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\S 1. Introduction.

The purpose of this paper is to prove the following theorem.
THEOREM. Let $G$ be a complex abelian Lie group of complex dimension re

and $K$ the maximal compact subgroup of the connected compOnent of $G$ with
Lie algebra $f$ . Let $q$ be the complex dimension of $f\cap\sqrt{-1}f$ . Then there exists
a real-valued $C^{\infty}$ function $\varphi$ on $G$ satisfying the following conditions:

(1) The Levi form of $\varphi$ :

$L(\varphi, x)=\sum_{i,j=1}^{n}\frac{\partial^{2}}{\partial z_{i}\partial}\varphi_{\overline{Z_{j}}}dz_{i}d\overline{z}_{j}$

is Positive semi-definite and has $n-qposi\hslash ve$ eigenvalues at every Point $x$ of
$G$ , where $(z_{1}, z_{2}, \cdots , z_{n})$ denotes a system of coordinates in some neighborhoodl
of $X$ .

(2) The set
$G_{c}=\{g\in G:\varphi(g)<c\}$

is a relatively compact subset of $G$ for any $c\in R$ .
By the above theorem any complex abelian Lie group is always pseudo-

convex. In the last part we shall find a complex Lie group of arbitrary
dimension, on which every holomorphic function is a constant and which is
pseudoconvex and l-complete.

The author is very grateful to Professor J. Kajiwara for his continuous
encouragement.

\S 2. Proof of Theorem.

Since all connected components of $G$ are biholomorphically isomorphic,.
we may assume that $G$ is connected. Let $\mathfrak{Q}$ be the sheaf of all germs of
holomorphic functions on $G$ . We put

$G^{0}=$ {$g\in G:f(g)=f(e)$ for all $f\in H^{0}(G,$ $\mathfrak{Q})$ }

where $e$ is the unit element of $G$ . Then Morimoto [5] proved that $G^{0}$ is a
complex abelian Lie subgroup of $G$ and that every holomorphic function on
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$G^{0}$ is a constant. By Morimoto [6] we may assume that

$G=G^{0}\times C^{m}\times C^{*p}$

for non-negative integers $m$ and $P$ where $c*$ is the multiplicative group of
all non-zero complex numbers. Let $K$ be the maximal compact subgroup of
$G$ with Lie algebra $f$ and $K^{0}$ be the maximal compact subgroup of $G^{0}$ with
Lie algebra $f^{0}$ . Since there holds $f\cap\sqrt{-1}f=f^{0}\cap\sqrt{-1}f^{0}$ and since $C^{m}\times C^{*p}$

is a Stein group, it suffices to prove the theorem in the case that $G=G^{0}$ .
Then every holomorphic function on $G$ is a constant and $G$ is isomorphic to
$C^{n}/\Gamma(d^{1}, d^{2}, \cdots , d^{s})$ , where $\Gamma(d^{1}, d^{2}, \cdots , d^{s})$ is a discrete subgroup generated
by linearly independent vectors $d^{1},$ $d^{2},$ $\cdots$ , $d^{s}$ of $C^{n}$ over $R$ . The complex
linear subspace of $C^{n}$ spanned by $\{d^{i} : 1\leqq i\leqq s\}$ is expressed by $\langle d^{1}, d^{2}, d^{s}\rangle_{C}$ .
Then we have $C^{n}=\langle d^{1}, d^{2}, \cdots , d^{s}\rangle_{C}$ . Actually, if $\dim_{C}\langle d^{1}, d^{2}, \cdots , d^{s}\rangle_{C}\leqq n-1$ ,

there exists a complex linear subspace $V$ of $C^{n}$ of positive dimension such
that $C^{n}=\langle d^{1}, \cdots , d^{s}\rangle_{C}\oplus V$ . Consequently we have $G=\langle d^{1}, d^{2}, \cdots , d^{s}\rangle_{C}/\Gamma(d^{1}$ ,
$d^{2},$ $\cdots$ , $d^{s}$ ) $\oplus V$. Since every holomorphic function on $G$ is a constant, it is a
contradiction. Therefore $s\geqq n$ and we may assume that $d^{1},$ $d^{2},$ $\cdots$ , $d^{n-1}$ and
$d^{n}$ are linearly independent over $C$. There exists an $(n, n)$ -matrix $M\in GL(n, C)$

such that $e^{i}=M(d^{i})$ where $e^{i}$ is the i-th unit vectors of $C^{n}$ . We put $f^{j}=$

$M(d^{j+n}),$ $1\leqq j\leqq s-n$ . Then $G$ is isomorphic to the complex Lie group
$C^{n}/\Gamma(e^{1}, \cdots , e^{n}, f^{1}, \cdots , f^{s-n})$ . From now, we put $\Gamma=\Gamma(e^{1}, \cdots , e^{n}, f^{1}, f^{s-n})$

and regard $G$ as $ C^{n}/\Gamma$ . Since $d^{1},$ $d^{2},$ $\cdots$ , $d^{S- 1}$ and $d^{s}$ are linearly independent
over $R,$ $e^{1},$ $e^{2},$ $\cdots$ , $e^{n},$ $f^{1},$ $f^{2},$ $\cdots f^{s-n- 1}$ and $f^{s-n}$ are linearly independent over
$R$ . We put

$ K=\langle e^{1}, e^{n}, f^{1}, f^{s-n}\rangle_{R}/\Gamma$

where $\langle e^{1}, \cdots , e^{n}, f^{1}, \cdots , f^{s- n}\rangle_{R}$ denotes the real linear subspace of $C^{n}$ spanned
by $\{e^{i}, f^{j} : 1\leqq i\leqq n, 1\leqq j\leqq s-n\}$ . Then $K$ is the maximal compact subgroup

of $G$ with Lie algebra $f=\langle e^{1}, \cdots, e^{n}, f^{1}, \cdots, f^{s-n}\rangle_{R}$ . We put $f^{j}={\rm Re} f^{j}+\sqrt{-1}{\rm Im} f^{j}$ ,

where ${\rm Re} f^{j}$ and ${\rm Im} f^{j}$ are vectors of $R^{n}$ for $1\leqq j\leqq s-n$ . Then we have

$\mathfrak{k}=\langle e^{1}, \cdots e^{n}, \sqrt{-1}{\rm Im} f^{1}, \cdots \sqrt{}-\overline{1}{\rm Im} f^{s- n}\rangle_{R}$

and
$\mathfrak{k}\cap\sqrt{-1}f=\langle{\rm Im} f^{1}, \cdots {\rm Im} f^{s- n}\rangle_{C}$ .

Since ${\rm Im} f^{1},$ ${\rm Im} f^{2},$ $\cdots$ , ${\rm Im} f^{s-n- 1}$ and ${\rm Im} f^{s-n}$ are linearly independent over $C$,
$\dim_{C}f\cap\sqrt{-1}\mathfrak{k}$ coincides with $s-n$ and we have $q=s-n$ . Take a system
$\{h^{k}\in R^{n} : q+1\leqq k\leqq n\}$ of $n-q$ vectors such that ${\rm Im} f^{1},$ ${\rm Im} f^{2},$ $\cdots$ , ${\rm Im} f^{q},$ $h^{q+1}$ ,
$h^{q+2},$ $\cdots$ , $h^{n-1}$ and $h^{n}$ are linearly independent over $R$ . Then $e^{1},$ $e^{2},$ $\cdots$ , $e^{n}$ ,
$\sqrt{-1}{\rm Im} f^{1},$ $\cdots$ , $’-1{\rm Im} f^{q},$ $\wedge-1h^{q+1},$ $\cdots$ , $\sqrt{-1}h^{n-1}$ and $\sqrt{-1}h^{n}$ are linearly
independent over $R$ and we have
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$C^{n}=\langle e^{1}, \cdots e^{n}, \sqrt{-1}{\rm Im} f^{1}, \cdots \sqrt{-1}{\rm Im} f^{q}, \sqrt{-1}h^{q+1}, ’ \sqrt{-1}h^{n}\rangle_{R}$ .
There exists an $(n, n)$ -matrix $A=(a_{j}^{\prime})\in GL(n, R)$ such that

$\lceil_{e^{n}}^{e^{1}}.\cdot..\cdot\cdot.\cdot.\cdot]=A\left\{\begin{array}{l}f^{1}Im\\\vdots\\ f^{q}Im\\h^{q+1}\\h^{n}\end{array}\right\}$

.

For every $(z_{1}, z_{2}, \cdots , z_{n})\in C^{n}$ where $z_{i}=x_{i}+\sqrt{-1}y_{t},$ $1\leqq i\leqq n$ , we have

$(z_{1}, z_{2}, z_{n})=\sum_{\iota=1}^{n}x_{i}e^{i}+\sqrt{-1}\sum_{i=1}^{n}y_{i}e^{i}$

$=\sum_{i=1}^{n}x_{i}e^{i}+\sum_{J=1}^{q}(\sum_{i=1}^{n}y_{\ell}a_{j}^{t})\sqrt{-1}{\rm Im} f^{f}+\sum_{k=q+1}^{n}(\sum_{t=1}^{n}y_{i}a_{k}^{i})\sqrt{-1}h^{k}$

We consider the function $\varphi$ on $C^{n}$ defined by $\varphi(z_{1}, z_{2}, \cdots, z_{n})=\sum_{k=q+1}^{n}(\sum_{i=1}^{n}y_{i}a_{k}^{t})^{2}$

via the above equation. We define the real-valued $C^{\infty}$ function $\overline{\varphi}$ on $ G=C^{n}/\Gamma$

by putting $\overline{\varphi}(z+\Gamma)=\varphi(z)$ . By the definition of $\overline{\varphi}$ , the set $\{g\in G:\overline{\varphi}(g)<c\}$

is relatively compact for any $c\in R$ . We consider the $(n, n)$-matrix

$B=\left\{\begin{array}{llllll}0 & \cdots & 0 & a_{q+1}^{1} & \cdots & a_{n}^{1}\\\vdots & & \vdots & \vdots & & \vdots\\ 0 & \cdots & 0 & a_{q+1}^{n} & \cdots & a_{n}^{n}\end{array}\right\}$

of rank $n-q$ . Then we have

$[\frac{\partial^{2}\overline{\varphi}(z+\Gamma)}{\partial z_{i}\partial z_{j}}]=[\frac{1}{4}-\frac{2\varphi}{y_{i}}\partial(z)_{-]}\partial\partial y_{j}=\frac{1}{2}BB^{t}$

The matrix $BB^{t}$ is positive semi-definite and of rank $n-q$ . This proves the
theorem.

\S 3. Application.

A. Morimoto [5] has constructed a complex Lie group, on which every
holomorphic function is a constant and which contains no complex torus of
positive dimension. Such a group is called an $(H, C)$ -group. Since all $(H, C)-$

grouPs are abelian, every $(H, C)$ -group is always pseudoconvex. It is known
that there exist some examples of non-compact pseudoconvex manifolds
without non-constant holomorphic functions (cf. H. Grauert [3]). By the
theorem and Morimoto’s result [5], it is shown that there exist a number of
such manifolds even in the case of group manifolds.
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A complex manifold $X$ of dimension $n$ is called a strongly $q$-pseudoconvex
manifold if there exist a real-valued $C^{\infty}$ function $\varphi$ on $X$ and a compact
subset $K$ of $X$ such that the Levi form $L(\varphi, x)$ of $\varphi$ has at least $n-q$ posi-
tive eigenvalues at every point $x$ of $X-K$ and $X_{c}=\{x\in X:\varphi(x)<c\}$ is a
relatively compact subset of $X$ for any $c\in R$ . Moreover if we can take the
emPty set as $K,$ $X$ is called a $q$ -comPlete manifold.

We recall the well-known result of A. Andreotti and H. Grauert [1].

Let $\mathfrak{F}$ be a coherent analytic sheaf on a complex manifold $X$ . If $X$ is.
strongly $q$-pseudoconvex, then we have dim $ H^{i}(X, \mathfrak{F})<+\infty$ for $i\geqq q+1$ . In
particular if $X$ is q-complete, then we have $H^{i}(X, \mathfrak{F})=0$ for $i\geqq q+1$ .

Since the complex abelian Lie group $G$ in the theorem is q-complete, $we$

have
$H^{i}(G, \mathfrak{F})=0$ , $i\geqq q+1$

for every coherent analytic sheaf $\mathfrak{F}$ on $G$ .
H. Grauert gave the following conjecture at page 347 of [2]: Let $X$ be

a complex space with countable topology. If $\dim_{c}X\leqq n$ , then $X$ is strongly
$(n-1)$-pseudoconvex.

In case that $X$ is a complex Lie group the above conjecture is valid.
COROLLARY. Let $G$ be a connected complex Lie group of dimension $n$ . If

$G$ is non-comPact, then $G$ is $(n-1)$ -comPlete and we have

$H^{n}(G, \mathfrak{F})=0$

for every coherent analytic sheaf $\mathfrak{F}$ on $G$ .
PROOF. We put $G^{0}=$ {$g\in G:f(g)=f(e)$ for all $f\in H^{0}(G,$ $\mathfrak{O})$ }. Morimot(\rangle

[5] proved that $G^{0}$ is a complex abelian Lie subgroup of $G$ . If $G=G^{0}$ , then
$G$ is $(n-1)$ -complete by the theorem. When $G\neq G^{0}$ , we put $q=\dim_{c}G^{0}<n$ .
Then by the consequence of a previous paper [4], $G$ is q-complete. In any
way we have the above corollary.

REMARK. Take $(z_{1}, z_{2}, z_{n})\in C^{n}-R^{n}$ such that 1, $z_{1},$ $z_{2},$ $z_{n}$ are linearly
independent over the ring of all rational numbers. And we put $v=(z_{1},$ $z_{2r}$

, $z_{n}$). Then Morimoto [6] proved that $G=C^{n}/\Gamma(e^{1}, \cdots , e^{n}, v)$ is an $(H, C)-$

group. Therefore every holomorphic function on $G$ is a constant. But the
theorem asserts that $G$ is pseudoconvex and l-complete.
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