofe L'(Q). Under
the assumptions of Theorem 1, let u be the solution of (2). Then

jﬂ@( [~ Miydx = § (/ydx.
In particular,

(11) f=Aull, =1 flp

if fe LN LYNQ), 1=p=oo.

FIRST PROOF. Let T be the mapping /—/—Au. By [Theorem 1, T is a
contraction in L'(2). Therefore the proposition follows from as
soon as we prove that T satisfies (8). To do this, let &= max {0, S%p f} and

let g=f—Au. We must show that g(x)<*k a.e. in £. If £ does not belong
to the range of 3, this is obvious since g(x) & B(u(x)) a.e. Suppose, on the
other hand, that k< B(/) where [=0. Let h(x) be the characteristic function
of {u(x)>1}\J{g(x)>k}. Clearly h(x)ey(u(x)) a.e. where y(r)=[sign (r—I[)]*.
By '

0=(Au, )=(—g N =(k—g, h).

But g(x)=% a.e. on the set {u(x)>[/}. Hence g(x)=<Fk a.e. in 2. Similarly
g(x) = min {0, ir})ff}.

SECOND PROOF. We shall give a proof only in the case when: u & D(A)
NL2(2), Aues L=(2), fe L' () L(2), B is a continuous monotone function,
and @ is a C' function with uniformly Lipschitz derivative. The general
case is obtained by a passage to the limit. We multiply the equation by

#(B(w)) where ¢ =0,

(Au, $(BuN)+(Bu), p(Bw)) = (1, $(Bw))) .

The first term is non-negative by We apply Young’s equality to
the second term and Young’s inequality to the third term (see Appendix).
Thus

§ Lo+ TG (Bandx = O+ T($(Ba)dx.

Two of these terms are identical, which leaves us with the desired inequality.
PROPOSITION 5. Lel f,fe LY(8). Let u, @t be the corresponding solutions,
Then
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IL(F— AR)—(f— AwyT* |, S [LF—fTHL .

If f<f a.e. then f—AQ<f—Au a.e. and 2<u a.e.

PROOF. Let g=f—Au, §=f—A#f so that g< B(u), § < B(#). We multiply
the equation A(A—u)+g—g=f—f by h(x), where h(x) is the characteristic
function of £ ={a(x) > u(x)}\J{g(x) > g(x)}. Note that h(x) € y(@(x)—u(x)) a.e.
where y(r)=[sign (v)]*. By (A(fi—u), h) = 0. Therefore,

[ (e—ordx< | (f=Pydxs | (F=r)dx.

By the monotonicity of 8, we have §=g on E and £=<g on the complement
of E. Thus

[ (g-g)ix={ (g-g)*dx

and the desired estimate follows.
Now let f <f a.e. Obviously f—A# < f—Au a.e. from what we have just
proved. Let u, @, be the solutions of

st AutPu) s f, et A ARA4B@)SS.
We have just proved that
go=f—Au.<f—Au.=g.  a.e

where g. € eu.+p(u.), §. € eti.+ f(#.). By the monotonicity of 5, we get &, =u,
a.e. Letting e—0, 4=u a.e.
PROPOSITION 6. Lel f,fe L\Q) be such that A(f—f)e L~Q). If u, @

are the corvesponding solutions, then
lu—a]o < 20 A~ (f~=F)lle -

PrROOF. We approximate u by the solution of
euA AuApu) > fHeAf.
Letting v.=u.—A"'f, we have
v+ Av.+g.=0 where  g.€ Bw.+A7'f).
Similarly f determines #,, 9. and g.. Thus
e(e—ve)+ AW:—ve)+£.—8.=0.

We multiply by A(x)=the characteristic function of F where F= {{.(x)
—v(x)>k} and k=||A"(f—/)].=0. By

* We thank M. Crandall for pointing out the quantitative aspect of this ordering
property.
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e | Ge—v)dxt| (8—g)dx=0.
F F

But on F we have 7.+Af > v.,+ A"/, so that g.= g. by the monotonicity of j.
Therefore I has zero measure; that is, 7.—v. <k a.e. in £. So @#.—u.=<2k
a.e. in 2. Finally, we pass to the limit as ¢—0.

The following lemma is a variation of A related result may
be found in [3].

LEMMA 3*. Let T be a mapping from L'(R) to L' (Q) such that

(0 NTu—=Tvl, = llu—vl,,

(8*) Tu(x)—Tv(x) < max {0, sgp (u—v)} a.e.

Let j be a convex function as in Lemma 3. Then
[ J(Tu)=To()dx = [ ju)—v(x)dx
2 2

Sfor all u,ve LY(Q) with jo(u—v)e L'(2).

PROOF. We define y(x) = min {u(x), v(x)+t} where {=0. Note that y(x) is
integrable and y(x)=v(x)+! a.e. By assumption (8*), Ty(x) <Tv(x)+t a.e.
Thus

Tu(x)—Tv(x)—t £ Tu(x)—Ty(x) a. e.

Taking the positive part of each side of this inequality and integrating over
2, we obtain

j JTu(0—To(x)—1]*dx < j [Tu(x)—Ty(x)]*dx
< [ 1 Tutx)—Ty(x)|dx
= [ lu@)—y(@)\dx

= J Cu(x)—v(x)—t]*dx,

using assumption (7) and the definition of ¥(x). Now switch the roles of u
and v and let ¢/=~t=<0. Then

j [To(x)—Tu(x)+t' 1 dx < j [w(x)—u(x) 1] dx .

Thus we have proved Lemma 3* for the particular cases j,(*)=(r—t)* and
Jo(r)=(—r—1)*. The proof is concluded exactly as in Lemma 3, provided u
is replaced by u—v and Tu by Tu—Tv.

REMARK. In an effort to unify some of the preceding work, we make the
following definition. We shall say that a (possibly nonlinear and multivalued)
operator A belongs to class A if its domain and range are included in LY(Q)
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and, for all 2>0, I4+2A is one-one and onto and (/4+2A4)™* satisfies (7) and (8*).

Some of the preceding results, including [Theorem 1, can be extended to
nonlinear operators of class .4 under various additional assumptions. Still
within the context of linear A, we can state

PROPOSITION 7. If A s a linear, densely-defined operator which is of class
A, then A+ B 1is also of class A.

PROOF. Applying the results of to the operators /+1A4 and
AB, we see that the resolvent [[+A(A+B)]™! exists. The beginning of the
proof of shows that the resolvent is a contraction in L'(2). To
prove (8*%) for the resolvent, let

t=max {0, sup (F—=1

where f, fe LN(2). It is necessary to show that
TH)—-Tf(x) <t a.e.

In case t=0, this is the last conclusion of In case t>0, a
slight change in the proof of suffices.

The rest of this section is devoted to studying different assumptions on
B and A.

REMARK. Let A satisfy (I) and (II) but not (III). Let 8 be as above but
also onto. Let £ be of finite measure. Then, for every fe& L™(), there
exists ue D(AYN L) such that Aue L~(2) and equation (2) is satisfied.
(The solution may not be unique.)

PROOF. The operator A.= A+cl, ¢ >0, satisfies (I), (II) and || Au|, = ellu],.
By [Theorem 1|, there is a unique solution u.& D(A) of

eusl'}'AueJl‘gs :f; g€ B(us) .

By (1}, |g)l«=If]l.. Since B is onto, {1} is also bounded in L*(2). From
the equation, the same is true of {Au.}. There is a sequence ¢,—0 so that

U, —u, Au,— Au Weakly* in L=(2),

n

since A is weakly closed in L'(£). Multiplying the equation by u.—u and
using the monotonicity of A, we have

(8o ue—u)=(f—eu.—Au,, u.—u) < (f—eu.—Au, u.—u),
lim sup (&.,, #e,—u)=0.
Also, g.,— f—Au weakly* in L=(£). The maximal monotonicity of B now
implies that f— Au € Bu.
REMARK. Suppose that 3 depends on x as well as u. We assume that

A satisfies (I), (II) and (III) and that £ is of finite measure. For a.e. x, let
u— B(x, u) be a maximal monotone graph with domain (—oo, o) passing
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through the origin. For each real u, let x—(/+48(x, -))"'(¥) be measurable
on £. Also let

Me(x)=sup {v|ve Bx, v, lu|=C}
belong to L*Q) for all C. Then there is a unique solution
Au(x)+ B(x, u(x)) = f(x) a.e.

just as in [Theorem 1. The only difficulty occurs in the proof that A+B has
dense range in L'(£2). As in the earlier proof, we let Bi(x, u) be the Yosida
approximation of B(x, u), we solve the equation

(D) Au() + il ui () =) ae.

where fe L*({2), and we have the bound for {u;} in L”(£). The novelty is
that we are not allowed anymore to multiply the equation by Ba(x, u(x)).
Instead we note that

| Balx, w1 B%(x, u;(0) | = M(x)  a.e.,

so that {Bi(x, uy(x))} is bounded in L*{2). The rest of the proof of [Theoreml
1 is unchanged.

§2. Some remarks on second-order elliptic operators in L'.

We consider in R¥ an open bounded set £ with smooth boundary. On
2 we consider the differential operator

0 0 , 0
Lu= ”—,z,) 0x; (a” 6]1:1- )+>;‘ ox; (a;u)-au

where a;;, a; € CHD); a e L=,
da, .
ag(), a+;*a—xl—zo a.e.,;
and, for some positive constant «,
2a&é;zalél® ae., E&RY,
)

The Sobolev space W*P(Q) is defined as the Banach space of all functions
in L?(2) all of whose derivatives up to order % also belong to L?(£2). W¥»(Q)
is the closure of 9(Q) in this space; 1<p=< oo, k is a positive integer. The
norm is denoted by || |z, The usual LP(£2) norm is denoted by | [|,. We
write H¥Q)=W Q).

If 1<p < oo, the natural realization of L on L?(2) is denoted by A,. Its
domain is D(A,) =W»?(Q)N\Wir(Q2). 1t is a closed operator which generates
a contraction semigroup in L?(2) (cf. [1]).

The case p=1 is different. We define
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DA)={ues Wi'(2)| Lues L'(2)}

where Lu is understood in the sense of distributions, and we define Au=Lu
for u e D(A). Equivalently, we may say that u € D(A) and Au=/f if and only
if ueWi(2) and

12 (e gy 55) (e, )+, =/, v)
for all ve Wi~(Q).
THEOREM 8%, The operator A satisfies the following properties.
(1) In the space L'(2), D(A) is dense, A is closed, I+1A is onto and
(I4+2A)™! is a contraction for 2>0.
(ID) sgp (I4+24)7'f < max {0, sgp f} for 2>0 and f LY(0).

13) D(A)C W§uRQ) for L=q < N/(N—1); for some a=a(q)>0,
allull, = 1Aull,  for ue D(A).
(14) A is the closure in L'(Q) of the operator A,.

LEMMA 9. A contains the closure A, in L'(2) of A,. Also A, satisfies the
estimate in condition (13).

PrROOF. We have D(A,)=H*(Q)N HY{)C W9(Q). Consider the adjoint
equation

0
_Z'axi< ij ax ) 2 za +Cl1)——‘2 ax
Stampacchia [17] has proven that there exists a solution ve H{(Q2) N L>(2)
whenever h,, -+, hy € L?(2) with p> N. More precisely
ov_ ow
Bfaug, ax, “‘Ef g wtfavw= th
for all we H{(2). In addition, |v]|.=CX|hl,. We simply choose w=u
where u € D(A4,). Then
(U, Azu) = E(hiy au’/axl) ’
| 3 (hy, 0u/ox)| = C(E A Aguell, -

Therefore |0u/ox,)|, < C|A,ul,, where ¢=p/(p—1), so that A, satisfies the
estimate in [(13).

LEMMA 10. A, satisfies the conditions of ().

PROOF. Let feL*(Q) and u={+AA,)"f. Thatis, u+ALu=/f, uesD(A,).
We multiply this equation by ¢(u)=e¢ '[u—([+e sign)'u]; that is, ¢(u)=signu

* This theorem is not new but we could find no explicit reference to it in the
literature.
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for |u|=e and @(u)=u/e for |u|=e. We assert that (Lu, ¢(u))=0. Assum-
ing this for the moment, we have

(w, o) = (f, pw) =1 F1: .

Letting ¢e—0, |lul, < | /ll,. To prove I+1A4, is onto, let f< L'(2). Approxi-
mate f by L*functions f,. Let u,=U+24,)"'f,. By what we have just
shown, {u,} converges in L'(£2). The limit u belongs to D(A,) and u+AA,u=f.
Finally, we prove the above assertion. (Actually it is a special case of
below.) We have

(—E(Giju.ti).’l:jy ¢<u)) = (E aijuxiu.rj: ¢/(u)) é 0

since ¢ is monotone. If {(s) is defined by '(s)=s¢’(s), {(0)=0, then 0 ={(s)
< s¢(s) and

((aiu)zi» QS(M)) = _<aiu7 ¢I(u>u:c1) - __(ai’ C(u)xt) = ((ai).z‘i: C(u)) .
Hence
(au)e,+au, p(u)) = (@9)z,+a, {(u)) = 0.

LEMMA 11. I+2A is one-one for all 2> 0.

Proor. We will prove the slightly stronger assertion that A itself is
one-one. Suppose Au=0 where ue Wpi(2). That is, equation holds
with f=0. We shall choose the test function v in as the solution in
WD) N\ WEPQ) of L'v=g where L’ is the formal adjoint of L, g L?(Q)
and p> N; cf. [1]. The equation for v is understood in the sense that

E(wxiy aijv.z‘j)_Z(u’!y aivxi)+(wy aU) - (wy g)

for all we 9(2). We may take any we Wi(Q2). Taking w=u, we have
simply 0=(u, g). Since g is arbitrary, ¥ must vanish.

PROOF OF THEOREM 8. Since [+ A, is onto and its extension [+A is
one-one, the two operators must coincide. This proves (14), and (I). To
prove the maximum principle (II), let fe L' (2) and u={+2A4)"'f. We may
assume k=sup f is finite. Let f,(x) =max {f(x), —n}. Then f,< L~(2) and
fo—Ff in LX2). Let u,={U+2A)"'f,. By a known maximum principle [17],

Uy (X)) Zmax {0, sup f} <k a.e.

Since u,—u in L) by u(x)<*k a.e.
Some of the preceding results may be summarized in the following form.
COROLLARY 12. Let 2 be a bounded domain in R™ with smooth boundary.
Let L be the elliptic operator defined at the beginning of this section. Let S8
be a maximal monotone graph in RXR containing the origin. Let f< L'(Q).
Then there exists a unique solution in WH'(Q) of Lu+B(w)= f with Lu e LY(Q).
Furthermore, uec Wy(Q) for all < N/(N-1). In case feLP(Q) where
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1< p< oo, we have u s WHP(£).

REMARK. In the important case /& L log L, we may apply
with @(s)=|s] log*|s|. We obtain Lue Llog L. Under certain conditions,
of which only special cases have appeared in the literature (cf. [19]), this
implies that u € W'(Q).

§3. The non-monotone case.

Let £ be a bounded open set in R¥. Let L be the elliptic operator
defined at the beginning of section 2, except that all the coefficients are
assumed to be merely in L~(£).

The (Orlicz) space in which we will work is determined by a C* function
¢(s) which is odd, non-decreasing, ¢(0) =0, ¢(s)— +o0 as s— +oo. We define

@(S) = j:gb(t)dt ’ 0(8) = Jos[qsf(t)]l/zdt .

We define ¥'(») as the conjugate convex function of @(s). See the Appendix
for relations among these functions.

We denote by 4,>0 the smallest eigenvalue of the operator
—20/0x;(a;;0/0x;) in £ with Dirichlet boundary conditions. We postulate a
nonlinear term f(x, s) with the following properties.

(15) B(x, s) is measurable in x < £, continuous in s&€ R and

f sup | B(x, s)[dx <o for all p.
2

Isl = pe

(16) There exists g € L'(2) such that™

e o Bl 9)9()+g(x)
lim inf inf === > — 4,

We denote Bu(x)= B(x, u(x)).
THEOREM 13. There exists a solution of Lu-+-Bu=0 a.e. in 2 with the
following properties:

ue W)  for 1=¢<N/(N-1),
Bwe L'(2), B e L(Q),
O(u) € HN(L2).

We postpone the proof in favor of some applications.
COROLLARY 14 (inhomogeneous equation). Let B(x, s) satisfy (15) and sB(x, s)
=0 for a.e. x< Q and sufficiently large |s|. (The latter condition implies (16)

* This kind of condition also exists in the regularity theory [17].
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with g=0, which is actually sufficient.) Assume that
an s@”(s) < const @’(s) for |s| sufficiently large.
Then there exists a solution of
Lu(x)+ B(x, u(x)) = f(x) a.e. in Q2
with the properties of Theorem 13, for each measurable function f(x) for which
D(f(x)) is integrable.

PROOF. We verify the assumptions of for the nonlinear
term B(x, s)—f(x). Obviously (15) is satisfied. We choose g(x)=@(kf(x))
where £ >1 will be chosen below. Since @(ks)/@P(s) is bounded as |s|— o0
(see Appendix), g L'(2). Note that B(x, s)¢(s)=0 by assumption. By
Young’s inequality,

| f(x)p(s)| = D(Rf(x)+ T (k7¢(s)).
Since ¥ is convex and ¥(0)=0, we have T (k'¢(s)) < kW (¢(s)). Thus for
|s| large
[B(x, )—f(0)]P(s)+8(x) - _ -1 ¥ (P(s)
%(s) = 0%(s) -
Since the last quotient is bounded as |s|— oo (see Appendix), £ may be chosen
so large that (16) holds.

EXAMPLES. In this and the following example we assume sB(x, s)=0 for
large |s|. Choosing ¢(s)=|s|?"'signs, where 1<p<co, we obtain from
a solution of Lu+Bu=f for any fe L?(£2). For a sharper
result, see below. As a second example, we choose ¢@(s)=
log (1+|s])sign s so that 0(s) =2[(1+|s|)*—1]signs. Then we have

COROLLARY 15. For each fe Llog L, there is a solution of Lu+Bu=7Ff
satisfying

ue LNV AWE(2), for ¢< N/(N=-1), if N>1%,
B(u)log (14 u|) e LY(2),
[+ |ul¥)—1]signu s HI(Q).

REMARK. While does not permit a solution for arbitrary
integrable f(x), it does allow f(x) to belong to an ‘ arbitrarily ”’ smaller class.
There are two restrictions on ¢(s): that it goes to infinity with s, and con-
dition (17). It is only the first of these which restricts the size of the class
of f’s and excludes the L' case. Thus another example of an allowable class
is. Lloglog L. ,

LEMMA 16. Suppose that B(x, s) is uniformly bounded on 2XR, as well as
measurable in x and continuous in s. Then there exists a solution ue HY(Q)
NL(Q) of the equation Lu-+B(u)=0.

ue WHL(Q) AW P(Q) if N=1.
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PROOF. For any ve L? let u be the solution in H{Q) of the linear
equation Lu-+B(v)=0. Upon multiplying this equation by # and integrating
over £, we find

Cllull,,, = [ Bvll, = 121" Bv]l..

where C is a constant. So the mapping v—u takes L%*{2) into a compact set
in L%£). Since this mapping is continuous, it has a fixed point belonging
to HY2), by Schauder’s theorem. By the maximum principle [17], the solution
is essentially bounded.

LEMMA 17. For any ve H{(Q)\ L~(2), we have the inequality
(Lv, $(v)) = max {a[|0()[1s A:[0@)I5 = 0.

ProoOF. We first consider the lower-order terms

((aiv)ziv ¢(U)) = _(aiv: ¢’('U)Uxi)
= _(ai: w‘(¢(v))x1)
=((a:)z T ($)))

since
$¢(s) = (sp(s)—D(s)) = [T (S(s)]’ .

Also, since a=0,

(av, $@) = [ a¥ (Pw))dx.
Adding, we find

(@), +av, $0) = [ (@)e+ T (G(0))dx = 0.
We write the second-order terms as
"'((aijvzi).rjy ¢(v)) = (aijvx,;, ¢,(U)'Uzj)

= (aije(v)zi! 0(”)1:])

since §/(v)?*=¢’(v). The proof is completed by using the ellipticity and the
meaning of 4,.

PROOF OF THEOREM 13. We truncate S(x, s) as follows:
8 B where |B|=n
" nsign B where |Bl=n.
For each (x, s), B.(x, s) has the same sign as 3(x, s) but decreased magnitude.
Denote the operator u(-)— B.(-, u(-)) by B, By there exists
u, € H{(Q) N L*(Q2) such that Lu,+B,(u,)=0.
Hypothesis (16) may be expressed as follows: There exists €¢>0 and
¢ >0 such that
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B(x, $)p(s) > (e—2)0%(s)—g(x)  a.e.

for |s|= p. Hypothesis (15) gives an estimate for |s| < g Hence

Br(x, $)$(s) = min {0, B(x, s)§(s)} ,
Bulx, $)p(s) = (e—2)0(s)—h(x)  a.e.
where h(x) is also integrable. Taking s=u,(x) and integrating, we find
(Ba(un), ¢(un)) = (=)0 3— Al .
On the other hand, by Lemma 17,
Ly, ¢(ur)) = 4,103 .

Adding, we conclude that {f(u,)} is bounded in L*{) and that both (B,(u,),
&(u,)) and (Lu,, ¢(u,)) are bounded. By Lemma 17, {#(u,)} is also bounded
in HY9Q).

We can also make the following estimates.

JIBuup) | dx=(Bu(w), pw)=2f  Bun)d(u)dx
and
[1Buuldx = [ 1 Bu(udpun)lde+{ | Blug)ldx.

| (un)l <1

The last term is bounded because the integration occurs over the set
{lu,| £067'(1)} and B(x, u,) is bounded by an integrable function there. Thus
{B,(u,)¢(u,)} and {B,(u,)} are both bounded in L'(£2). Therefore, {Lu,} =
{—B,(u,)} is also bounded in L'(2). So by [13), {u,} is bounded in W)
for any ¢ < N/(N—1).

By weak compactness, we can choose a subsequence (for which we do
not bother changing notation) so that {u,} converges weakly in W{(2) and
{6(u,)} converges weakly in H}(2). Let u=limu,. By strong compactness,
we may assume that #,—u a.e., and hence that (u,)— 0(u) a.e. as well as
weakly in H§(£2). It also follows that B,(u,)— B(u) a.e. and B,(u,)¢(u,)—
B(u)¢(u) a.e. By Fatou's lemma, B(u) and B(u)¢(u) are integrable on £.
Since ¢(s)— oo as s-—oo, the argument of shows that B,(u,)— B(u)
strongly in L'(£). Thus each term in the approximate equation converges
in LY(2), and Lu+B(u)=0.

Further regularity can be obtained with the use of Sobolev’s inequality.
We state it only in the LP-case.

THEOREM 18. Let f L?(Q) for some 1<q< N/2. Let
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N—2
P="N—3q9~7 19
Let sB(x, s)=0 for large s. Then there exists a solution of Lu+Bu)=f in £
satisfying:
= LNp/(N~2)(Q): L¢V(1/(N~2q)(Q) ,
|u|??signu e H{Q),
lu|P~'B(u) € L'(Q).

[Note that this is stronger than the example following Corollary 14 mainly
in that f need not belong to L?(2).]

PROOF. We choose the multiplier ¢(s)=|s|? !signs. By Hoélder’s in-
equality,

(f, @) = 1 Al lu? Mg =1 g 1wl pra— -
On the other hand, by Lemma 17, there is a positive number C such that

(Lu, ¢u)) = ClOW v /cx -2 = ClulR prov-o -

Thus the solution of the truncated problem Lu,+B,(u,)=f, remains bounded
in LY?%-2" and (f,, ¢(u,)) is bounded. The proof continues as before.

THEOREM 19. (a) If fe L¥*(Q), then for some A2>0 the solution satisfies
exp (A|u|) & LY¥=2(Q),

[exp (A-1ul—1) | sign )€ Hi@),  Bw exp(~A-[ul) = L1@).

(b) If feLYQ) with q> N/2, then the solution is uniformly Holder-
continuous. (Assume a;j, a; CY(Q2) and !slup | B(x, s)| € LUR).)
sl =p
PROOF. Part (a). We choose ¢(s)=[expA|s|—1]sign(s) so that O(s)=
247V [exp (A]s]/2)—1]sign(s). From the proof of together with
Sobolev’s inequality, the approximate solutions satisfy

cA7teAun2— 12y v+ (Bo(uts), @) Z |l full wre l€2™m =1 vy

with ¢ independent of u, 2, N,n. We need only choose A less than c¢/| fllyn
to balance the right side. Part (a) follows.

Part (b) is essentially contained in Stampacchia [17], but for completeness
we present a proof. We recall from [Theorem 18 that u € L?(2) for all finite
p and that

cllO@ 3w iw-o = N Fllg NP g = collullBz! .
(The constants are independent of p.) Hence
el Bwscw-25 = CaplluliBa’ -

If |ull, =<1 for an infinite sequence of p’s going to -co, then |lul.=1. Inthe
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contrary case, we may assume |u]l,>1 for all p = p,.
the exponent {p—1) above by p. Defining

N 1 _ g
5—-—]\7_77>1, P =0"p,,

we have

lull gy = (cap)* P ull,,  (=0,1,2, -

Iterating as in Moser [14], we have

Hquvé Csllu“m‘

So we may replace

2.

So the solution is bounded. Hence Au=j/—B(u)<= LY(L2). So ue W) and

it is Holder-continuous.

§4. A nonlinear boundary condition.

In this section we will solve an equation of the same form as in section

3 with the boundary condition

0
®%+r(x, u)=10 on I'.

Let £ be a bounded open set in R¥ with smooth boundary I'. We define L
as in section 2 with a,;, q; & CY(2) and a < L™(R). In addition we assume

a=a’ 9a,

i
for some positive constant a’, and

San; =0 on I’

i

, a—l—E-ax' > a’ a.e. in £

where n =(n;) is the unit outward normal on I'. We denote

0 0

DEFINITION. Let u e WHY(Q), fe LX(2), g L*I).
weak solution of the Neumann problem

We say that u is a

(18) Lu=f in Q. g“ —g on I
n
provided the following identity holds for all v & CYQ).
. ou ov i)
(19) a(u, v) Hfg{%a” ox, x, -4—12 ox, (aiu)v—{—auv}dx

= fgfv dx—l—jl.gv dl’.
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Let 4 be a positive constant so small that

ajggl gzi |2dx+a'j91u|2dxg,zjg|u|2dx+2jr|u|2dr

for all ue HY(R).

Let ¢ be a function as in Let B(x,s) and y(x, s) be nonlinear
terms satisfying:

B(x, s) is measurable in x € £, continuous in s R.

7(x, s) is measurable in x & I', continuous in se€ R.

@0) | suplp(x,9ldx<+oo, | sup|y(x, s)ldx<+oo  for all p.
2 ll=p Q Isl=p

(21) There exist h, & L'(2) such that

Bx, $)p(s)+h,(x)

ity T ey 7
and h,c LX)

li rlx, $)P(s)+hy(x) —2.

T N (6)
We denote Bu(x)=p(x, u(x)) for a.e. x= 2 and Cu(x)=ry(x, ru(x)) for a.e.
xe ', where 7 is the trace operator mapping W»?(2) onto W V22(["),

THEOREM 20. There exists a weak solution of

(22) Lu+Bu=0 in 2, g“ +Cu=0 on I
L

with the following properties:
ue WhHi) for 1=<qg<N/(N-1),
B(u) and B)¢u)e LY(2),
Clu) and Clwe¢w)e LX),
0(u) e HV(Q).
COROLLARY 21. Let B and y satisfy (20) and (21) and sB(x, s)=0 a.e. in

2, sy(x,s)=20 a.e. in I' for sufficiently large |s|. Let ¢(s) satisfy (17). Then
there exists a weak solution of

(23) LutBu=f in Q,

ony A—+Cu=g on I

with the same properties as in Theorem 20, so long as O(f)e LY(Q) and
O(g)e L.

THEOREM 22. Let B(x, s) and y(x,s) be monotone functions of s, in addition
to satisfying (20) and (21). For any fe LML) and ge LXI') there exists a
unique weak solution of (23) satisfying u s WH(8) for 1 <q< N/(N—1),
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Bwye L), CwelLI).

Corollary 21| can be applied to the L? (1 <p < +o0) and Llog L cases as

in section 3.
We begin the proofs with an estimate for the linear problem (18). This

is the analogue for the Neumann problem of
LEMMA 23. Let u be a weak solution of (18). Then we have uec W4%(Q)

for all 1 <q< N/(N—1) and
lulls,e = Gl flizrica 18l L) -

In order to prove Lemma 23, we first note the following.
LEMMA 24. Given hy, hy, -, hy € D(2), there exists a unique ve CHRQ)

satisfying

(24)  a*v, z,)_j {}]a” gf{ ag ~Xa; §+avc}dx+j Sanpldl

~j {hOC—I—}_,h . }au
for all L WH(Q). In addition,
N
Wl = G 211l for all p>N.

PROOF OF LEMMA 24. For all { € H'(2) we have
@ Oz af PEPdet] (et 220 (etdnt | Sameiar

= [(@IFg) a1 .

By the Lax-Milgram lemma, there exists v e H'(2) satisfying (24) for all
{ e H'(R). From the results of [T] we know that v € C'(2). Hence (24) holds
for all { = WH(2). In order to establish the L* bound on v, we use Stam-
pacchia’s method. If in (24) we choose {(x)=max {v(x)—k, 0} where k=0,
we obtain

@0, O=a*(C, O+k [ aldxtk{ (Samdgdl

:jghoc dx+jg Sh, gi dx .

Consequently (since =0, =0, a=0, 2_ an; =0)

of z[ |dx+aj Cidesf ngdetf S, ac dx.

We conclude, for example as in [9] (proof of Lemma 7.3), that the stated
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bound on v is valid.

PROOF OF LEMMA 23. Let hg, hy, -, hy € D(2) and let v & CY(2) be given
by We take £ =u in (24). On the other hand, we know from
that

a*(v, u) = fgfvdx—!rfllgvdf' .

Therefore
§ {hat S he 2 < (1 f g+ gl wser) ol
2 0 - 1 axi = LD L L™
N
= Cp(”f“Lkgf*‘||g||L1<r>)i§0 Al p

for all p > N, which implies the conclusion of

LEMMA 25 (analogue of Lemma 16). Suppose that p(x, s) and y(x, s) are
uniformly bounded on QX R and on I'X R, respectively, as well as measurable
in x and continuous in s. Then there exists a weak solution ue HY(Q2) N\ L)
of the problem

Lu+Bu=0 in Q, gu—%—Cu:O on I,
np
PrOOF. For any ve H¥(f), let u be the weak solution in H'(£) of the
problem ‘

ou

ony

Lu+Bv=0 in 2, +Cv=0 on [,

which exists by Lax-Milgram lemma since a(u, u) is coercive. Also we have
lully, < C(|Bv| recgy+ 1Cvl2ry). So the mapping v—u has a fixed point. As
in the proof of we can check easily that ue L=(Q).

LEMMA 26 (analogue of Lemma 17). Let u s H'(Q)N\L>(Q) be a solution
of (18) with f and g essentially bounded. Then

“J, 3
PROOF. We simply put v=¢(u) in [19). As in we have

f Q“a—fjc‘i—(aiu>¢(u)dx = j Faini{u¢(u)~W(¢(u))} dl -+ j . gz:‘ V(p(u)dx .

‘a—a;i—ﬁ(u)lzdx+a’ f gu¢(u)dx < fg fo(wydx+ j ; go(w)dl .

Therefore

ajg ?laixie(”

dxt[ e ug—TG@)dr

+,2 g% V(p)drt | aud(uydx

<[ rodxt| egwal .
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Noting that r¢(r)—¥(¢(r)) =0, the desired estimate follows.
PROOF OF THEOREM 20. The proof is very similar to that of
13. We truncate §(x, s) exactly as before. We truncate 7(x, s) in the same

way. By we solve
ou,

Lu,+B,u,=0 in 2, f’aAA—kCnun:O on I".
ny,

As before we have
[ Buungu)dx = (= 2) j |6(u,)|*dx—const .
£2 2
and
§, Cowndu)dl = (=) 100u,)]*dT —const.

Therefore

afg ?’ Vaii" Oatr)

2dx+(v’jgu,,¢(un)dx

=) [ 10 *dxte=2) [ 10Gu) %l

=< const.
Since r¢(r) = |0(r)|?, we deduce from the choice of 4, that {#(u,)} is bounded
in H}8), ngnu,,gb(z,zn):lx andj Cott, §(un)dl’ are bounded. Hence {B,u,} is

bounded in L) and {C,u,} in L'{"). By [Lemma 23 {u,} is bounded in
Whe(2) for g < N/(N—1). The proof is completed as before. It should be
noted that {ru,} is bounded in W' V%%J") and hence may be assumed to
converge a.e. on I'. By Fatou’s lemma, C(u) and C(u)¢(u) are integrable
on I'. Since ¢(s)— 4+ as s— +oo, Cu(u,)—C(u) in L'(I"). It follows that
u is a weak solution of (22).
PROOF OF COROLLARY 21. As in [Corollary 14 we verify that Bu—/f and
Cu—g satisfy the conditions of Bu and Cu, respectively, in
PROOF OF THEOREM 22. We may assume that j(x, 0)=0 and y(x, 0)=0,
for otherwise, they may be absorbed in f(x) and g(x), respectively. Let f,, 2.
be sequences of square-integrable functions tending to f, g (respectively) in
LY, LMI'). Let u, be a solution of
Lu,+Bu,=/f, in £, g%’f

according to [Corollary 21 We subtract the equations for u, and u, and
multiply by é(u,—u,) where ¢(s) is a smooth, bounded, monotone approxi-

mation to sign[s]. Estimating as in we get

+Cu,=g, on I,

a’ j‘ (un'—um)gb(un'—um)dx
2
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+ [ (Bl — Bm)$uy—un)dx+ | (Ctn—Cutn)p(uy—un)dl’
] r

2 I

Letting ¢ —sign, we see that wu,, Bu, and Cu, all converge in L'. Using
Lemma 23, the existence part of follows.

To prove the uniqueness, let u be any solution and let h,, kB, be L?
functions tending to f—Bu, g—Cu in L'(2), L*(I"), respectively. Let w,e H'($2)
be the solution of the linear problem

Lw,=h, in 2, —gw":kn on I.
np,
By we have
lwo—1lls,q = Collhy—F+Bull L1cgy+ 1 kn—g+Cull L1¢)

and therefore w,—u in Wh%(£). Now suppose # is another solution as in
and let h,, k,, w, be constructed as above. Multiplying the
equation L(w,—w,)=h,—h, by ¢(w,—0,), we obtain

@ [ (wy=0)pw,~0)dx S [ (ha—ha)pw,—,)dx

+ (ko= ka)pwo—w,)dl .
.

Letting n— +co we have

o [ (u-w)pu—a)dx < j (— Bu-+Ba)p(u—a)dx
g 2

+ (~Cut-Ciyg(u—mydl .

(We can always assume that A, ﬁ,,, R, fen are bounded by a fixed integrable

function, and then apply Lebesgue convergence theorem.) As ¢—sign, we
get u=1a. ’

Appendix.

The conjugate convex function of @(s) is defined by

U(r)=sup [rs—@(s)].

The supremum is attained if and only if r=¢(s) where ¢ =@’. See [IL]

Our assumption that ¢(s)— -+oo as s— +oco implies that 6(s) is bounded away
from zero for large s.

LEMMA. Assume that there is a constant ¢, so that s¢”(s)=<c,@'(s) for
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large s. Then

(i) @(ks)/D(s) is bounded for large s,

(i) T(P(s)HLO(s)]1? is bounded for large s.

PROOF. By assumption, s “1¢’(s) is non-increasing for large s. Hence for
k>1, ¢'(ks) < k1¢’(s). Integrating this inequality twice and using the assump-
tion that ¢(s)— 4o as s-- —+oo0, we get (i).

By definition of 8, we have (§")>=¢’. Hence 20'6” =¢”. By assumption,

$/(c,0'—250") = 50/ (c, ' /s—26"6") = s0'($"—26'0") =0

for large s. Arguing separately over the intervals where ¢ is constant and
where ¢ is increasing, we see that (¢,+2)f—2s6’ is non-decreasing for large s.
Thus s’ <2c,0 for large s. Multiplying by 6/, we have s¢’ < 2¢,00’ for large
s. Integrating once more,

U((s)) = s@p(s)—D(s) = ¢,0%s) for large s.
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