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\S 0. Introduction.

For a positive integer $N$, put

$\Gamma_{0}(N)=\{[ca$ $db]\in SL_{2}(Z)|c\equiv 0(mod N)\}$ ,

$\Gamma_{1}(N)=\{[ca$ $db]\in\Gamma_{0}(N)|a\equiv d\equiv 1(mod N)\}$ .

We consider any group $\Gamma$ such that $\Gamma_{1}(N)\subset\Gamma\subset\Gamma_{0}(N)$ , and call it a group
of level $N$. Let $J$ denote the jacobian variety of the compact Riemann surface
$\mathfrak{H}^{*}/\Gamma$ , where $\mathfrak{H}^{*}$ means the union of the upper half plane

$\mathfrak{H}=\{z\in C|{\rm Im}(z)>0\}$

and the cusps of $\Gamma$ . Further let $S_{k}(\Gamma)$ be the vector space of all holomorphic
cusp forms of weight $k$ with respect to $\Gamma$ . Then, with each common eigen-
function $f(z)$ in $S_{2}(\Gamma)$ of the Hecke operators $T_{n}$ for all $n$ , one can associate
an abelian variety $A$ that is a “ factor “ of $J$. The purpose of this note is
to consider a few arithmetical questions concerning the correspondence
between $f$ and $A$ . Besides, as an application of our methods, we shall give
a proof of Dirichlet’s class number formula for an imaginary quadratic field,
without using the residue technique.

We start our treatment by proving that $A$ can naturally be obtained as
a quotient of $J$ by an abelian subvariety rational over $Q$ (Theorem 1). Actually
in [11, \S 7.5], we gave a formulation with such a factor as a subvariety of $J$.
The two formulations are essentially equivalent, but there is a subtle dif-
ference. At any rate, they are connected by the following fact: there is a
canonical C-linear isomorphism of $S_{2}(\Gamma)$ onto the tangent space of $J$ at the
origin, which has a certain commutative property with the action of Hecke
operators. Such an isomorphism was used in the proofs of [11, Th. 7.14,
Prop. 7.19] and also in [12], but not explicitly given. This point will be clari-
fied in \S 2. It will be shown in \S 3 that $A$ can be obtained as a complex torus
whose periods are those of $f$ and some other cusp forms. We shall consider
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in \S 4 how the maP

$(^{*})$ $f(z)=\sum_{n=1}^{\infty}a_{n}e^{2\tau inz}-\sum_{n=1}^{\infty}\chi(n)a_{n}e^{2\tau inz}$

with a numerical character $\chi$ can be reflected by geometric objects. If $\chi$ is
a character of order 2, it corresponds to a homomorphism of $A$ rational over
the quadratic field $f$ associated with $\chi$ . Under certain conditions, $A$ is similar
to abelian varieties of the type discussed in [13, \S 9]. Therefore the co-
ordinates of some specific points of finite order on such an $A$ can generate
an abelian extension of $f$ . (The field $f$ can be either real or imaginary.)
Recently K. Doi and M. Yamauchi have found some interesting arithmetical
relations for the Fourier coefficients of certain eigen-functions in $S_{2}(\Gamma_{0}(p^{3}))$

with a prime $P$ It is expected that these will be understood in the frame-
work of [13, \S 9], under the formulation of \S 4 of the present paper.

The next \S 5 is devoted to a proof of Dirichlet’s formula for the class
number $h(-q)$ of an imaginary quadratic field $Q(\sqrt{-q})$ of discriminant $-q$ .
In the previous papers [12], [13], we showed that $A$ has complex multipli-
cation if and only if the Mellin transform of $f$ is an L-function with a Gr\"ossen-

character of an imaginary quadratic field. When the field is $Q(\sqrt{-q})$ , the
number of such characters, under certain conditions, is $h(-q)$ times a simple
factor. Combining these facts with some other observations about eigen-
functions, we find a relation between $h(-q)$ and the trace of the map $(^{*})$

on $S_{2}(\Gamma)$ for a certain $\Gamma$ (Proposition 10). Then Dirichlet’s formula can be
obtained by computing the trace by the Riemann-Roch theorem or by the
Selberg-Eichler trace formula. The whole idea is under the influence of
Hecke’s works [4], [5], in which Hecke computed the multiplicities of the
irreducible representations of $PSL_{2}(Z/qZ)$ in a certain space of cusp forms,
when $q$ is a prime. However, here we need no information about such rep-
resentations. Although the proof is by no means simple nor elementary, yet

the author thinks that this method is natural and opens some possibilities of
generalization.

In the final \S 6, we shall briefly explain a method of determining the zeta-
function of $A$ over a certain type of non-abelian extension of $Q$ .

\S 1. The factor $A$ as a quotient of $J$.
Let us start with some definitions and notational convention. For an

abelian variety $B$ defined over $C$, we denote by $D_{B}$ , or $D(B)$ , the vector space
over $C$ of all holomorphic l-forms on $B$ , and by $Y_{B}$ , or $Y(B)$ , the tangent
space of $B$ at the origin. Then $D_{B}$ is dual to $Y_{B}$ , so that we have a C-
bilinear pairing
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$(, )_{B}$ : $D_{B}\times Y_{B}\rightarrow C$ .
If $\alpha$ is a homomorphism of $B$ to another abelian variety $B^{\prime}$ , one can naturally
define two maps

$ d\alpha$ : $Y_{B}\rightarrow Y_{B^{l}}$ ,

$\delta\alpha$ : $D_{B^{\prime}}\rightarrow D_{B}$ ,
which satisfy

(1.1) $(\delta\alpha u, v)_{B}=(u, d\alpha v)_{B^{\prime}}$ $(u\in D_{B},, v\in Y_{B})$ .
By a quotient of $B$ by an abelian subvariety, say $C$, of $B$ , we understand

a couple $(A, \nu)$ formed by an abelian variety $A$ which canonically represents
$B/C$ and a natural map $\nu;B\rightarrow A$ with $C=Ker(\nu)$ (cf. Chow [3]). We see
easily that

(1.2) $Y_{C}=$ { $v\in Y_{B}|(u,$ $v)_{B}=0$ for all $u\in\delta\nu(D_{A})$}.

Let $\Gamma$ be a group of level $N$, and $J$ the jacobian variety of $\mathfrak{H}^{*}/\Gamma$ . Let
$\psi:\mathfrak{H}^{*}\rightarrow J$ be the map obtained by composing the natural map $\mathfrak{H}^{*}\rightarrow \mathfrak{H}^{*}/\Gamma$ with
a canonical map of $\mathfrak{H}^{*}/\Gamma$ into $J$. Then there is an isomorphism $\mu:S_{2}(\Gamma)\rightarrow D_{J}$

defined by $\delta\psi(\mu(f))=f(z)dz$ for $f\in S_{2}(\Gamma)$ , where $\delta\psi$ is the “ pull back “ asso-
ciated with $\psi$ , and $z$ is a standard variable on $\mathfrak{H}$.

Let $\Gamma^{\prime}$ be a group of level $M$, and let

$\tilde{\Gamma}=$ { $\alpha\in R\cdot GL_{2}(Q)|$ det $(\alpha)>0$ }.

Define, for $\alpha\in\tilde{\Gamma}$ , an algebraic correspondence $X(\Gamma^{\prime}\alpha\Gamma)$ on $\mathfrak{H}^{*}/\Gamma\times \mathfrak{H}^{*}/\Gamma^{\prime}$ as
in [11, \S 7.2]. (Briefly, it is the locus of $z\times\alpha(z)$ modulo $\Gamma\times\Gamma^{\prime}.$ ) Let $J^{\prime}$ and
$\mu^{\prime}$ denote the corresponding geometric objects defined with $\Gamma^{\prime}$ in place of $\Gamma$ .
One can attach to $X(\Gamma^{\prime}\alpha\Gamma)$ a homomorphism of $J$ into $J^{\prime}$ as in Weil [15, \S VI],

which we denote by $\{\Gamma^{\prime}\alpha\Gamma\}$ . Now the commutative diagrams (7.2.2) and
(7.2.6) of [11] imply

(1.3) $\mu\circ[\Gamma^{\prime}\alpha\Gamma]_{2}=\delta\{\Gamma^{\prime}\alpha\Gamma\}\circ\mu^{\prime}$

where $[\Gamma^{\prime}\alpha\Gamma]_{k}$ is the map $S_{k}(\Gamma^{\prime})\rightarrow S_{k}(\Gamma)$ dePned in [11, \S 3.4]. Then, from
(1.1) and (1.3), we obtain

(1.4) $(\mu^{\prime}(f), d\{\Gamma^{\prime}\alpha\Gamma\}v)_{J^{\prime}}=(\mu(f|[\Gamma^{\prime}\alpha\Gamma]_{2}), v)_{J}$ $(f\in S_{2}(\Gamma^{\prime}), v\in Y_{J})$ .

For a positive integer $n$ , let $q$ be the largest divisor of $n$ prime to $N$, and
put $n=mq$ . Then we define $T_{n}$ and $\xi_{n}$ by $T_{n}=T_{m}T_{q},$ $\xi_{n}=\xi_{m}\xi_{q},$ $T_{m}=[\Gamma\alpha\Gamma]_{2}$ ,

$\xi_{m}=\{\Gamma\alpha\Gamma\}$ with $\alpha=[_{0}^{1}$ $m0]$ , and $T_{q}=\sum_{\beta}[\Gamma\beta\Gamma]_{2},$ $\xi_{q}=\sum_{\beta}\{\Gamma\beta\Gamma\}$ , where $\sum_{\beta}$

is extended over all distinct $\Gamma\beta\Gamma$ with det $(\beta)=q,$ $\beta\equiv[_{0}^{1}$ $0q](mod N)$ . Then
$\mu\circ T_{n}=\delta\xi_{n}\circ\mu$ .
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As shown in [11, \S 7.3], there is a “ standard model ” of $\mathfrak{H}^{*}/\Gamma$ defined
over $Q$ (see also \S 4 below), so that $J$ can naturally be defined over $Q$ . Let
$f(z)=\sum_{n=1}^{\infty}a_{n}e^{2\pi inz}$ , with $a_{1}=1$ , be an element of $S_{2}(\Gamma)$ , that is a common eigen-

function of $T_{n}$ for all $n(i. e., f|T_{n}=a_{n}f)$ . Fix $f$, and let $K$ be the subfield
of $C$ generated over $Q$ by the complex numbers $a_{n}$ for all $n$ . (Of course $K$

depends on $f.$) Then we have
THEOREM 1. There exists a triple $(A, \nu, \theta)$ formed by the objects satisfying

the following conditions:
(i) $(A, \nu)$ is a quotient of $J$ by an abelian subvariety rational over $Q$ .
(ii) $\theta$ is an isomorphism of $K$ into End $(A)\otimes Q$ such that $\nu\circ\xi_{n}=\theta(a_{n})\circ\nu$

for all $n$ . (This implies especially $\theta(1)=id_{A}.$)
(iii) dim $(A)=[K:Q]$ .

Moreover, let I denote the set of all isomorphisms of $K$ into C. Then, for every
$\sigma\in I$, there exists an element $f_{\sigma}$ of $S_{2}(\Gamma)$ such that $f_{\sigma}|T_{n}=a_{n}^{\sigma}f$ for all $n$ , and
$f_{\sigma}(z)=\sum_{n=1}^{\infty}a_{n}^{\sigma}e^{2\pi inz}$ . With these $f_{\sigma}$ , one has

(iv) $\delta\nu(D_{A})=\mu(\sum_{0\in I}Cf_{\sigma})$ .
Under the conditions ( $i$ , ii), the triple $(A, \nu, \theta)$ is unique up to isomorphisms
over Q. Furthermore, the one-dimensional part of the zeta function of $A$ over
$Q$ coincides, up to finitely many Euler factors for bad primes, with $\prod_{\sigma\in I}(\sum_{n=1}^{\infty}a_{n}^{\sigma}n^{-s})$ ,

pr0vided that $\Gamma=\Gamma_{0}(N)$ , or $\sum_{\sigma\in I}Cf_{\sigma}$ is stable under the map $h(z)-h(-1/Nz)/z^{2}$ .
PROOF. Let $\mathfrak{T}$ be the subalgebra of End $(J)\otimes Q$ generated by the $\xi_{n}$ for

all $n$ , and $\mathfrak{R}$ the radical of $\mathfrak{T}$ . Then $\mathfrak{T}=\mathfrak{R}\oplus \mathfrak{S}$ with a commutative semi-
simple algebra $\mathfrak{S}$ , whose simple components we denote by $\mathfrak{K}_{1},$

$\cdots,$
$\mathfrak{K}_{r}$ . By (1.3),

we see that $\delta\xi_{n}$ maps $\mu(f)$ onto $a_{n}\cdot\mu(f)$ , hence we can define a homomorphism
$\rho$ of $\mathfrak{T}$ onto $K$ by $\rho(\xi_{n})=a_{n}$ . We may assume, changing the order if necessary,
that $\rho$ gives an isomorphism of $\mathfrak{K}_{1}$ onto $K$. Let $\rho^{\prime}$ : $K\rightarrow \mathfrak{K}_{1}$ denote its inverse
map, and put $\mathfrak{U}=\mathfrak{K}_{2}+\cdots+\mathfrak{K}_{r}+\mathfrak{R}$ . Let $C$ be the abelian subvariety of $J$

generated by $\alpha(J)$ for all $\alpha\in \mathfrak{U}\cap End(J)$ . Since the elements of $\mathfrak{T}\cap End(J)$

are rational over $Q$ , we can construct a quotient $(A, \nu)$ of $J$ by $C$ rational
over $Q$ . Observe that $\mathfrak{U}$ is an ideal of $\mathfrak{T}$ , hence $C$ is stable under $\mathfrak{K}_{1}\cap End(J)$ .
Therefore we can define a homomorphism $\theta:K\rightarrow End(A)\otimes Q$ such that
$\nu\circ\rho^{\prime}(a)=\theta(a)\circ\nu$ for all $a\in K$. Since $\xi_{n}-\rho^{\prime}(a_{n})\in \mathfrak{U}$ , we obtain $\nu\circ\xi_{n}=\theta(a_{n})\circ\nu$

for all $n$ . To prove $J\neq C$ , put $\mathfrak{T}_{C}=\mathfrak{T}\otimes_{Q}C$. By [11, Th. 3.51], $S_{2}(\Gamma)$ is iso-
morphic to $\mathfrak{T}_{c}$ as a $\mathfrak{T}_{c}$ -module, hence $D_{J}$ is (via $\delta$ ) $\mathfrak{T}_{c}$ -isomorphic to $\mathfrak{T}_{c}$ . If
$J=C$ , we have

$\{0\}=$ { $x\in D_{J}|\delta\alpha(x)=0$ for all $\alpha\in \mathfrak{U}$ } ,

so that the $\mathfrak{T}_{c}$ -isomorphism between $D_{J}$ and $\mathfrak{T}_{c}$ implies

$(^{*})$ $\{0\}=\{\xi\in \mathfrak{T}_{c}|\mathfrak{U}\xi=0\}$ .
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Take the largest non-negative integer $q$ such that $\mathfrak{K}_{1}\mathfrak{R}^{q}\neq\{0\}$ . (We understand
that $\Re^{0}=\mathfrak{T}.$) Then the right hand side of $(*)$ contains $\mathfrak{K}_{1}\mathfrak{R}^{q}$ , a contradiction.
Thus $J\neq C$ , so that dim $(A)>0$ , and $\theta$ is injective. Now suppose that $(A^{\prime}, \nu^{\prime}, \theta^{\prime})$

satisfies ( $i$ , ii). Then the elements of $\theta^{\prime}(K)\cap End(A^{\prime})$ are rational over $Q$ ,

hence the representation of $K$ on $D_{A^{\prime}}$ via $\theta^{\prime}$ is a multiple of a regular rep-
resentation of $K$ over $Q$ . Therefore, if $m$ is the multiplicity, $D_{A^{\prime}}$ has a basis
$\{w_{\sigma j}|\sigma\in I, 1\leqq j\leqq m\}$ over $C$ such that $\delta\theta^{\prime}(a)(w_{\sigma j})=a^{\sigma}w_{\sigma j}$ for all $a\in K$. Let

$f_{\sigma j}=\mu^{-1}(\delta\nu^{\prime}(w_{\sigma j}))$ . Then $f_{\sigma j}|T_{n}=a_{n}^{\sigma}f_{\sigma j}$ for all $n$ . It follows that $m=1$ , hence
dim $(A^{\prime})=[K:Q]$ . This shows also the existence of $f_{\sigma}$ as stated in our
theorem, and $\delta\nu^{\prime}(D_{A^{\prime}})=\mu(\sum_{\sigma\in I}Cf_{\sigma})$ . By (1.2), the tangent space of Ker $(\nu^{\prime})$ at

the origin is the annihilator of $\mu(\sum_{\sigma\in I}Cf_{\sigma})$ . This proves the uniqueness of
$(A, \nu, \theta)$ and the property (iv). The assertion concerning the zeta-function
of $A$ can easily be proved by shifting the congruence relation [11, (7.5.1, 2)]

to $A$ .
As to the zeta-function, we have somewhat more generally
PROPOSITION 1. Supp0se $\Gamma=\Gamma_{0}(N)$ . Let $(A, \nu)$ be a quotient of $J$ by an

abelian subvariety rational over Q. Then $\mu^{-1}(\delta\nu(D_{A}))$ is stable under $T_{n}$ for all
$n$ prime to N. Moreover, if $T_{n}^{\prime}$ denotes the restri ction of $T_{n}$ to $\mu^{-1}(\delta\nu(D_{A}))$ , then
the one-dimensional part of the zeta-function of $A$ over $Q$ coincides, up to
finitely many Euler factors, with det $(\sum_{(n,N)=1}T_{n}^{\prime}n^{-s})$ .

PROOF. By [11, Prop. 7.19], we see that Ker (v) is stable under $\xi_{n}$ for all
$n$ prime to $N$. Then (1.2) shows that $\delta\nu(D_{A})$ is stable under $\delta\xi_{n}$ for all such
$n$ , hence the first assertion. Also, we can define an endomorphism $\xi_{n}^{\prime}$ , for
such an $n$ , of $A$ such that $\xi_{n}^{\prime}\circ\nu=\nu\circ\xi_{n}$ . Shifting the congruence relation [11,

(7.5.1)] to $A$ , we obtain the second assertion.

\S 2. The factor $A_{0}$ as a subvariety of $J$ and a canonical isomorphism of
$S_{2}(\Gamma)$ onto $Y_{J}$ .

Let $\alpha=[_{c}^{a}$ $db]\in GL_{2}(R)$ , det $(\alpha)>0$ . For a complex valued function $f(z)$

on $\mathfrak{H}$ and a positive integer $k$ , we define a function $f|[\alpha]_{k}$ on $\mathfrak{H}$ by

$(f|[\alpha]_{k})(z)=\det(\alpha)^{k/2}(cz+d)^{-k}f(\alpha(z))$ ,

where $\alpha(z)=(az+b)/(cz+d)$ for $z\in \mathfrak{H}$. Put $\omega_{N}=N^{-1/2}[_{N}^{0}$ $01]$ , and $define_{\tilde{r}}a$

function $f|[\omega_{N}]_{k}$ on $\mathfrak{H}$ by

$(f|[\omega_{N}]_{k})(z)=N^{-k/2}z^{-k}\overline{f}(1/N\overline{z})$ ,

where bars mean the complex conjugation. Then one can easily verify:

(2.1) $(f|[\alpha]_{k})|[\omega_{N}]_{k}=(f|[\omega_{M}]_{k})|[\omega_{M}^{-1}\alpha\omega_{N}]_{k}$ ,
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(2.2) $f|[\omega_{N}]_{k}^{2}=f$ ,

(2.3) $\omega_{N}^{-1}\Gamma\omega_{N}=\Gamma$ for any group $\Gamma$ of level $N$ .
It follows that $[\omega_{N}]_{k}$ induces an anti-C-linear automorphism of $S_{k}(\Gamma)$ . More-
over, let $\Gamma^{\prime}$ be a group of level $M$, and let $\alpha\in\tilde{\Gamma}$ . Then

(2.4) $(f|[\Gamma^{\prime}\alpha\Gamma]_{k})|[\omega_{N}]_{k}=(f|[\omega_{M}]_{k})|[\Gamma^{\prime}\omega_{M}^{-1}\alpha\omega_{N}\Gamma]_{k}$ $(f\in S_{k}(\Gamma^{\prime}))$ .
If $\langle, \rangle$ denotes the Petersson inner product on $S_{k}(\Gamma)$ , then

(2.5) $\langle f, g|[\omega_{N}]_{k}\rangle=\langle g, f|[\omega_{N}]_{k}\rangle$ .
Let $\mu:S_{2}(\Gamma)\rightarrow D_{J}$ be the map defined in \S 1. We can now define a C-

linear isomorphism $\lambda:S_{z}(\Gamma)\rightarrow Y_{J}$ by

(2.6) $(\mu(f), \lambda(g))_{J}=i\cdot\langle f, g|[\omega_{N}]_{2}\rangle$ $(f, g\in S_{2}(\Gamma))$ .
The constant factor $i$ is not absolutely necessary, but will make a later
discussion smooth. Put $Y^{\prime}=Y(J^{\prime})$ with the jacobian variety $J^{\prime}$ of $\mathfrak{H}^{*}/\Gamma^{\prime}$ .

Define $\lambda^{\prime}$ : $S_{2}(\Gamma^{\prime})\rightarrow Y$‘ in the same manner. Combining (2.4) and (1.4) with
[11, (3.4.5)], we obtain a relation

(2.7) $\lambda(f|[\Gamma^{\prime}\alpha\Gamma]_{2})=d\{\Gamma\omega_{N}^{-1}\alpha^{\ell}\omega_{M}\Gamma^{\prime}\}(\lambda^{\prime}(f))$ for $f\in S_{2}(\Gamma^{\prime})$ ,

where $\iota$ denotes the main involution, $i$ . $e.,$ $[_{c}^{a}$ $db]^{\iota}=[_{-c}d$ $-ba]$ .
Consider the special case in which $M=N,$ $\Gamma^{\prime}=\Gamma$ , and $\alpha=[_{0}^{1}$ $n0]$ with

a positive integer $n$ , or $\alpha\equiv\left\{\begin{array}{ll}1 & 0\\0 & q\end{array}\right\}(mod N)$ , det $(\alpha)=q,$ $(q, N)=1$ . Then (2.7)

implies

(2.8) $\lambda(f|T_{n})=d\xi_{n}(\lambda(f))$ for $f\in S_{2}(\Gamma)$ .
Further let $q$ be an integer prime to $N,$ $\sigma_{q}$ an element of $SL_{2}(Z)$ such that
$q\cdot\sigma_{q}\equiv\left\{\begin{array}{ll}1 & 0\\0 & q^{2}\end{array}\right\}(mod N)$ , and let $\tau_{N}=\left\{\begin{array}{ll}0 & -1\\N & 0\end{array}\right\}$ . Then we obtain from (2.7)

the following relations:

(2.9) $\lambda(f|[\sigma_{q}]_{2})=d\{\Gamma\sigma_{q}\Gamma\}(\lambda(f))$ for $f\in S_{2}(\Gamma)$ ,

(2.10) $\lambda(f|[\tau_{N}]_{2})=d\{\Gamma\tau_{N}\Gamma\}(\lambda(f))$ for $f\in S_{2}(\Gamma)$ .

The formula (2.7) and its specializations(2.8–10) are the commutative property
of the isomorphism $\lambda$ mentioned in the Introduction.

Now define $K$ for a common eigen-function $f(z)=\sum_{n=1}^{\infty}a_{n}e^{2\pi inz}$ , with $a_{1}=1$ ,

as in \S 1. Then [11, Th. 7.16] can be re-stated as follows.
THEOREM 2. There exists an abelian subvariety $A_{0}$ of $J$ and an isomorphism

$\theta_{0}$ of $K$ into End $(A_{0})\otimes Q$ with the following properties:



On the factors of the jacobian variety 529

(i) dim $(A_{0})=[K:Q]$ ;
(ii) $\theta_{0}(a_{n})$ is the restriction of $\xi_{n}$ to $A_{0}$ for all $n$ ;

(iii) $A_{0}$ is rational over $Q$ .
(iv) If $f_{\sigma}$ for $\sigma\in I$ is defined as in Theorem 1, then $Y(A_{0})=\lambda(\sum_{\sigma\in I}Cf_{\sigma})$ .

Moreover the couple $(A_{0}, \theta_{0})$ is unique under (i) and (ii).

The last property (iv) of $A_{0}$ is not explicitly stated in [11, Th. 7.16], but
follows immediately from its proof.

The formulation of the results of [12] and their proofs require the iso-
morphism $\lambda$ . Let us now clarify a few points in [12], where the explanation
may be somewhat vague. In the proof of [12, Th. 1], we should put $\delta=$

$[_{0}^{1}$ $1/D1]$ , which is erroneously printed as $[_{0}^{1}$ $1/d1]$ . Then the endomorphism

$\omega$ of $A^{\prime}$ mentioned there is $\{\Gamma\epsilon\Gamma\}$ with $\epsilon=[_{-M/D}1$ $01]$ . Similarly the

homomorphism $\xi^{*},$ $\psi$ , and $\varphi$ are given by $\xi^{*}=\sum_{u}tx_{u}\cdot\{\Gamma_{1}(M^{\prime})\omega_{M}^{-1}\eta_{u}^{\iota}\omega_{M}\Gamma_{1}(M)\}$ ,

$\psi=\{\Gamma_{1}(M)\omega_{M}^{-1}\beta^{\iota}\omega_{L}\Gamma_{1}(L)\},$ $\varphi=\{\Gamma_{1}(M)\omega_{M}^{-1}\omega_{L}\Gamma_{1}(L)\}$ . One can also formulate
the results of [12] in terms of $(A, \nu, \theta)$ of Theorem 1.

PROPOSITION 2. Let $(A, \nu, \theta)$ be as in Theorem 1, and $(A_{0}, \theta_{0})$ be as in

Theorem 2. Supp0se that $\sum_{\sigma\Leftarrow I}Cf_{\sigma}$ is stable under $\left\{\begin{array}{ll}0 & -1\\N & 0\end{array}\right\}$ . Then the restric-

tion of $\nu$ to $A_{0}$ is an isogeny of $A_{0}$ onto $A$ , and $\nu\circ\theta_{0}(a)=\theta(a)\circ\nu$ for all $a\in K$.
PROOF. Put $X=\sum_{\sigma\in I}Cf_{\sigma}$ . For $h(z)=\sum_{n}b_{n}e^{2rinz}$ , put $h^{*}(z)=\sum_{n}\overline{b}_{n}e^{2\pi inz}$ . Then

we see easily that $X$ is stable under the map $h\mapsto h^{*}$ , and $h|[\omega_{N}]_{2}=(h|[\tau_{N}]_{2})^{*}$ .
Therefore if $g=(h|[\tau_{N}]_{2})^{*},$ $h\neq 0$ , we obtain, from (2.5), $(\mu(h), \lambda(g))_{J}\neq 0$ . This
implies that the bilinear form $(, )_{J}$ is non-degenerate on $\mu(X)\times\lambda(X)$ . It
follows that $ d\nu$ maps $Y(A_{0})$ onto $Y(A)$ , hence $\nu$ maps $A_{0}$ onto $A$ . The relation
$\nu\circ\theta_{0}(a)=\theta(a)\circ\nu$ is obvious from (ii) of Theorem 1 and (ii) of Theorem 2.

\S 3. Periods of cusp forms.

We first consider a general case in which $\Gamma$ is not necessarily a con-
gruence subgroup of $SL_{2}(Z)$ . Let $\Gamma$ be a discrete subgroup of $SL_{2}(R)$ such
that $\mathfrak{H}/\Gamma$ is of finite measure, and $\mathfrak{H}^{*}$ the union of $\mathfrak{H}$ and the cusps of $\Gamma$ .
Further let] be the jacobian variety of the compact Riemann surface $\mathfrak{H}^{*}/\Gamma$ .
We can then define $D_{J},$ $Y_{J},$ $S_{2}(\Gamma)$ , and $\mu:S_{2}(\Gamma)\rightarrow D_{J}$ in the same fashion as
in \S 1. Put

$[\gamma, g]=\int_{z}^{r^{(z)}}g(z)dz$

for $g\in S_{2}(\Gamma)$ and $\gamma\in\Gamma$ with any $z\in \mathfrak{H}^{*}$ . Note that this does not depend on
the choice of $z$ . Let $L_{J}$ be the submodule of $Y_{J}$ generated over $Z$ by the
linear maps
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$\eta-[\gamma, \mu^{-1}(\eta)]$ $(\eta\in D_{J})$

for all $\gamma\in\Gamma$ . Then $J$ can be identified with $Y_{J}/L_{J}$ . Fix a point $z_{0}$ of $\mathfrak{H}^{*}$ ,
and define, for $z\in \mathfrak{H}^{*}$ , an element $\varphi_{z}$ of $Y_{J}$ by

$\varphi_{z}(\mu(g))=\int_{z_{0}}^{z}g(z)dz$ $(g\in S_{2}(\Gamma))$ .

Then the map $z\rightarrow\varphi_{z}$ induces a canonical map of $\mathfrak{H}^{*}/\Gamma$ into $J=Y_{J}/L_{J}$ .
Let $(A, \nu)$ be a quotient of $J$ by an abelian subvariety of $J$. Take any

C-basis $\{f_{1}, \cdots , f_{m}\}$ of $\mu^{-1}(\delta\nu(D_{A}))$ . Let $W=Y(Ker(\nu))$ . Then

$W=\{v\in Y_{J}|(\delta\nu(D_{A}), v)_{J}=0\}$ ,

and $A$ can be identified with $Y_{J}/(W+L_{J})$ . Now $\mu(f_{1}),$ $\cdots$ , $\mu(f_{m})$ dePne a C-
linear map $F:Y_{J}\rightarrow C^{m}$ whose kernel is $W$. In this situation, we have

PROPOSITION 3. Let $P$ be the submodule of $C^{m}$ generated over $Z$ by the
vectors $([\gamma, f_{1}], \cdots , [\gamma, f_{m}])$ for all $\gamma\in\Gamma$ . Then $A$ is isomorphic, via $F$, to $C^{m}/P$.

PROOF. From the above definition of $L_{J}$ , we see easily that $F(L_{J})=P$,

hence our assertion.
REMARK. If we Put

$\Phi(z)=(\int_{z_{0}}^{z}f_{1}(z)dz,$ $\cdots$ , $\int_{z_{0}}^{z}f_{m}(z)dz)$ $(mod P)$ ,

then $\Phi$ defines a morphism of $\mathfrak{H}^{*}/\Gamma$ into $C^{m}/P$. Obviously $\Phi(z)=F(\varphi_{z}),$ $i$ . $e.$ ,
$\Phi$ is the map composed by a chain of maps

$\mathfrak{H}^{*}/\Gamma\rightarrow^{\varphi}J\rightarrow^{\nu}A\rightarrow^{F}C^{m}/P$ .
The above discussion naturally applies to a group $\Gamma$ of level $N$ and

$(A, \nu, \theta)$ defined as in Theorem 1. In this case, we can take $\{f_{\sigma}|\sigma\in I\}$ as
$\{f_{i}\}$ . Thus we obtain the abelian variety $A$ from the periods of the cusp
forms $f_{\sigma}$.

PROPOSITION 4. Let $\lambda$ be the map of \S 2 defined with respect to a group
$\Gamma$ of level N. Then $\lambda^{-1}(L_{J})$ consists of all the elements $g$ of $S_{2}(\Gamma)$ such that
${\rm Re}[\gamma, g]\in Zfor$ all $\gamma\in\Gamma$ , where ${\rm Re}$ means the real part.

PROOF. First we note a relation

(3.1) $-\overline{[\gamma,g|[\omega_{N}]_{2}]}=[\omega_{N}\gamma\omega_{N}^{-1}, g]$ $(\gamma\in\Gamma, g\in S_{2}(\Gamma))$

which can easily be veriPed. Now it is well known that

$-i\langle g, h\rangle=\int_{\mathfrak{H}/T}g(z)dz$ A ${\rm Re}(h(z)dz)$

$=\sum_{j=1}\{[\alpha_{j}, g]\cdot{\rm Re}[\beta_{j}, h]-[\beta_{j}, g]\cdot{\rm Re}[\alpha_{j}, h]\}p$ ,

where $p$ is the genus of $\mathfrak{H}^{*}/\Gamma$ , and $\{\alpha_{1}, \cdots, \alpha_{p}, \beta_{1}, \cdots, \beta_{p}\}$ is a set of elements
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of $\Gamma$ corresponding to a standard set of generators of the homology group
of $\mathfrak{H}^{*}/\Gamma$ . Moreover, every C-linear map of $S_{2}(\Gamma)$ into $C$ can be given as

$g-\sum_{J=1}^{p}(a_{j}[\alpha_{j}, g]+b_{j}[\beta_{j}, g])$

with real numbers $a_{j}$ and $b_{j}$ , which are unique for the map. Our proposition
now follows immediately from these facts and (3.1).

Put $L^{\prime}=\lambda^{-1}(L_{J})$ . Let $A_{0}$ be any abelian subvariety of $J$ , and let $U=$

$\lambda^{-1}(Y(A_{0}))$ . Then $A_{0}$ is isomorphic, via $\lambda$ , to $U/(U\cap L^{\prime})$ . Let $\{g_{1}, \cdots, g_{m}\}$ be
a C-basis of $U$ , and let $P_{0}$ be the submodule of $C^{m}$ generated over $Z$ by the
vectors $([\gamma, g_{1}], \cdots , [\gamma, g_{m}])$ for all $\gamma\in\Gamma$ . Then

PROPOSITION 5. $A_{0}$ is dual to $C^{m}/P_{0}$ .
PROOF. Define a C-linear isomorphism $G:C^{m}\rightarrow U$ by $G(w_{1}, \cdots , w_{m})=$

$\sum_{j}w_{j}g_{j}$ . By Proposition4, $w=$ $(w_{1}, \cdots , w_{m})\in G^{-1}(U\cap L^{\prime})$ if and only if

${\rm Re}(\sum_{j}w_{j}[\gamma, g_{j}])\in Z$ for all $\gamma\in\Gamma,$ $i$ . $e.,$ ${\rm Re}(\sum_{j}w_{j}v_{j})\in Z$ for all $(v_{1}, \cdots , v_{m})\in P_{0}$ .
It follows that $C^{m}/G^{-1}(U\cap L^{\prime})$ is dual to $C^{m}/P_{0},$ $q$ . $e$ . $d$ .

PROPOSITION 6. Define $(A, \nu, \theta)$ and $(A_{0}, \theta_{0})$ as in Theorems 1 and 2 with
the same eigen-function $f$. Then $A$ is dual to $A_{0}$ .

PROOF. In this case $\lambda^{-1}(Y(A_{0}))=\sum_{\sigma\in I}Cf_{\sigma}=\mu^{-1}(\delta\nu(D_{A}))$ , so that we can take

$P=P_{0}$ . Then our assertion is immediate from Propositions 3 and 5.

\S 4. A twisting operator $R$ and its geometric meaning.

Let $\chi$ be a primitive character modulo a positive integer $r$ , and let $\alpha_{u}=$

$[_{0}^{1}$ $u/r1]$ for $u\in Z$. Define an operator $R$ by

(4.1) $f|R=\sum_{u=1}^{\tau}X(u)f|[\alpha_{u}]_{2}$ $(f\in S_{2}(\Gamma_{1}(N)))$ .

By [11, Prop. 3.64], $R$ maps $S_{2}(\Gamma_{1}(N))$ into $S_{2}(\Gamma_{1}(r^{2}N))$ . If $f(z)=\sum_{n}a_{n}e^{2\pi inz}$ ,

then $f|R=\mathfrak{g}(\overline{\chi})\sum_{n}\chi(n)a_{n}e^{2\pi inz}$ , where $\mathfrak{g}(\overline{x})=\sum_{u=1}^{r}\overline{x}(u)e^{2\pi iu/r}$ . The purpose of this

section is to study the geometric meaning of $R$ in connection with the quo-
tients $(A, \nu)$ of $J$.

Let $s$ be a positive divisor of $N$, and $\mathfrak{h}$ a subgroup of $(Z/sZ)^{\times}$ . Define a
group $\Gamma$ of level $N$ by

$\Gamma=\{[ca$ $db]\in\Gamma_{0}(N)|d(mod s)\in \mathfrak{h}\}$ .

Let $M$ be a common multiple of $N,$ $\gamma^{2}$ and $rs$ . Let $\Gamma^{\prime}$ be a group of level
$M$ such that

$\Gamma^{\prime}\subset\{[ca$ $db]\in\Gamma_{0}(M)|d(mod s)\in \mathfrak{h},$ $a\equiv d(mod r)\}$ .
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Then $\alpha_{u}\Gamma^{\prime}\alpha_{u}^{-1}\subset\Gamma$ , and $R$ maps $S_{2}(\Gamma)$ into $S_{2}(\Gamma^{\prime})$ .
Define $J,$ $J^{\prime},$

$\mu,$
$\mu^{\prime},$ $\lambda,$

$\lambda^{\prime}$ as before with respect to the present $\Gamma$ and $\Gamma^{\prime}$ .
Since $f|[\alpha_{u}]_{2}=f|[\Gamma\alpha_{u}\Gamma^{\prime}]_{2}$ for $f\in S_{2}(\Gamma)$ , we have

(4.2) $\mu^{\prime}(f|R)=\sum_{u=1}^{f}X(u)\cdot\delta\{\Gamma\alpha_{u}\Gamma^{\prime}\}(\mu(f))$

$(f\in S_{2}(\Gamma))$ ,
(4.3) $\lambda^{\prime}(f|R)=\sum_{u=1}^{r}7(u)\cdot d\{\Gamma^{\prime}\beta_{u}\Gamma\}(\lambda(f))$

where $\beta_{u}=\omega_{M}^{-1}\alpha_{u}^{c}\omega_{N}$ .
PROPOSITION 7. Let $f(z)=\sum_{n}a_{n}e^{2\pi inz}$ , with $a_{1}=1$ , be a common eigen-

function of $T_{n}$ in $S_{2}(\Gamma)$ for all $n$ . Define $(A, \nu, \theta)$ and $(A^{\prime}, \nu^{\prime}, \theta^{\prime})$ for $f$ and
$h(z)=\sum_{n}\chi(n)a_{n}e^{2\pi inz},$ resPectively, as in Theorem 1. Then $A^{\prime}$ is a homomorPhic
image of the prOduct of $r$ copies of $A$ .

PROOF. Let $K^{\prime\prime}$ be the subfield of $C$ generated by the Fourier coefficients
$a_{n}$ and the values $\chi(n)$ for all $n$ , and let $I^{\prime\prime}$ be the set of all isomorphisms of
$K^{\prime\prime}$ into $C$. For $\sigma\in I^{\prime\prime}$ , put $f_{\sigma}(z)=\sum_{n}a_{n}^{\sigma}e^{2\pi inz},$ $h_{\sigma}(z)=\sum_{n}\chi(n)^{\sigma}a_{n}^{\sigma}e^{2\pi inz}$ . Then
$\mu(\sum_{\sigma\in I},Cf_{\sigma})=\delta\nu(D_{A})$ , and

(4.4) $\delta\nu^{\prime}(D_{A^{\prime}})=\mu^{\prime}(\sum_{\sigma\in I^{\prime\prime}}Ch_{\sigma})\subset\sum_{u=1}^{r}\delta\{\Gamma\alpha_{u}\Gamma^{\prime}\}\delta\nu(D_{A})$ .

Define a homomorphism $\xi:J^{\prime}\rightarrow A\times\cdots\times A$ ( $r$ copies) by $\xi(x)=(\nu(\{\Gamma\alpha_{1}\Gamma^{\prime}\}x)$ ,
.. , $\nu(\{\Gamma\alpha_{r}\Gamma^{\prime}\}x))$ for $x\in J^{\prime}$ . Then (4.4) shows that the identity component of

Ker $(\xi)$ is contained in Ker $(\nu^{\prime})$ . Therefore we can find a homomorphism
$\beta:A\times\cdots\times A\rightarrow A^{\prime}$ such that $\beta\circ\xi=m\nu^{\prime}$ with a positive integer $m$ . This
proves our proposition.

Let us now assume that $\chi$ is a non-trivial real character. Put

(4.5) $\eta_{0}=\sum_{u=1}^{7}\chi(u)\{\Gamma\alpha_{u}\Gamma^{\prime}\}$ .
Then $\eta_{0}\in Hom(J^{\prime}, J)$ , and

(4.6) $\mu^{\prime}(g|R)=\delta\eta_{0}(\mu(g))$ $(g\in S_{2}(\Gamma))$ .
PROPOSITION 8. Let $A$ and $A^{\prime}$ be as in ProPosition 7. Then there exists

a homomorphism $\eta$ of $A^{\prime}$ into $A$ such that $\eta\circ\nu^{\prime}=\nu\circ\eta_{0}$ . The homomorPhisms
$\eta_{0}$ and $\eta$ are defined over the quadraiic extension $f$ of $Q$ correspOndjng to $\chi$ ,
and $\eta_{0}^{g}=-\eta_{0},$ $\eta^{\text{\’{e}}}=-\eta$ if $\epsilon$ is the generator of Gal $(f/Q)$ .

PROOF. We need the precise definition of ” the standard models ” for
$\mathfrak{H}^{*}/\Gamma$ and $\mathfrak{H}^{*}/\Gamma^{\prime}$ . Using the notation of [11, \S 7.3], let us define subgroups
$U_{N}$ and $S$ of $G_{A}$ by

$U_{N}=\{x\in\prod_{p}GL_{2}(Z_{p})\times G_{\infty+}|x_{p}\equiv[*0$ $*1](mod N)\}$ ,

$ S=Q^{\times}U_{N}\Gamma$ .
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Similarly put $S^{\prime}=Q^{\times}U_{M}\Gamma^{\prime}$ . Then $G_{Q}\cap S=Q^{\times}\Gamma,$ $G_{Q}\cap S^{\prime}=Q^{\times}\Gamma^{\prime}$ ; we take
$V_{S},$ $V_{S^{\ovalbox{\tt\small REJECT}^{\prime}}}$ of [11, p. 155] as models of $\mathfrak{H}^{*}/\Gamma,$ $\mathfrak{H}^{*}/\Gamma^{\prime}$ ; and $X(\Gamma\alpha_{u}\Gamma^{\prime})=X_{SS^{\prime}}(\alpha_{u})$ .
Now one can easily verify that

$Q^{\times}$ . det $(S^{\prime}\cap\alpha_{u}^{-1}S\alpha_{u})\supset Q^{\times}\cdot R_{+}^{\times}\cdot\{(v_{p})\in\prod_{p}Z_{p}^{\times}|v_{p}\equiv 1(mod r)\}$ .

By [11, Prop. 7.2], this shows that $X_{ss/}(\alpha_{u})$ is rational over $Q(\zeta_{r})$ , where
$\zeta_{r}=e^{2\pi i/r}$ . For an integer $q$ prime to $M$, let $\sigma_{q}$ be an element of $SL_{2}(Z)$ such

that $q\cdot\sigma_{q}\equiv\left\{\begin{array}{ll}1 & 0\\0 & q^{2}\end{array}\right\}(mod M)$ . If $g\in S_{2}(\Gamma)$ and $g|[\sigma_{q}]_{2}=\varphi(q)g$ with a

character $\varphi$ modulo $s$ , then, by [11, Prop. 3.64], one has $(g|R)|[\sigma_{q}]_{2}=$

$\varphi(q)g|R=(g|[\sigma_{q}]_{2})|R$ . This shows that

(4.7) $\eta_{0}\circ\{\Gamma^{\prime}\sigma_{q}\Gamma^{\prime}\}=\{\Gamma\sigma_{q}\Gamma\}\circ\eta_{0}$ .

On the other hand, let $y=(y_{p})$ be an element of $G_{0}$ such that $y_{p}=[_{0}^{1}$ $0q]$

or 1 according as $p$ divides $M$ or not. Then $\sigma_{q}^{-1}y\in U_{M}$ so that $J_{SS}(\sigma_{q})=J_{ss}(y)$ ,

$J_{S’ S^{\prime}}(\sigma_{q})=J_{S^{\prime}S^{\prime}}(y)$ . Since $\alpha_{u}[01$ $0q]=[_{0}^{1}$ $0q]\alpha_{qu}$ , we obtain, by [11, Prop. 7.2],

$\sum_{u=1}^{r}\chi(qu)X_{SS^{\prime}}(\alpha_{u})^{\sigma(y)}\circ J_{S^{\prime}S^{\prime}}(y)=J_{SS}(y)\circ(\sum_{u=1}^{r}\chi(qu)X_{SS^{\prime}}(\alpha_{qu}))$ ,

where $\sigma(y)$ is the element of Gal $(Q_{ab}/Q)$ dePned by [11, (6.4.1)], hence
$\chi(q)\eta_{0}^{\sigma(y)}\circ\{\Gamma^{\prime}\sigma_{q}\Gamma^{\prime}\}=\{\Gamma\sigma_{q}\Gamma\}\circ\eta_{0}$ . Combining this with (4.7), we obtain

$\eta 8^{(y)}=\chi(q)\eta_{0}$ .
Observe that $\sigma(y)$ sends $\zeta_{M}=e^{2\pi/M}$ onto $\zeta_{M}^{q}$ . Therefore $\eta_{0}$ is rational over the
quadratic field $f$ corresponding to $\chi$ and $\eta_{0}^{\epsilon}=-\eta_{0}$ for the generator $\epsilon$ of
Gal $(f/Q)$ . Now $R$ maps $\sum_{\sigma\leftarrow I^{\prime}}Cf_{\sigma}$ into $\sum_{c\Leftarrow I^{\prime\prime}}Ch_{\sigma}$ , so that $\delta\eta_{0}$ maps $\delta\nu(D_{A})$ into
$\delta\nu^{\prime}(D_{A^{\prime}})$ . Therefore we can define a homomorphism $\eta$ of $A^{\prime}$ into $A$ , rational
over $f$ , so that $\eta\circ\nu^{\prime}=\nu\circ\eta_{0}$ . Then the relation $\eta^{\epsilon}=-\eta$ is obvious.

Let us now assume the following set of conditions:

(4.8) (i) $N$ is a common multiple of $r^{2}$ and $rs$ ; (ii) $a\equiv d(mod r)$ for
every $[_{c}^{a}$ $ db]\in\Gamma$ .

Then we can take $M=N,$ $\Gamma^{\prime}=\Gamma,$ $J^{\prime}=J$, so that $\eta_{0}$ is an endomorphism of
$J$, and $\eta_{0}^{3}=x(-1)r\eta_{0}$ .

Fix an eigen-function $f(z)$ as in Proposition 6, and define $K$ and $(A, \nu, \theta)$

as before. Suppose that the following condition is satisfied:

(4.9) There is an automorphism $\rho$ of $K$, other than the identity map,
such that $\chi(n)a_{n}=a_{n}^{\rho}$ for all $n$ . (This implies especially that $a_{n}=0$

if $(n, r)\neq 1.)$
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Then $\rho^{2}=1$ , and $\chi(n)a_{n}^{\sigma}=a_{n}^{\rho\sigma}$ for any $\sigma\in I$, so that

(4.10) $f_{\sigma}|R=\mathfrak{g}(\chi)f_{\rho\sigma}$ .
PROPOSITION 9. Under the assumPtions (4.8) and (4.9), $\eta$ is an endomorphism

of $A$ satisfying
(i) $\eta^{2}=x(-1)r\cdot id_{A}$ ,
(ii) $\eta\circ\theta(a)=\theta(a^{\rho})\circ\eta$ for every $a\in K$.
PROOF. Observe that the diagram

$S_{2}(\Gamma)\rightarrow^{\mu}D_{J}D_{A}\underline{\delta\nu}$

$S_{2}(\Gamma)\downarrow R\rightarrow^{\mu}D_{J}\downarrow\delta\leftarrow D_{A}\eta_{0\underline{\delta\nu}\downarrow\delta\eta}$

is commutative, and another diagram with $T_{n},$ $\delta\xi_{n},$ $\delta\theta(a_{n})$ in place of $R,$ $\delta\eta_{0}$ ,
$\delta\eta$ is commutative, too. Let $w_{\sigma}$ be the element of $D_{A}$ such that $\delta\nu(w_{\sigma})=\mu(f_{\sigma})$ .
Then $\{w_{\sigma}|\sigma\in I\}$ is a C-basis of $D_{A}$ , and the commutativity of the diagram
implies $\delta\eta(w_{\sigma})=\mathfrak{g}(\chi)w_{\rho\sigma}$ , and $\delta\theta(a)(w_{\sigma})=a^{\sigma}w_{\sigma}$ for $a\in K$. Therefore $\delta\eta^{2}(w_{\sigma})=$

$\mathfrak{g}(\chi)^{2}w_{\sigma}$ , and $(\delta\eta\circ\delta\theta(a))(w_{\sigma})=\mathfrak{g}(\chi)a^{\sigma}w_{\rho\sigma}=(\delta\theta(a^{\rho})\circ\delta\eta)(w_{\sigma})$ , hence our proposition.
Thus, if an eigen-function $f(z)$ satisfying (4.9) exists, then the correspond-

ing $(A, \theta)$ and $\eta$ form a system similar to that of [13, \S 9]. The field $K$ in
the present case is not necessarily a CM-field as assumed there, but one can
still develop, by the same ideas as in [13, \S 9], a theory of construction of
class fields over the quadratic field $f$. As mentioned in the Introduction, K.
Doi and M. Yamauchi have found a few examples of $f(z)$ , satisfying (4.9),

with $N=p^{3}$ and $r=p$ for a prime $p$ .

\S 5. A proof of Dirichlet’s class number formula.

Let $Q(\sqrt{-q})$ be an imaginary quadratic field with discriminant $-q$ , and
$h(-q)$ the class number of $Q(\sqrt{-q})$ . Then the Dirichlet formula is, if $q>4$ ,

(5.1) $h(-q)=-\not\leq(\frac{-q}{n})n/q\sim-1$

The Purpose of this section is to prove this as an application of the results
of previous sections, without using the residue of the zeta function of $Q(\sqrt{-q})$ .
The proof is inspired by a result of Hecke’s in [5]; we shall explain its
connection with our proof afterwards.

For simplicity, we assume $q>4$ , although the cases $q=3,4$ can be in-

cluded, without much trouble, in the following treatment. Put $\chi(n)=(\frac{-q}{n})$ ,

and
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$\Gamma=\{[ca$ $db]\in\Gamma_{0}(q^{2})|a\equiv d\equiv 1(mod q)\}$ .

Define the operator $R$ of \S 4 for this $\chi$ with $N=q^{2},$ $r=q$ . Since the present
$\Gamma$ satisfies (4.8), $R$ maps $S_{2}(\Gamma)$ into itself, and

$(\sum_{n=1}^{\infty}a_{n}e^{2\pi inz})|R=\sqrt{-q}\sum_{n=1}^{\infty}\chi(n)a_{n}e^{2\pi inz}$

Here we recall a well-known formula of Gauss

(5.2) $\sum_{n=1}^{q}\chi(n)e^{2\pi ink/q}=\sqrt{-q}.\chi(k)$ .

We understand that $\sqrt{-q}$ has positive imaginary part.

PROPOSITION 10. One has tr $(R)=\sqrt{-q}\cdot h(-q)\cdot\varphi(q)/2$ , where $\varphi$ is Euler’s
function.

PROOF. By virtue of the results of Miyake [8] and Casselman [2] (which
generalize Atkin-Lehner [1]), we can find a basis of $S_{2}(\Gamma)$ formed by the
elements

$g_{1},$ $\cdots$ $g_{s},$ $g_{1}(mz),$ $\cdots$ $g_{s}(mz)$ ,

where $g_{k}$ belongs to “ the essential part ‘’ of $S_{2}(\Gamma_{1}(N_{k}))$ for a divisor $N_{k}$ of $q^{2}$ ,
and $m$ runs over all non-trivial positive divisors of $q^{2}/N_{k}$ . (In other words,
$g_{k}$ is a “ new form ”.) We take $g_{k}$ to be a common eigen-function of all Hecke

operators of level $N_{k}$ , with the first Fourier coefficient 1. If $g_{k}(z)=\sum_{n=1}^{\infty}a_{n}e^{2\pi tnz}$ ,

we see that the $g_{k}(mz)$ , for a fixed $k$ and for all positive divisors of $q^{2}/N_{k}$ ,
span, over $C$, the vector space

{ $f\in S_{2}(\Gamma)|f|T_{n}=a_{n}f$ for all $n$ prime to $q$}.

Observe that $R$ maps $g_{k}(mz)$ onto $0$ if $m>1$ , and $g_{k}$ onto a common eigen-
function of all Hecke operators of level $q^{2}$ , since $\sum_{n}\chi(n)a_{n}n^{-S}$ has an Euler

product. Such an eigen-function must be of the form $\sum_{m}c_{m}g_{j}(mz)$ for some
$i$ , where $m$ divides $q^{2}/N_{j}$ . The comparison of the Prst Fourier coefficients
yields $c_{1}=\sqrt{-q}$ . Therefore tr $(R)/\sqrt{-q}$ is the number of indices $k$ such
that

$g_{k}|R=\sqrt{-q}\cdot g_{k}+\sum_{m}c_{m}g_{k}(mz)$ $(m>1, m|N_{k}^{-1}q^{2})$ .

Put $g_{k}^{*}(z)=\sum_{(n.q)=1}a_{n}e^{2\pi inz}$ . Since $(g_{k}|R)|T_{n}=a_{n}\cdot(g_{k}|R)$ for $(n, q)=1$ , and the

n-th Fourier coefficient of $g_{k}|R$ is $0$ for $(n, q)\neq 1$ , we have $g_{k}|R=g_{k}^{*}|R=$

V : $q\cdot g_{k}^{*}$ . Define $(A, \nu),$ $I$, and $f_{\sigma}$ as in Theorem 1 with $g_{k}^{*}$ as $f$. By Prop-

osition 8, there is an endomorphism $\eta$ of $A$ such that
$\delta\eta(\delta\nu^{-1}(\mu(f_{\sigma})))=\delta\nu^{-1}(\mu(f_{\sigma}|R))$
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for all $\sigma\in I$. Since $f_{\sigma}|R=\sqrt{-q}\cdot f_{\sigma}$ , we see that $\delta\eta$ is $\sqrt{-q}$ times the
identity map on $D_{A}$ . Therefore, by [12, Lemma 1], $A$ is isogenous to the
product of copies of an elliptic curve, say $E$, with complex multiplication,

such that End $(E)\otimes Q$ is isomorphic to $Q(\sqrt{-q})$ . Now define an abelian
variety $B$ for the function $g_{k}$ (at level $N_{k}$) by Theorem 1. By Proposition 8,
$B$ is isogenous to $A$ , hence $B$ is also isogenous to the product of copies of
$E$. Then, by [13, Prop. 1.6], $g_{k}$ must be the Mellin (inverse) transform of an
L-function with a primitive Grossen-character $\lambda$ of $Q(\sqrt{-q})$ . This means
that $g_{k}(z)=\sum_{a}\lambda(\mathfrak{a})e^{27\pi iN(\mathfrak{a})z}$ , where $\mathfrak{a}$ runs over all integral ideals in $Q(\sqrt{-q})$

prime to the conductor, say $c$ , of $\lambda$ , and $\lambda((\alpha))=\alpha$ for $\alpha\equiv 1$ mod $c$ . Moreover
the functional equation of the L-function implies that $g_{k}$ belongs to the essen-
tial part of $S_{2}(\Gamma_{1}(q\cdot N(c))),$ $i$ . $e.$ , it is a ” new form ”. Therefore $N(c)$ divides $q$ ,

hence $c$ divides the ideal $(\sqrt{-q})$ . It can easily be seen that there are exactly

$h(-q)\cdot\varphi(q)/2$ primitive Gr\"ossen-characters $\psi$ whose conductor $c$ divides $\sqrt{-q}$

and such that $\psi((\alpha))=\alpha$ for $\alpha\equiv 1$ mod $c$ . For any such $\psi$ , Put $f_{\psi}(z)=$

$\sum_{\mathfrak{a}}\psi(\mathfrak{a})e^{2\pi i_{N}(\mathfrak{a})z}$ , where $\mathfrak{a}$ runs over all integral ideals of $Q(\sqrt{-q})$ prime to the

conductor of $\psi$ . Then the $f_{\psi}$ , for all such $\psi$ , are linearly independent, and
belong to $S_{2}(\Gamma)$ , by [12, Lemma 3]. Further each $f_{\psi}$ must coincide with one of
the $g_{k}$ , and obviously $f_{\psi}|R=\sqrt{-q}\cdot f_{\psi}^{*}$ . Thus we have shown that tr $(R)/\sqrt{-q}$

is the number of the characters $\psi$ , which completes the proof.

To compute tr $(R)$ in a different manner, put $\alpha=[_{0}^{1}$ $0q],$ $\epsilon=[_{0}^{1}$ $11]$ ,

and

$\Gamma(q)=\{[ca$ $db]\in SL_{2}(Z)|\left\{\begin{array}{ll}a & b\\c & d\end{array}\right\}\equiv\left\{\begin{array}{ll}1 & 0\\0 & 1\end{array}\right\}(mod q)\}$ .

Then $\Gamma=\alpha\Gamma(q)\alpha^{-1},$ $\alpha\epsilon\alpha^{-1}=[_{0}^{1}$ $1/q1]$ . Therefore tr $(R)$ is equal to the trace

of the operator

$f-\sum_{u=1}^{q}\chi(u)f|[\epsilon^{u}]_{2}$

on the space $S_{2}(\Gamma(q))$ of cusp forms of weight 2 $with_{A}^{\vee}respect$ to $\Gamma(q)$ . Let
$\rightarrow\epsilon_{0}$ be the automorphism of $\mathfrak{H}^{*}/\Gamma(q)$ obtained from $\epsilon$ . The fixed points of $\epsilon_{0}$

occur only at cusps. Indeed, suppose $\epsilon(z)=\gamma(z)$ for some $z\in \mathfrak{H}$ and some
$\gamma=[_{c}^{a}$ $db]\in\Gamma(q)$ . Then $\epsilon^{-1}\gamma=[^{a-c}c$ $b-dd]$ is elliptic, hence tr $(\epsilon^{-1}\gamma)|<2$ .
But $a-c+d\equiv 2(mod q)$ , which is a contradiction, since $q>4$ .

Now let $r/s$ , with integers $r$ and $s$ such that $(r, s)=1$ , be a cusp repre-
senting a fixed point of $\epsilon_{0}$ . By [11, Lemma 1.42], this is so if and only if

$[_{s}\gamma]\equiv\pm[r+ss](mod q)$ . Therefore $\epsilon_{0}$ has exactly $\varphi(q)/2$ fixed points repre-

sented by $r/q$ with $(r, q)=1,0<r<q/2$ . For such an $r$, take an element $\beta$
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of $SL_{2}(Z)$ of the form $\beta=[_{-q}u$ $vr]$ . Then $\beta$ maps $r/q$ to $\infty$ , and

$\beta^{-1}[10$ $m_{1}]\beta=[1-mqr-mq^{2}$ $1+mqrmr^{2}]$ .

Choose an integer $m$ so that $mr^{2}\equiv 1(mod q)$ . Then $\beta^{-1}[01$ $m_{1}]\beta\epsilon^{-1}\in\Gamma(q)$ ,

so that $\beta^{-1}[01$ $ m_{1}]\beta$ represents the automorphism $\epsilon_{0}$ , and moreover it has $r/q$

as a fixed point. Therefore, if $t$ is the local parameter on $\mathfrak{H}^{*}/\Gamma(q)$ around
$r/q$ defined by

$t(z)=\exp[2\pi i\cdot\beta(z)/q]$ ,

one has $t\circ\epsilon_{0}=\zeta^{m}t$ with $\zeta=e^{2\pi i/q}$ . Let tr $(\epsilon_{0})$ denote the trace of $[\epsilon]_{2}$ on $S_{2}(\Gamma(q))$ .
Applying the Selberg-Eichler trace formula to $\epsilon_{0}$ , we obtain

(5.3) tr $(\epsilon_{0}^{u})-1=2^{-1}\sum_{(r.q)=1}\zeta^{r^{2}u}/(1-\zeta^{r^{2}u})$ ,

for $(u, q)=1$ . Therefore

tr $(R)=\sum_{u=1}^{q-1}\chi(u)$ tr $(\epsilon_{0}^{u})=2^{-1}\varphi(q)\sum_{m=1}^{q-1}\chi(m)\zeta^{m}/(1-\zeta^{m})$ .

To compute the last sum, take an indeterminate $w$ , and observe that

$\sum_{m=1}^{q-1}\chi(m)\zeta^{m}/(1-\zeta^{m}w)=\sum_{k=1}^{\infty}w^{k-1}\sum_{m=1}^{q-1}\chi(m)\zeta^{mk}$

$=\sqrt{-q}\sum_{k=1}^{\infty}\chi(k)w^{k-1}$

$=\sqrt{-q}(\sum_{k=1}^{q-1}\chi(k)w^{k-1})/(1-w^{q})$ ,

hence

$t\Gamma^{-}(R)=(\sqrt{-q_{J}}\cdot\varphi(q)/2)\cdot\lim_{w\rightarrow 1}(\sum_{k=1}^{q-1}\chi(k)w^{k})/(1-w^{q})$

$=-(\sqrt{-q}\cdot\varphi(q)/2q)k=19^{-1}x(k)k$ ,

by differentiating the numerator and the denominator. Combining this with
Proposition 10, we obtain Dirichlet’s formula (5.1).

Especially, suppose $q$ is a prime, and denote by $U$ the right hand Side
of (5.3). Then $U+\overline{U}=-\varphi(q)/2$ , and

$U-\overline{U}=\sum_{n=1}^{q-1}\chi(um)\zeta^{m}/(1-\zeta^{m})=-\sqrt{-q}.\chi(u)\sum_{k=1}^{q-1}\chi(k)k/q$ ,

so that

(5.4) tr $(\epsilon_{0}^{u})-1=-\varphi(q)/4-\sqrt{-q}.\chi(u)\sum_{k=1}^{q-1}\chi(k)k/2q$ .
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Let us now clarify the relation between our proof and Hecke’s results
in [4], [5]. Put $\mathfrak{M}_{q}=SL_{2}(Z/qZ)/\{\pm 1\}$ , and suppose that $q$ is a prime such
that $q\equiv 3(mod 4)$ and $q>3$ . Then $\mathfrak{M}_{q}$ has an irreducible representation $G;of$

degree $(q-1)/2$ such that

tr $(\mathfrak{G}(\epsilon))=(-1+\sqrt{-q})/2$ .

Let $\mathfrak{D}$ be the representation of $\mathfrak{M}_{q}$ on $S_{2}(\Gamma(q))$ via the map $\gamma-[\gamma]_{2}$ for
$\gamma\in SL_{2}(Z)$ . Let $y_{1}$ and $y_{2}$ be the multiplicities of $\mathfrak{G}$ and its complex conjugate
$\overline{\mathfrak{G}}$ in $\mathfrak{D}$ , respectively. In [5], Hecke proved

(5.5) $y_{1}-y_{2}=h(-q)$

by first showing

(5.6) $y_{1}-y_{2}=-\sum_{n=1}^{q-1}\chi(n)n/q$ ,

and employing Dirichlet’s formula (5.1). Actually Proposition 10, combined
with a simple observation, leads to (5.5) with neither Eichler-Selberg’s trace
formula nor Dirichlet’s formula, but with the knowledge of all irreducible

representations of $\mathfrak{M}_{q}$ . To see this, put $\omega=[_{0}^{1}$ $1/q1]$ , and take a basis of
$S_{2}(\Gamma)$ formed by eigen-functions of $[\omega]_{2}$ , and let $f$ be a member of the basis.
Then we have $f|[\omega]_{2}=\zeta^{m}f$ with $\zeta=e^{2\pi i/q}$ and $0\leqq m<q$ , hence

(5.7) $f|R=\sum_{k=1}^{q-1}\chi(k)\zeta^{mk}f=x(m)\sqrt{-q}\cdot f$ .

Now, for any irreducible representation $\mathfrak{G}*$ of $\mathfrak{M}_{q}$ other than $\mathfrak{G}$ and $\overline{\mathfrak{G}}$ ,

tr $(\mathfrak{G}^{*}(\epsilon))$ is a rational integer (see, $e$ . $g.$ , Hecke [4, p. 529 (Werke)]). Therefore
we have

(5.8) tr $([\omega]_{2})=tr(\mathfrak{D}(\epsilon))$

$=y_{1}\cdot\sum_{\chi(m)=1}\zeta^{m}+y_{2}\cdot\sum_{\chi(m)=-1}\zeta^{m}+a\zeta^{0}+b\sum_{m=1}^{q-1}\zeta^{m}$

with non-negative integers $a$ and $b$ . Here each term $\zeta^{m}(m\geqq 0)$ corresponds

to a member of our basis, and by (5.7), contributes $\chi(m)’-q$ to tr $(R)$ , hence

tr $(R)=(y_{1}-y_{2})\sqrt{-q}(q-1)/2$ .

Comparing this with Proposition 10, we obtain (5.5).

We also notice that (5.6) can be derived from (5.4) and (5.8) by comparing
the imaginary parts, since tr $(\epsilon_{0})=tr(\mathfrak{D}(\epsilon))$ . Actually Hecke obtained (5.6) by
computing the dimension of the vector space

(5.9) $\{f\in S_{2}(\Gamma(q))|f|[\epsilon]_{2}=\zeta^{v}f\}$ $(0\leqq v<q)$
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by means of the Riemann-Roch theorem. For the reader’s convenience, let
us now compute tr $(R)$ by Hecke’s technique, using the Riemann-Roch theorem
instead of the Selberg-Eichler trace formula.

Let $\lambda_{v}$ denote the dimension of (5.9). Then

(5.10) tr $(R)=\sum_{k=1}^{q-1}\chi(k)$ tr $(\epsilon_{0}^{k})=\sum_{k=1}^{q-1}\sum_{v=0}^{q-1}\chi(k)\zeta^{kv}\lambda_{v}=\sqrt{-q}\cdot\sum_{v=1}^{q-1}\chi(v)\lambda_{v}$ .

Put $W=\mathfrak{H}^{*}/\Gamma(q)$ and $W^{\prime}=\mathfrak{H}^{*}/\Gamma_{1}(q)$ . For every positive divisor $n$ of $q$ , let
$P_{l}^{n}$ , for $i=1,$ $\cdots$ , $c_{n}$ , denote all the points of $W^{\prime}$ with ramification index $q/n$ ,
and $Q_{i1}^{n},$ $\cdots$ , $Q_{tn}^{n}$ the points of Wlying above $P_{t}^{n}$ . Put $q_{n}=q/n$ . Let $\mathfrak{g}$ and $\mathfrak{g}^{\prime}$

be the genera of $W$ and $W^{\prime}$ , respectively. Then

$2\mathfrak{g}-2=(2\mathfrak{g}^{\prime}-2)q+\sum_{n|q}(q_{n}-1)nc_{n}$ .

We can find a $\Gamma(q)$ -invariant automorphic form $f_{0}$ of weight 2 such that
$f_{0}|[\epsilon]_{2}=\zeta^{v}f_{0}$ with any integer $v$ . Let div (X) resp. $div^{\prime}(X)$ denote the divisor
of a function or a differential form $X$ on $W$ resp. $W^{\prime}$ . Then

div $(f_{0}(z)dz)=D+\sum_{n|q}\sum_{i=1}^{c_{n}}k_{ni}(Q_{i1}^{n}+\cdots+Q_{in}^{n})$

with integers $k_{ni}$ and a divisor $D$ on $W$ not involving $Q_{ij}^{n}$. Let $t_{ni}$ be a local
parameter on $W$ at $Q_{i1}^{n}$ . Then

$t_{ni}\circ\epsilon_{0}^{n}=\zeta^{nh}t_{ni}+$ ($higher$ terms)

with an integer $h$ prime to $q_{n}$ . Then we see that $nv\equiv nh(k_{ni}+1)(mod q)$ .
Take an integer $s_{ni}$ so that $s_{ni}h\equiv 1(mod q_{n})$ . Note that $s_{ni}$ is independent
of $v$ . Then $k_{ni}\equiv s_{ni}v-1(mod q_{n})$ . Especially, if $n=1$ , the above study of
the Pxed points of $\epsilon_{0}$ shows that $c_{1}=\varphi(q)/2$ , and $P_{i}^{1}$ is represented by $r/q$

under the conditions $(r, q)=1,0<r<q/2$ . For this point, we can take $s_{1i}=r^{2}$ ,
as seen above. Now the map $f->F=f_{0}^{-1}f$ sends the vector space(5.9) iso-
morphically onto the vector space of all $\Gamma_{1}(q)$ -invariant modular functions $F$

such that

div $(F)\geqq-$ div $(f_{0}dz)$ .

We see easily that this is so if and only if

(5.11) $div^{\prime}(F)\geqq-q^{-1}D^{\prime}-\sum_{n|q}\sum_{i=1}^{c_{n}}[k_{nt}/q_{n}]P_{i}^{n}$ ,

where $D^{\prime}$ is the projection of $D$ onto $W^{\prime}$ , and $[x]$ is the largest integer $\leqq x$ .
Put $\{x\}=x-[x]$ . Let $\mu_{v}$ denote $-1$ times the degree of the right hand side
of (5.11). Assume that $(v, q)=1$ . Then $s_{ni}v\not\equiv 0(mod q_{n})$ , hence $\{k_{ni}/q_{n}\}=$

$\{s_{ni}v/q_{n}\}-1/q_{n}$ . Therefore
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$\mu_{v}=q^{-1}$ deg $(div(f_{0}dz))-\sum_{n.i}\{k_{ni}/q_{n}\}$

$=(2\mathfrak{g}-2)/q-\sum_{n.i}\{k_{ni}/q_{n}\}$

$=2\mathfrak{g}^{\prime}-2+\sum_{n.i}(1-\{s_{ni}v/q_{n}\})$

$>2\mathfrak{g}^{\prime}-2$ .

Thus, by the Riemann-Roch theorem, one has

$\lambda_{v}=\mathfrak{g}^{\prime}-1+\sum_{n,i}(1-\{s_{ni}v/q_{n}\})$ .

Observe that $\sum_{v=1}^{q-1}\chi(v)\{sv/q_{n}\}=0$ for any $s$ if $n>1$ . Therefore by (5.10) we
obtain

tr $(R)=-\sqrt{-q}.\sum_{rv}\sum_{=1}^{q-1}\chi(v)\{vr^{2}/q\}=-\sqrt{-q}\cdot(\varphi(q)/2)\cdot\sum_{k=i}^{q-1}\chi(k)k/q$ ,

which is the desired result.

\S 6. The zeta-function of $A$ over a non-abelian extension of $Q$ .
Let $\Gamma$ be a group of level $N$, and let $A$ be defined for a common eigen-

function $f$ in $S_{2}(\Gamma)$ as in Theorem 1. Then one can naturally ask about
(the one-dimensional part of) the zeta-function of $A$ over an arbitrary finite
algebraic extension $F$ of $Q$ . This problem can easily be settled (always up
to finitely many bad Euler factors), if $F$ is abelian over $Q$ , as shown in [11,

\S 7.9] (see also the discussion below). We shall now show that one can de-
termine the zeta-function for a certain class of non-abelian extensions.

Let us denote by $Z(s, A/F)$ the one-dimensional part of the zeta-function
of $A$ over $F$, and by $\zeta_{F}(s)$ the Dedekind zeta-function of $F$. We can write

$\zeta_{F}(s)=\prod_{p}$ det $[1-\Psi_{p}p^{-S}]^{-1}$

$Z(s, A/Q)=\prod_{p}$ det $[1-\Phi_{p}p^{-s}]^{-1}$ (the product for all good primes)

with complex matrices $\Phi_{p}$ and $\Psi_{p}$ given for each prime $P$ ; the size of $\Phi_{p}$

(resp. $\Psi_{p}$) is 2 $\cdot$ dim $(A)$ (resp. $[F:Q]$); the matrices are invertible for almost
all $p$ . Then we see easily that

$Z(s, A/F)=\prod_{p}$ det $[1-(\Phi_{p}\otimes\Psi_{p})p^{-s}]^{-1}$

This applies to any abelian variety $A$ defined over $Q$ .
Now take a common eigen-function $f(z)=\sum_{n}a_{n}e^{2\pi inz}$ , with $a_{1}=1$ , of all

Hecke operators in $S_{k}(\Gamma)$ , with any positive integer $k$ , and put



On the factors of the jacobian variety 541

$L(s, f)=\sum_{n=1}^{\infty}a_{n}n^{-s}=\prod_{p}(1-a_{p}p^{-s}+\epsilon(p)p^{k-1-2s})^{-1}$

$=\prod_{p}$ det $[1-\Xi_{p}p^{-S}]^{-1}$

with complex matrices $\Xi_{p}$ of size 2. Here $\epsilon(p)$ is a character of $(Z/NZ)^{x}$

such that

$f|[[ca$ $db]]_{k}=\epsilon(d)f$ for all $[_{c}^{a}$ $db]\in\Gamma_{0}(N)$ .

Then we define an Euler product

$L(s, f, F)=\prod_{p}$ det $[1-(\Xi_{p}\otimes\Psi_{p})p^{-S}]^{-1}$

which obviously converges in some half plane. The last part of Theorem 1
implies that, if $k=2$ and $A$ corresponds to $f$, then, under the condition stated
there, $Z(s, A/F)$ coincides with $\prod_{\sigma\in I}L(s, f_{\sigma}, F)$ , up to finitely many Euler factors.

It is natural to conjecture that if $k>1,$ $L(s, f, F)$ can always be continued to
a holomorphic function on the whole s-plane satisfying a functional equation.
(If $k=1$ , one will have to allow the function to have finitely many poles.)

Thus our purpose is to show that this is so at least for a certain class of
extensions $F$ of $Q$ . To define it, we consider the following condition on a
finite group $G$ :

(X) Every irreducible representati0n of $G$ by complex matrices is either
one-dimensional or induced from $a$ one-dimensional representati0n of a subgroup

of index 2.
It can easily be shown that the following types of groups satisfy the

condition: abelian group; dihedral group; generalized quaternion group $(i$ . $e.$ ,
a group of order $4m$ generated by two elements $r$ and $s$ with the relations
$r^{2}=s^{m},$ $s^{2m}=1,$ rsr $=s^{-1}$); a homomorphic image of a group satisfying (X);
the product of an abelian group and a group satisfying (X).

Let $E$ be a Galois extension of $Q$ such that Gal $(E/Q)$ satisfies (X), and
let $F$ be any subfield of $E$. It is this type of extension $F$, for which we are
going to show that $L(s, f, F)$ can be determined. Write simply $G$ for Gal $(E/Q)$ ,
and let $L(s, E/Q, \varphi)$ denote the Artin L-function with a character $\varphi$ of $G$ . By
virtue of (X), $\zeta_{F}(s)$ can be written as a finite product

$\zeta_{F}(s)=\prod_{\mu}L(s, E/Q, \varphi_{\mu})\times\prod_{\nu}L(s, E/Q, \psi_{\nu})$ ,

where $\varphi_{\mu}$ is a one-dimensional character of $G$ , and $\psi_{\nu}$ is a character induced
from an abelian character of a subgroup $H_{\nu}$ of $G$ of index 2. Each $\varphi_{\mu}$ cor-
responds to a primitive character $\varphi_{\mu}^{*}$ of $(Z/m_{\mu}Z)^{\times}$ with a positive integer $m_{\mu}$ ,
and



542 G. SHIMURA

$L(s, E/Q, \varphi_{\mu})=\prod_{p}(1-\varphi_{\mu}^{*}(p)p^{-s})^{-1}$

As to $\psi_{\nu}$ , take the subPeld M. of $E$ corresponding to H.. Then [M. : $Q$] $=2$ .
and $L(s, E/Q, \psi_{\nu})$ coincides with an L-function

$L(s, M_{\nu}, \chi_{\nu})=\prod_{\mathfrak{p}}(1-\chi_{\nu}(\mathfrak{p})N(\mathfrak{p})^{-s})^{-1}$

of M. with a primitive character $\chi_{\nu}$ of finite order, where the product is ex-
tended over all prime ideals $\mathfrak{p}$ of M. prime to the conductor of $\chi_{v}$ . Put

$L(s, M_{\nu}, \chi_{\nu})=\sum_{n}b_{\nu n}n^{-s}=\prod_{p}$ det $[1-\Psi_{\nu p}p^{-s}]^{-1}$

with complex numbers $b_{\nu n}$ and complex matrices $\Psi_{\nu p}$ of size 2. Then

$L(s, f, F)=\prod_{\mu}L(s, f, \varphi_{\mu}^{*})\times\prod_{\nu}L(s, f, M_{\nu}, \chi_{\nu})$
,

where
$L(s, f, \varphi_{\mu}^{*})=\prod_{p}$ det $[1-\varphi_{u}^{*}(p)\Xi_{p}p^{-s}]^{-1}=\sum_{n}\varphi_{l^{\ell}}^{*}(n)a_{n}n^{-s}$ ,

(6.1) $L(s, f, M_{\nu}, \chi_{\nu})=\prod_{p}$ det $[1-(\Xi_{p}\otimes\Psi_{\nu p})p^{-S}]^{-1}$

By an easy formal computation, we see that

$L(s, f, M_{\nu}, \chi_{\nu})=(\sum_{n=1}^{\infty}a_{n}b_{\nu n}n^{-s})(\sum_{n=1}^{\infty}(\frac{D_{v}}{n})\chi_{\nu}((n))\epsilon(n)n^{k-1-2S})$ ,

where $D_{\nu}$ is the discriminant of M.. Note that det $(\Psi_{\nu p})=(\frac{D_{\nu}}{p})\chi_{\nu}((p))$ , and

det $(\Xi_{p})=\epsilon(p)p^{k-1}$ . The Dirichlet series $L(s, f, \varphi*)$ can be continued to a
holomorphic function on the whole s-plane satisfying a functional equation,
since $\sum_{n}\varphi_{\alpha}^{*}\ovalbox{\tt\small REJECT}(n)a_{n}e^{2\pi inz}$ is an element of $S_{k}(\Gamma_{1}(N_{\mu}))$ for some $N_{\mu}$ (see [11, Prop.
3.64]).

To study the nature of $L(s, f, M_{\nu}, \chi_{\nu})$ , we first observe that $L$ ( $s$ , M., $\chi_{\nu}$) is
the Mellin transform of an automorphic form on $GL_{2}(Q_{A})$ . This is essentially
due to Hecke and Maass, and included, as a special case, in the results of
Jacquet and Langlands [6], and Weil [17]. Especially, if M. is imaginary,
and if we put $g_{\nu}(z)=\sum_{n}b_{\nu n}e^{2\pi tnz}$ , then $g_{v}$ is a modular form of weight 1
satisfying

(6.2) $g_{\nu}|[\left\{\begin{array}{ll}a & b\\c & d\end{array}\right\}]_{1}=(\frac{D_{\nu}}{d})\chi_{\nu}((d))g_{\nu}$ for all $\left\{\begin{array}{ll}a & b\\c & d\end{array}\right\}\in\Gamma_{0}(D_{\nu}\cdot N(c_{\nu}))$ ,

where $c_{\nu}$ is the conductor of $\chi_{\nu}$ . Therefore $L$ ( $s,$ $f$, M., $\chi_{\nu}$) is similar to the
Dirichlet series considered by Rankin [10]. Recently Jacquet [7] has given
a general treatment of Dirichlet series of type (6.1). Thus it is virtually
possible to obtain the desired property, or at least something very close to
it, of $L(s, f, M_{\nu}, \chi_{\nu})$ or of $L(s, f, F)$ , though one may have to work out the
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details to get a precise statement.
For example, consider the simplest non-abelian case in which $E$ is a

non-abelian extension of $Q$ of degree 6, whose unique quadratic subfield is
imaginary, and take $F$ to be a cubic subPeld of $E$. Then $\zeta_{F}(s)=\zeta_{Q}(s)L(s, M, \chi)$

with the L-function $L(s, M, \chi)$ of $M$ for a character $\chi$ of order 3, correspond-
ing to the extension $E/M$, hence

$L(s, f, F)=L(s, f)L(s, f, M, \chi)$ .
Put $L(s, M, \chi)=\sum_{n}b_{n}n^{-s},$ $g(z)=\sum_{n}b_{n}e^{2r_{t}inz}$ . Then $g$ is a modular form of weight

1, satisfying a relation of the type (6.2). (In this special case, one has
$\chi((d))=1.)$ Applying the method of [14, \S 3] to $f$ and $g$, we can show that
$L(s, f, M, \chi)$ can be continued to an entire function in $s$ , if $k>1$ . To obtain the

exact form of the functional equation, one has to assume that $f|[[0N$ $-10]]_{k}$

is a common eigen-function of Hecke operators, and make considerations
similar to Ogg [9] and the author [14, \S 3]; but we shall not treat this
problem further in this paper.
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