On pseudoconvexity of complex abelian Lie groups

By Hideaki KAZAMA

(Received March 25, 1972) (Revised Sept. 20, 1972)

§1. Introduction.

The purpose of this paper is to prove the following theorem.

THEOREM. Let G be a complex abelian Lie group of complex dimension π and K the maximal compact subgroup of the connected component of G with Lie algebra \mathfrak{k} . Let q be the complex dimension of $\mathfrak{k} \cap \sqrt{-1}\mathfrak{k}$. Then there exists: a real-valued C^{∞} function φ on G satisfying the following conditions:

(1) The Levi form of φ :

$$L(\varphi, x) = \sum_{i,j=1}^{n} \frac{\partial^2 \varphi}{\partial z_i \partial \bar{z}_j} dz_i d\bar{z}_j$$

is positive semi-definite and has n-q positive eigenvalues at every point x of G, where (z_1, z_2, \dots, z_n) denotes a system of coordinates in some neighborhood of x.

(2) The set

$$G_c = \{g \in G : \varphi(g) < c\}$$

is a relatively compact subset of G for any $c \in \mathbf{R}$.

By the above theorem any complex abelian Lie group is always pseudoconvex. In the last part we shall find a complex Lie group of arbitrary dimension, on which every holomorphic function is a constant and which is pseudoconvex and 1-complete.

The author is very grateful to Professor J. Kajiwara for his continuous encouragement.

§2. Proof of Theorem.

Since all connected components of G are biholomorphically isomorphic, we may assume that G is connected. Let \mathbb{O} be the sheaf of all germs of holomorphic functions on G. We put

$$G^{\scriptscriptstyle 0} = \{g \in G : f(g) = f(e) \text{ for all } f \in H^{\scriptscriptstyle 0}(G, \mathbb{Q})\}$$

where e is the unit element of G. Then Morimoto [5] proved that G^0 is a complex abelian Lie subgroup of G and that every holomorphic function on

H. KAZAMA

 G° is a constant. By Morimoto [6] we may assume that

$$G = G^{\circ} \times C^{m} \times C^{*p}$$

for non-negative integers m and p where C^* is the multiplicative group of all non-zero complex numbers. Let K be the maximal compact subgroup of G with Lie algebra \mathfrak{k} and K^0 be the maximal compact subgroup of G^0 with Lie algebra \mathfrak{t}^0 . Since there holds $\mathfrak{t} \cap \sqrt{-1} \mathfrak{t} = \mathfrak{t}^0 \cap \sqrt{-1} \mathfrak{t}^0$ and since $C^m \times C^{*p}$ is a Stein group, it suffices to prove the theorem in the case that $G = G^{0}$. Then every holomorphic function on G is a constant and G is isomorphic to $C^n/\Gamma(d^1, d^2, \dots, d^s)$, where $\Gamma(d^1, d^2, \dots, d^s)$ is a discrete subgroup generated by linearly independent vectors d^1, d^2, \dots, d^s of C^n over **R**. The complex linear subspace of C^n spanned by $\{d^i: 1 \leq i \leq s\}$ is expressed by $\langle d^1, d^2, \dots, d^s \rangle_c$. Then we have $C^n = \langle d^1, d^2, \dots, d^s \rangle_c$. Actually, if $\dim_c \langle d^1, d^2, \dots, d^s \rangle_c \leq n-1$, there exists a complex linear subspace V of C^n of positive dimension such that $C^n = \langle d^1, \dots, d^s \rangle_{\mathcal{C}} \oplus V$. Consequently we have $G = \langle d^1, d^2, \dots, d^s \rangle_{\mathcal{C}} / \Gamma(d^1, d^2)$. $d^2, \dots, d^s) \oplus V$. Since every holomorphic function on G is a constant, it is a contradiction. Therefore $s \ge n$ and we may assume that d^1, d^2, \dots, d^{n-1} and d^n are linearly independent over C. There exists an (n, n)-matrix $M \in GL(n, C)$ such that $e^i = M(d^i)$ where e^i is the *i*-th unit vectors of C^n . We put $f^j =$ $M(d^{j+n}), 1 \leq j \leq s-n$. Then G is isomorphic to the complex Lie group $C^n/\Gamma(e^1, \dots, e^n, f^1, \dots, f^{s-n})$. From now, we put $\Gamma = \Gamma(e^1, \dots, e^n, f^1, \dots, f^{s-n})$ and regard G as C^n/Γ . Since d^1, d^2, \dots, d^{s-1} and d^s are linearly independent over R, e^1 , e^2 , \cdots , e^n , f^1 , f^2 , \cdots , f^{s-n-1} and f^{s-n} are linearly independent over **R**. We put

$$K = \langle e^1, \cdots, e^n, f^1, \cdots, f^{s-n} \rangle_{\mathbf{R}} / \Gamma$$

where $\langle e^1, \dots, e^n, f^1, \dots, f^{s-n} \rangle_{\mathbb{R}}$ denotes the real linear subspace of C^n spanned by $\{e^i, f^j: 1 \leq i \leq n, 1 \leq j \leq s-n\}$. Then K is the maximal compact subgroup of G with Lie algebra $\mathfrak{k} = \langle e^1, \dots, e^n, f^1, \dots, f^{s-n} \rangle_{\mathbb{R}}$. We put $f^j = \operatorname{Re} f^j + \sqrt{-1} \operatorname{Im} f^j$, where $\operatorname{Re} f^j$ and $\operatorname{Im} f^j$ are vectors of \mathbb{R}^n for $1 \leq j \leq s-n$. Then we have

$$\mathfrak{k} = \langle e^1, \cdots, e^n, \sqrt{-1} \operatorname{Im} f^1, \cdots, \sqrt{-1} \operatorname{Im} f^{s-n} \rangle_{\mathbf{R}}$$

and

$$\mathfrak{t} \cap \sqrt{-1} \mathfrak{t} = \langle \operatorname{Im} f^1, \cdots, \operatorname{Im} f^{s-n} \rangle_c.$$

Since Im f^1 , Im f^2 , ..., Im f^{s-n-1} and Im f^{s-n} are linearly independent over C, $\dim_{\mathbb{C}} \mathfrak{k} \cap \sqrt{-1} \mathfrak{k}$ coincides with s-n and we have q=s-n. Take a system $\{h^k \in \mathbb{R}^n : q+1 \leq k \leq n\}$ of n-q vectors such that Im f^1 , Im f^2 , ..., Im f^q , h^{q+1} , h^{q+2} , ..., h^{n-1} and h^n are linearly independent over \mathbb{R} . Then e^1 , e^2 , ..., e^n , $\sqrt{-1}$ Im f^1 , ..., $\sqrt{-1}$ Im f^q , $\sqrt{-1} h^{q+1}$, ..., $\sqrt{-1} h^{n-1}$ and $\sqrt{-1} h^n$ are linearly independent over \mathbb{R} and we have

330

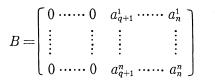
 $C^n = \langle e^1, \cdots, e^n, \sqrt{-1} \operatorname{Im} f^1, \cdots, \sqrt{-1} \operatorname{Im} f^q, \sqrt{-1} h^{q+1}, \cdots, \sqrt{-1} h^n \rangle_{\mathbb{R}}.$ There exists an (n, n)-matrix $A = (a_j^i) \in GL(n, \mathbb{R})$ such that

$$\begin{bmatrix} e^{1} \\ \vdots \\ \vdots \\ e^{n} \end{bmatrix} = A \begin{bmatrix} \operatorname{Im} f^{1} \\ \vdots \\ \operatorname{Im} f^{q} \\ h^{q+1} \\ \vdots \\ h^{n} \end{bmatrix}$$

For every $(z_1, z_2, \dots, z_n) \in \mathbb{C}^n$ where $z_i = x_i + \sqrt{-1} y_i$, $1 \leq i \leq n$, we have

$$(z_1, z_2, \cdots, z_n) = \sum_{i=1}^n x_i e^i + \sqrt{-1} \sum_{i=1}^n y_i e^i$$
$$= \sum_{i=1}^n x_i e^i + \sum_{j=1}^q (\sum_{i=1}^n y_i a^i_j) \sqrt{-1} \operatorname{Im} f^j + \sum_{k=q+1}^n (\sum_{i=1}^n y_i a^i_k) \sqrt{-1} h^k.$$

We consider the function φ on \mathbb{C}^n defined by $\varphi(z_1, z_2, \dots, z_n) = \sum_{k=q+1}^n (\sum_{i=1}^n y_i a_k^i)^2$ via the above equation. We define the real-valued \mathbb{C}^∞ function $\bar{\varphi}$ on $G = \mathbb{C}^n / \Gamma$ by putting $\bar{\varphi}(z+\Gamma) = \varphi(z)$. By the definition of $\bar{\varphi}$, the set $\{g \in G : \bar{\varphi}(g) < c\}$ is relatively compact for any $c \in \mathbb{R}$. We consider the (n, n)-matrix



of rank n-q. Then we have

$$\left[\frac{\partial^2 \bar{\varphi}(z+\Gamma)}{\partial z_i \partial \bar{z}_j}\right] = \left[\frac{1}{4} \frac{\partial^2 \varphi(z)}{\partial y_i \partial y_j}\right] = \frac{1}{2} B B^t.$$

The matrix BB^t is positive semi-definite and of rank n-q. This proves the theorem.

§3. Application.

A. Morimoto [5] has constructed a complex Lie group, on which every holomorphic function is a constant and which contains no complex torus of positive dimension. Such a group is called an (H, C)-group. Since all (H, C)groups are abelian, every (H, C)-group is always pseudoconvex. It is known that there exist some examples of non-compact pseudoconvex manifolds without non-constant holomorphic functions (cf. H. Grauert [3]). By the theorem and Morimoto's result [5], it is shown that there exist a number of such manifolds even in the case of group manifolds.

H. KAZAMA

A complex manifold X of dimension n is called a strongly q-pseudoconvex manifold if there exist a real-valued C^{∞} function φ on X and a compact subset K of X such that the Levi form $L(\varphi, x)$ of φ has at least n-q positive eigenvalues at every point x of X-K and $X_c = \{x \in X : \varphi(x) < c\}$ is a relatively compact subset of X for any $c \in \mathbf{R}$. Moreover if we can take the empty set as K, X is called a q-complete manifold.

We recall the well-known result of A. Andreotti and H. Grauert [1].

Let \mathfrak{F} be a coherent analytic sheaf on a complex manifold X. If X is strongly q-pseudoconvex, then we have dim $H^i(X, \mathfrak{F}) < +\infty$ for $i \ge q+1$. In particular if X is q-complete, then we have $H^i(X, \mathfrak{F}) = 0$ for $i \ge q+1$.

Since the complex abelian Lie group G in the theorem is q-complete, we have

$$H^i(G, \mathfrak{F}) = 0, \quad i \ge q+1$$

for every coherent analytic sheaf \mathfrak{F} on G.

H. Grauert gave the following conjecture at page 347 of [2]: Let X be a complex space with countable topology. If dim_c $X \leq n$, then X is strongly (n-1)-pseudoconvex.

In case that X is a complex Lie group the above conjecture is valid.

COROLLARY. Let G be a connected complex Lie group of dimension n. If G is non-compact, then G is (n-1)-complete and we have

$$H^n(G, \mathfrak{F}) = 0$$

for every coherent analytic sheaf \mathfrak{F} on G.

PROOF. We put $G^0 = \{g \in G : f(g) = f(e) \text{ for all } f \in H^0(G, \mathbb{O})\}$. Morimoto [5] proved that G^0 is a complex abelian Lie subgroup of G. If $G = G^0$, then G is (n-1)-complete by the theorem. When $G \neq G^0$, we put $q = \dim_c G^0 < n$. Then by the consequence of a previous paper [4], G is q-complete. In any way we have the above corollary.

REMARK. Take $(z_1, z_2, \dots, z_n) \in \mathbb{C}^n - \mathbb{R}^n$ such that $1, z_1, z_2, \dots, z_n$ are linearly independent over the ring of all rational numbers. And we put $v = (z_1, z_2, \dots, z_n)$. Then Morimoto [6] proved that $G = \mathbb{C}^n / \Gamma(e^1, \dots, e^n, v)$ is an (H, C)group. Therefore every holomorphic function on G is a constant. But the theorem asserts that G is pseudoconvex and 1-complete.

> Department of Mathematics Kyushu University Hakozaki-cho, Fukuoka, Japan

332

References

- A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259.
- [2] H. Grauert, Une notion de dimension cohomologique dans la théorie des espaces complexes, Bull. Soc. Math. France, 87 (1959), 341-350.
- [3] H. Grauert, Bemerkenswerte pseudokonvexe Mannigfaltigkeiten, Math. Zeit., 81 (1963), 377-391.
- [4] H. Kazama, q-Complete complex Lie groups and holomorphic fibre bundles over a Stein manifold, Mem. Fac. Sci. Kyushu Univ., 26 (1971), 102-118.
- [5] A. Morimoto, Non-compact complex Lie groups without non-constant holomorphic functions, Proc. Conf. on Complex Analysis at Univ. of Minneapolis, 1965, 256-272.
- [6] A. Morimoto, On the classification of non-compact complex abelian Lie groups, Trans. Amer. Math. Soc., 123 (1966), 200-228.